Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Plant Cell Rep ; 43(2): 36, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38200362

ABSTRACT

KEY MESSAGE: Detailed analyses of 16 genomes identified a remarkable acceleration of mutation rate, hence mitochondrial sequence and structural heterogeneity, in Meniocus linifolius (Brassicaceae). The powerhouse, mitochondria, in plants feature high levels of structural variation, while the encoded genes are normally conserved. However, the substitution rates and spectra of mitochondria DNA within the Brassicaceae, a family with substantial scientific and economic importance, have not been adequately deciphered. Here, by analyzing three newly assembled and 13 known mitochondrial genomes (mitogenomes), we report the highly variable genome structure and mutation rates in Brassicaceae. The genome sizes and GC contents are 196,604 bp and 46.83%, 288,122 bp and 44.79%, and 287,054 bp and 44.93%, for Meniocus linifolius (Mli), Crucihimalaya lasiocarpa (Cla), and Lepidium sativum (Lsa), respectively. In total, 29, 33, and 34 protein-coding genes (PCGs) and 14, 18, and 18 tRNAs are annotated for Mli, Cla, and Lsa, respectively, while all mitogenomes contain one complete circular molecule with three rRNAs and abundant RNA editing sites. The Mli mitogenome features four conformations likely mediated by the two pairs of long repeats, while at the same time seems to have an unusual evolutionary history due to higher GC content, loss of more genes and sequences, but having more repeats and plastid DNA insertions. Corroborating with these, an ambiguous phylogenetic position with long branch length and elevated synonymous substitution rate in nearly all PCGs are observed for Mli. Taken together, our results reveal a high level of mitogenome heterogeneity at the family level and provide valuable resources for further understanding the evolutionary pattern of organelle genomes in Brassicaceae.


Subject(s)
Brassicaceae , Genome, Mitochondrial , Genome, Mitochondrial/genetics , Brassicaceae/genetics , Phylogeny , Biological Evolution , DNA, Mitochondrial/genetics
2.
Front Plant Sci ; 14: 1283292, 2023.
Article in English | MEDLINE | ID: mdl-38116150

ABSTRACT

Introduction: During plant evolution, intracellular DNA transfer (IDT) occurs not only from organelles to the nucleus but also between organelles. To further comprehend these events, both organelle genomes and transcriptomes are needed. Methods: In this study, we constructed organelle genomes and transcriptomes for two Dystaenia species and described their dynamic IDTs between their nuclear and mitochondrial genomes, or plastid and mitochondrial genomes (plastome and mitogenome). Results and Discussion: We identified the putative functional transfers of the mitochondrial genes 5' rpl2, rps10, rps14, rps19, and sdh3 to the nucleus in both Dystaenia species and detected two transcripts for the rpl2 and sdh3 genes. Additional transcriptomes from the Apicaceae species also provided evidence for the transfers and duplications of these mitochondrial genes, showing lineage-specific patterns. Intrageneric variations of the IDT were found between the Dystaenia organelle genomes. Recurrent plastid-to-mitochondrion DNA transfer events were only identified in the D. takeshimana mitogenome, and a pair of mitochondrial DNAs of plastid origin (MIPTs) may generate minor alternative isoforms. We only found a mitochondrion-to-plastid DNA transfer event in the D. ibukiensis plastome. This event may be linked to inverted repeat boundary shifts in its plastome. We inferred that the insertion region involved an MIPT that had already acquired a plastid sequence in its mitogenome via IDT. We propose that the MIPT acts as a homologous region pairing between the donor and recipient sequences. Our results provide insight into the evolution of organelle genomes across the family Apiaceae.

3.
BMC Plant Biol ; 23(1): 91, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36782130

ABSTRACT

BACKGROUND: Mitochondria are organelles within eukaryotic cells that are central to the metabolic processes of cellular respiration and ATP production. However, the evolution of mitochondrial genomes (mitogenomes) in plants is virtually unknown compared to animal mitogenomes or plant plastids, due to complex structural variation and long stretches of repetitive DNA making accurate genome assembly more challenging. Comparing the structural and sequence differences of organellar genomes within and between sorghum species is an essential step in understanding evolutionary processes such as organellar sequence transfer to the nuclear genome as well as improving agronomic traits in sorghum related to cellular metabolism. RESULTS: Here, we assembled seven sorghum mitochondrial and plastid genomes and resolved reticulated mitogenome structures with multilinked relationships that could be grouped into three structural conformations that differ in the content of repeats and genes by contig. The grouping of these mitogenome structural types reflects the two domestication events for sorghum in east and west Africa. CONCLUSIONS: We report seven mitogenomes of sorghum from different cultivars and wild sources. The assembly method used here will be helpful in resolving complex genomic structures in other plant species. Our findings give new insights into the structure of sorghum mitogenomes that provides an important foundation for future research into the improvement of sorghum traits related to cellular respiration, cytonuclear incompatibly, and disease resistance.


Subject(s)
Genome, Mitochondrial , Sorghum , Genome, Mitochondrial/genetics , Sorghum/genetics , Phylogeny , Domestication , Plants/genetics , Cell Nucleus , Evolution, Molecular , Genome, Plant/genetics
4.
BMC Plant Biol ; 22(1): 109, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35264098

ABSTRACT

BACKGROUND: The mitogenomes of vascular plants are one of the most structurally diverse molecules. In the present study we characterize mitogenomes of a rare and endangered species Pulsatilla patens. We investigated the gene content and its RNA editing potential, repeats distribution and plastid derived sequences. RESULTS: The mitogenome structure of early divergent eudicot, endangered Pulsatilla patens does not support the master chromosome hypothesis, revealing the presence of three linear chromosomes of total length 986 613 bp. The molecules are shaped by the presence of extremely long, exceeding 87 kbp repeats and multiple chloroplast-derived regions including nearly complete inverted repeat. Since the plastid IR content of Ranunculales is very characteristic, the incorporation into mitogenome could be explained rather by intracellular transfer than mitochondrial HGT. The mitogenome contains almost a complete set of genes known from other vascular plants with exception of rps10 and sdh3, the latter being present but pseudogenized. Analysis of long ORFs enabled the identification of genes which are rarely present in plant mitogenomes, including RNA and DNA polymerases, albeit their presence even at species level is variable. Mitochondrial transcripts of P. patens were edited with a high frequency, which exceeded the level known in other analyzed angiosperms, despite the strict qualification criteria of counting the editing events and taking into analysis generally less frequently edited leaf transcriptome. The total number of edited sites was 902 and nad4 was identified as the most heavily edited gene with 65 C to U changes. Non-canonical, reverse U to C editing was not detected. Comparative analysis of mitochondrial genes of three Pulsatilla species revealed a level of variation comparable to chloroplast CDS dataset and much higher infrageneric differentiation than in other known angiosperm genera. The variation found in CDS of mitochondrial genes is comparable to values found among Pulsatilla plastomes. Despite the complicated mitogenome structure, 14 single copy regions of 329 kbp, not splitted by repeats or plastid-derived sequences (MTPT), revealed the potential for phylogenetic, phylogeographic and population genetics studies by revealing intra- and interspecific collinearity. CONCLUSIONS: This study provides valuable new information about mitochondrial genome of early divergent eudicots, Pulsatilla patens, revealed multi-chromosomal structure and shed new light on mitogenomics of early eudicots.


Subject(s)
Chloroplasts/genetics , Evolution, Molecular , Genes, Plant , Genome, Mitochondrial , Genome, Plant , Pulsatilla/genetics , RNA Editing , Terminal Repeat Sequences , Embryophyta/genetics , Poland
5.
BMC Genomics ; 22(1): 816, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34772334

ABSTRACT

BACKGROUND: The intimate association between parasitic plants and their hosts favours the exchange of genetic material, potentially leading to horizontal gene transfer (HGT) between plants. With the recent publication of several parasitic plant nuclear genomes, there has been considerable focus on such non-sexual exchange of genes. To enhance the picture on HGT events in a widely distributed parasitic genus, Cuscuta (dodders), we assembled and analyzed the organellar genomes of two recently sequenced species, C. australis and C. campestris, making this the first account of complete mitochondrial genomes (mitogenomes) for this genus. RESULTS: The mitogenomes are 265,696 and 275,898 bp in length and contain a typical set of mitochondrial genes, with 10 missing or pseudogenized genes often lost from angiosperm mitogenomes. Each mitogenome also possesses a structurally unusual ccmFC gene, which exhibits splitting of one exon and a shift to trans-splicing of its intron. Based on phylogenetic analysis of mitochondrial genes from across angiosperms and similarity-based searches, there is little to no indication of HGT into the Cuscuta mitogenomes. A few candidate regions for plastome-to-mitogenome transfer were identified, with one suggestive of possible HGT. CONCLUSIONS: The lack of HGT is surprising given examples from the nuclear genomes, and may be due in part to the relatively small size of the Cuscuta mitogenomes, limiting the capacity to integrate foreign sequences.


Subject(s)
Cuscuta , Genome, Mitochondrial , Cuscuta/genetics , Gene Transfer, Horizontal , Genes, Mitochondrial , Genome, Mitochondrial/genetics , Phylogeny
6.
Acta Pharm Sin B ; 11(4): 886-902, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33996405

ABSTRACT

Current advances of immunotherapy have greatly changed the way of cancer treatment. At the same time, a great number of nanoparticle-based cancer immunotherapies (NBCIs) have also been explored to elicit potent immune responses against tumors. However, few NBCIs are nearly in the clinical trial which is mainly ascribed to a lack understanding of in vivo fate of nanoparticles (NPs) for cancer immunotherapy. NPs for cancer immunotherapy mainly target the immune organs or immune cells to enable efficient antitumor immune responses. The physicochemical properties of NPs including size, shape, elasticity and surface properties directly affect their interaction with immune systems as well as their in vivo fate and therapeutic effect. Hence, systematic analysis of the physicochemical properties and their effect on in vivo fate is urgently needed. In this review, we first recapitulate the fundamentals for the in vivo fate of NBCIs including physio-anatomical features of lymphatic system and strategies to modulate immune responses. Moreover, we highlight the effect of physicochemical properties on their in vivo fate including lymph nodes (LNs) drainage, cellular uptake and intracellular transfer. Challenges and opportunities for rational design of NPs for cancer immunotherapy are also discussed in detail.

7.
Acta Pharmaceutica Sinica B ; (6): 886-902, 2021.
Article in English | WPRIM (Western Pacific) | ID: wpr-881175

ABSTRACT

Current advances of immunotherapy have greatly changed the way of cancer treatment. At the same time, a great number of nanoparticle-based cancer immunotherapies (NBCIs) have also been explored to elicit potent immune responses against tumors. However, few NBCIs are nearly in the clinical trial which is mainly ascribed to a lack understanding of

SELECTION OF CITATIONS
SEARCH DETAIL
...