Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 202
Filter
1.
J Dairy Sci ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38851577

ABSTRACT

To comply with antibiotic restriction policies in the European Union, internal teat sealants (TS) are increasingly used at drying off (DO) in selective dry cow treatment protocols to maintain udder health. Post-calving TS residue attachment to milking equipment and associated cleaning difficulties is a reason for some farmers to stay away from blanket TS use. Our objective was therefore to improve insight in TS excretion visibility and to compare quantity, pattern, and presence versus absence of TS excretion post-calving between the typical 2 cow categories at DO: High (H) and Low (L) SCC cows, treated with antibiotic (AB) plus TS (H-ABTS) or TS only (L-TS), respectively. In herds in the Netherlands (n = 3), and Germany (n = 4), cows were enrolled at DO, and categorized as H-ABTS (n = 93), or L-TS (n = 99). Post-calving, quarter level TS visibility, quantities, patterns, and percentage of TS infused and excreted post-calving were recorded from 50 mL of pre-milk of every quarter at each of the first 15 or 16 milkings. Udder quarter health status was determined by bacteriological culture and somatic cell counting of quarter milk samples taken at DO and at d 3 post-calving and by clinical mastitis incidence from DO until 30 DIM. Univariable and multivariable models were created to explore associations of TS excretion presence versus absence at the first 3 milkings. Irrespective of SCC category, both laboratory personnel, and farmers saw TS residues at the first milking in an equal 72% of quarters. Compared with laboratory as the gold standard, farmer sensitivity to spot TS in pre-milk was 74.5% at the first milking, decreasing to a maximum of 8.3% at the last 3 milking's. At the first milking, TS excretion quantities showed a bimodal distribution pattern and the mean percentage of TS infused (3.83 g) that was excreted in pre-milk at the first milking, was higher in the L-TS (45.5%) compared with the H-ABTS cow category (32%). At the second and third milking, mean adjusted TS percentage excreted was higher in the H-ABTS (8.5% and 1.8%, respectively) compared with the L-TS category (4.6% and 0.4% respectively). The multivariable model of the first 3 milkings showed parity at both the first and second milking, and study group at both the second and third milking, was significantly associated to TS presence. The univariable model showed no association between TS presence at the first milking and udder health. In conclusion, in pre-milk of the first milking, TS residue excretion was bimodal, higher in L-TS cows, more likely present in multiparous cows, and not associated with udder health. At the second and third milking, excretion was higher in H-ABTS cows and TS presence was only more likely in multiparous cows at the second milking.

2.
BMC Vet Res ; 20(1): 249, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849801

ABSTRACT

BACKGROUND: Intramammary infection is the result of invasion and multiplication of microorganisms in the mammary gland and commonly leads to mastitis in dairy animals. Although much has been done to improve cows' udder health, mastitis remains a significant and costly health issue for dairy farmers, especially if subclinical. In this study, quarter milk samples from clinically healthy cows were harvested to detect pathogens via quantitative PCR (qPCR) and evaluate changes in individual milk traits according to the number of quarters infected and the type of microorganism(s). A commercial qPCR kit was used for detection of Mycoplasma bovis, Mycoplasma spp., Staphylococcus aureus, coagulase-negative staphylococci (CNS), Streptococcus agalactiae, Streptococcus dysgalactiae, Streptococcus uberis, Prototheca spp., Escherichia coli, Klebsiella spp., Enterococcus spp. and Lactococcus lactis ssp. lactis. Quarter and pooled milk information of 383 Holstein, 132 Simmental, 129 Rendena, and 112 Jersey cows in 9 Italian single-breed herds was available. RESULTS: Among the cows with pathogen(s) present in at least 1 quarter, CNS was the most commonly detected DNA, followed by Streptococcus uberis, Mycoplasma bovis, and Streptococcus agalactiae. Cows negative to qPCR were 206 and had the lowest milk somatic cell count. Viceversa, cows with DNA isolated in ≥ 3 quarters were those with the highest somatic cell count. Moreover, when major pathogens were isolated in ≥ 3 quarters, milk had the lowest casein index and lactose content. In animals with pathogen(s) DNA isolated, the extent with whom milk yield and major solids were impaired did not significantly differ between major and minor pathogens. CONCLUSIONS: The effect of the number of affected quarters on the pool milk quality traits was investigated in clinically healthy cows using a commercial kit. Results remark the important negative effect of subclinical udder inflammations on milk yield and quality, but more efforts should be made to investigate the presence of untargeted microorganisms, as they may be potentially dangerous for cows. For a smarter use of antimicrobials, analysis of milk via qPCR is advisable - especially in cows at dry off - to identify quarters at high risk of inflammation and thus apply a targeted/tailored treatment.


Subject(s)
Mastitis, Bovine , Milk , Animals , Cattle , Milk/microbiology , Milk/chemistry , Female , Mastitis, Bovine/microbiology , DNA, Bacterial/analysis , Streptococcus/isolation & purification , Lactation , Real-Time Polymerase Chain Reaction/veterinary
3.
J Dairy Sci ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38762106

ABSTRACT

The objective of this study was to determine quarters requiring antimicrobial treatment using either a benchtop somatic cell counter (S-SDCT) or culture with gram-positive selective media (C-SDCT) and compare outcomes in these cows to those receiving blanket dry cow therapy (BDCT) in a randomized, controlled trial. Two novel methods of identifying cows with intramammary infections followed by selective antimicrobial treatment were evaluated at a commercial dairy farm to determine their usefulness in decreasing antibiotic usage during the dry period without significant detrimental effects on milk quality and production. Cows (n = 840) were randomly allocated to one of 3 groups (BDCT, C-SDCT, S-SDCT) the day before dry-off and quarter-level milk samples (QLMS) were collected. The QLMS from cows in the S-SDCT group were evaluated using the cell counter and quarters were treated if somatic cell count (SCC) was ≥200,000 cells/mL, while QLMS from cows in the C-SDCT group were cultured and quarters were treated if the culture showed growth. All cows in the BDCT received antimicrobial therapy and all cows received an internal teat sealant regardless of treatment group. Outcomes measured were first and second DHIA test somatic cell count, milk production through 60 d in milk, cows leaving the farm, clinical mastitis, and bacteriologic new infections in a subset of quarters. Cows in both SDCT groups had fewer antimicrobial treatments than cows in the BDCT group as was expected, and cows in the C-SDCT group had fewer treatments than those in the S-SDCT group. Cows in both SDCT groups had higher linear score at the first DHIA test (BDCT: 1.8, S-SDCT: 2.2, C-SDCT: 2.2), however there were no other differences between groups regarding any other outcomes measured. While antimicrobial use was significantly reduced, farms should use caution in adopting the benchtop analyzer and the selective media described in this study as ways to identify infected cows for dry cow therapy as they may result in increased linear score early in lactation.

4.
BMC Vet Res ; 20(1): 200, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38745199

ABSTRACT

BACKGROUND: In dairy cattle, mastitis causes high financial losses and impairs animal well-being. Genetic selection is used to breed cows with reduced mastitis susceptibility. Techniques such as milk cell flow cytometry may improve early mastitis diagnosis. In a highly standardized in vivo infection model, 36 half-sib cows were selected for divergent paternal Bos taurus chromosome 18 haplotypes (Q vs. q) and challenged with Escherichia coli for 24 h or Staphylococcus aureus for 96 h, after which the samples were analyzed at 12 h intervals. Vaginal temperature (VT) was recorded every three minutes. The objective of this study was to compare the differential milk cell count (DMCC), milk parameters (fat %, protein %, lactose %, pH) and VT between favorable (Q) and unfavorable (q) haplotype cows using Bayesian models to evaluate their potential as improved early indicators of differential susceptibility to mastitis. RESULTS: After S. aureus challenge, compared to the Q half-sibship cows, the milk of the q cows exhibited higher PMN levels according to the DMCC (24 h, p < 0.001), a higher SCC (24 h, p < 0.01 and 36 h, p < 0.05), large cells (24 h, p < 0.05) and more dead (36 h, p < 0.001) and live cells (24 h, p < 0.01). The protein % was greater in Q milk than in q milk at 0 h (p = 0.025). In the S. aureus group, Q cows had a greater protein % (60 h, p = 0.048) and fat % (84 h, p = 0.022) than q cows. Initially, the greater VT of S. aureus-challenged q cows (0 and 12-24 h, p < 0.05) reversed to a lower VT in q cows than in Q cows (48-60 h, p < 0.05). Additionally, the following findings emphasized the validity of the model: in the S. aureus group all DMCC subpopulations (24 h-96 h, p < 0.001) and in the E. coli group nearly all DMCC subpopulations (12 h-24 h, p < 0.001) were higher in challenged quarters than in unchallenged quarters. The lactose % was lower in the milk samples of E. coli-challenged quarters than in those of S. aureus-challenged quarters (24 h, p < 0.001). Between 12 and 18 h, the VT was greater in cows challenged with E. coli than in those challenged with S. aureus (3-h interval approach, p < 0.001). CONCLUSION: This in vivo infection model confirmed specific differences between Q and q cows with respect to the DMCC, milk component analysis results and VT results after S. aureus inoculation but not after E. coli challenge. However, compared with conventional milk cell analysis monitoring, e.g., the global SCC, the DMCC analysis did not provide refined phenotyping of the pathogen response.


Subject(s)
Escherichia coli Infections , Escherichia coli , Haplotypes , Mastitis, Bovine , Milk , Staphylococcal Infections , Staphylococcus aureus , Animals , Cattle , Milk/microbiology , Milk/cytology , Female , Mastitis, Bovine/microbiology , Staphylococcus aureus/physiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Cell Count/veterinary , Body Temperature , Vagina/microbiology
5.
Front Vet Sci ; 11: 1322267, 2024.
Article in English | MEDLINE | ID: mdl-38515536

ABSTRACT

Mycoplasma bovis has recently been identified increasingly in dairy cows causing huge economic losses to the dairy industry. M. bovis is a causative agent for mastitis, pneumonia, endometritis, endocarditis, arthritis, otitis media, and many other clinical symptoms in cattle. However, some infected cows are asymptomatic or may not shed the pathogen for weeks to years. This characteristic of M. bovis, along with the lack of adequate testing and identification methods in many parts of the world until recently, has allowed the M. bovis to be largely undetected despite its increased prevalence in dairy farms. Due to growing levels of antimicrobial resistance among wild-type M. bovis isolates and lack of cell walls in mycoplasmas that enable them to be intrinsically resistant to beta-lactam antibiotics that are widely used in dairy farms, there is no effective treatment for M. bovis mastitis. Similarly, there is no commercially available effective vaccine for M. bovis mastitis. The major constraint to developing effective intervention tools is limited knowledge of the virulence factors and mechanisms of the pathogenesis of M. bovis mastitis. There is lack of quick and reliable diagnostic methods with high specificity and sensitivity for M. bovis. This review is a summary of the current state of knowledge of the virulence factors, pathogenesis, clinical manifestations, diagnosis, and control of M. bovis mastitis in dairy cows.

6.
Animal ; 18(4): 101111, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460469

ABSTRACT

The study of new indirect methods for mastitis detection is of great relevance both at the economic level of the farm and dairies, and in terms of consumer health, and animal welfare. These methods help us to monitor the disease and speed up the decision-making process on treatment of the affected animal and the destination of the milk. The main aim of this work was to study the effect of intramammary infection and other non-infectious factors on the activity of the enzyme N-acetyl-ß-D-glucosaminidase (NAGase) in milk, in order to evaluate its use as an indicator for the early diagnosis of mastitis in sheep that could be less expensive, easier to measure and a better marker of inflammation or complementary to existing methods such as somatic cell count (SCC). Seven biweekly samplings were carried out, in which NAGase activity, SCC and milk were analyzed. Glands were classified according to their sanitary status based on the results of the SCC and bacteriological analysis. Non-infectious factors such as lactation stage, parity number and milking session had a statistically significant effect on NAGase values, finding the highest NAGase values at the onset and end of the study, in infectious mastitic glands of multiparous females and at morning milking. However, among the NAGase variation factors studied, the health status of the gland was the factor that caused the highest variation in enzyme levels, with infectious mastitic glands showing higher values than healthy glands. The predictive ability of NAGase was also studied by means of several logistic regression models, with the one that included NAGase together with lactation stage and parity obtaining the best results if sensitivity is to be prioritized, or the model that included NAGase, lactation stage, parity, milking and production if specificity is to be prioritized. From the results obtained, it can be concluded that the use of NAGase as an intramammary infection detection method in sheep can be useful when non-infectious factors that cause changes in the concentration of the enzyme are also considered.


Subject(s)
Cattle Diseases , Mastitis, Bovine , Sheep Diseases , Pregnancy , Female , Cattle , Sheep , Animals , Acetylglucosaminidase/analysis , Mastitis, Bovine/diagnosis , Milk/chemistry , Lactation , Cell Count/veterinary , Mammary Glands, Animal , Sheep Diseases/diagnosis
7.
Front Vet Sci ; 11: 1286461, 2024.
Article in English | MEDLINE | ID: mdl-38313061

ABSTRACT

Mastitis is a major health problem for bovines and can be categorized as non-severe or severe, based on clinical symptoms. A severe case of clinical mastitis is usually defined by the cow being affected systemically. It is important to consider how to handle severe cases because these cases can be fatal and cause high production losses. However, there are generally few detailed treatment guidelines. By conducting a scoping review on the topic, we aimed to synthesize the information that is available on treatment and outcomes, as reported from clinical trials and observational studies. This was facilitated by following the PRISMA-guidelines with a stepwise systematic screening of scientific literature on the subject, retrieved via Pubmed and Web of Science, using pre-defined selection criteria. The results yielded a total of 14 reports of treatment and outcomes in cases of naturally occurring severe clinical mastitis. Cross-trial comparison was difficult due to the different exclusion criteria and outcome definitions. Many studies focused on cases caused by gram-negative bacteria treated with intensive antibiotic protocols, often containing antibiotics that are categorized as critical for human health. Few focused on severe cases caused by gram-positive bacteria or on the relative use of non-antibiotic treatment. In general, only a small number of statistically significant differences were found in trials comparing different treatment protocols, with no obvious trends across trials. Our findings emphasize the need for more research into the treatment efficacy of antibiotic and non-antibiotic options for clinically severe mastitis. Furthermore, consideration of how trial conditions relate to the practical circumstances in a field setting could improve the applicability of reported results. This could help to provide practitioners with the information needed to make evidence-based treatment decisions in cases of clinically severe mastitis.

8.
Vaccine ; 42(6): 1247-1258, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38281900

ABSTRACT

Mastitis is an inflammation of the mammary gland commonly caused by bacteria or fungi. Staphylococcus aureus is a major bacterium that causes mastitis in dairy cows. Non-aureus staphylococci are also increasingly reported, with Staphylococcus chromogenes being the most common species. Current staphylococcal mastitis control programs are not fully effective, and treatment with antibiotics is not sustainable. Non-antibiotic sustainable control tools, such as effective vaccines, are critically needed. We previously developed S. aureus surface-associated proteins (SASP) and S. chromogenes surface-associated proteins (SCSP) vaccines that conferred partial protective effects. We hypothesized that vaccination with SASP or SCSP would reduce the incidence of S. aureus mastitis throughout the lactation period. The objective of this study was to evaluate the efficacy of SASP and SCSP vaccines against S. aureus and non-aureus staphylococcal mastitis under natural exposure over 300 days of lactation. Pregnant Holstein dairy cows (n = 45) were enrolled and assigned to receive SASP (n = 15) or SCSP (n = 16) vaccines or unvaccinated control (n = 14). Cows were vaccinated with 1.2 mg of SASP or SCSP with Emulsigen-D adjuvant. Control cows were injected with phosphate-buffered saline with Emulsigen-D adjuvant. Three vaccine injections were given subcutaneously at 60, 40, and 20 days before the expected calving. Booster vaccinations were given at 120 and 240 days in milk. Cows were monitored for mastitis at quarter and cow levels, staphylococcal mastitis incidence, changes in serum and milk anti-SASP and anti-SCSP antibody titers, bacterial counts in milk, adverse reactions, milk yield and milk somatic cells count over 300 days of lactation. The SCSP vaccine conferred a significant reduction in the incidence of staphylococcal mastitis. Milk and serum anti-SASP and anti-SCSP antibody titers were increased in the vaccinated cows compared to unvaccinated control cows. Anti-SASP and anti-SCSP antibody titers decreased at about 120 days in milk, indicating the duration of immunity of about four months. In conclusion, the SASP and SCSP vaccines conferred partial protection from natural infection.


Subject(s)
Mastitis, Bovine , Staphylococcal Infections , Staphylococcal Vaccines , Vaccines , Female , Pregnancy , Cattle , Animals , Humans , Staphylococcus aureus , Staphylococcal Infections/prevention & control , Staphylococcal Infections/veterinary , Milk , Lactation , Membrane Proteins
9.
Braz J Microbiol ; 55(1): 889-900, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38049660

ABSTRACT

Staphylococcus aureus is one of the agents of bovine mastitis of hardest control due to a complex pathogenesis comprising a variety of virulence factors, which ensures its persistence in the mammary gland, causing significant health and economic losses. Therefore, understanding the pathogenesis of this agent is imperative. Galleria mellonella has stood out as an invertebrate animal model for the study of infectious diseases that affect several hosts. This work aimed to evaluate G. mellonella larvae as an experimental model for the study of virulence phenotypes in an S. aureus population isolated from bovine mastitis. Thirty genetically divergent S. aureus strains were chosen based on PFGE analysis. After experimental infection, larvae survival rates, bacterial growth in hemolymph, melanization intensity of the dorsal vessel, and histological characteristics of the infected tissues were evaluated. The G. mellonella model showed a clear diversity in the S. aureus pathogenicity pattern, allowing the differentiation of strains with virulence phenotypes ranging from high to low degrees. Histological analysis confirmed that the strains tested were capable of inducing the formation of nodules and melanization spots in the dorsal vessels of the larvae in different magnitudes. The strains 16S-717, 19C-828, and 31S-1443 presented the highest virulence intensity among the bacteria tested and will be used further for the generation of S. aureus mutant populations to prospect genetic targets aimed to develop control strategies of bovine mastitis. Altogether, our results suggest that G. mellonella is an attractive and low-cost animal model for characterizing virulence phenotypes of large S. aureus populations.


Subject(s)
Mastitis, Bovine , Moths , Staphylococcal Infections , Animals , Cattle , Female , Virulence , Staphylococcus aureus , Mastitis, Bovine/microbiology , Moths/microbiology , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Larva/microbiology
10.
J Dairy Sci ; 107(5): 3157-3167, 2024 May.
Article in English | MEDLINE | ID: mdl-37949401

ABSTRACT

There are limited data available regarding pathogens causing intramammary infections (IMI) in Jersey cows. The objectives of this study were to characterize the prevalence of IMI caused by different microorganisms in lactating Jersey cattle and evaluate the associations among microbes and somatic cell count (SCC) and persistence of IMI. This prospective, observational, longitudinal study included lactating Jersey cows (n = 753) from 4 farms within a 415 km radius of Columbia, Missouri. Quarter foremilk samples were aseptically collected monthly for 3 consecutive months. Microorganisms were identified using aerobic milk culture and MALDI-TOF mass spectrometry. A commercial laboratory measured SCC using flow cytometry. Milk culture results were used to classify single microorganism infections as persistent (same microorganism species identified at first sampling and one other sampling) or nonpersistent infection. Mixed models were built to evaluate the associations between IMI status and SCC natural logarithm (lnSCC), as well as persistence and lnSCC. Overall, staphylococci were the most commonly isolated microorganisms among the 7,370 quarter-level milk samples collected. Median prevalence (using all 3 samplings) of specific microbes varied among farms; however, Staphylococcus chromogenes was a common species found at all farms. The most common microbial species that persisted were Staph. chromogenes, Staphylococcus aureus, Staphylococcus simulans, and Streptococcus uberis. Streptococcus dysgalactiae and Staph. aureus were the IMI associated with the most inflammation based on lnSCC. The small number of herds included in this study with the large variation in herd type limits the generalizability of the data. However, results of this study seem to be similar to those of previous studies in other breeds, suggesting management factors are more important than breed-specific differences when evaluating causes of IMI and associated subclinical mastitis.

11.
Article in English | MEDLINE | ID: mdl-38096640

ABSTRACT

The low susceptibility to mastitis of female donkey (jenny) mammary glands and the strong immune properties of donkey milk are acknowledged, but little is known about the genes involved in mammary gland immunity in jennies. Herein, we used RNA-sequencing and bioinformatics analyses to explore jenny mammary gland transcriptomes and detect potential functional differentially expressed (DE) mRNAs related to immunity during four specific developmental stages: foetal (F), pubertal (P), adult parous nonlactation (N) and lactation (L). A total of 2497, 583 and 1820 DE mRNAs were identified in jenny mammary glands at F vs. P, P vs. N, and N vs. L, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) analyses revealed numerous GO terms related to immune function, especially between F and P. Seven significantly enriched profiles were identified, among which 497 and 1261 DE mRNAs were upregulated in profiles 19 and 17. Eleven mRNAs were enriched in over 10 KEGG pathways. ß-2-microglobulin (B2M), immunoglobulin heavy constant mu (IGHM), toll like receptor 2 (TLR2), toll like receptor 4 (TLR4) and myeloid differentiation factor 88 (MYD88) were mainly involved in phosphoinositide 3-kinase (PI3K)-Akt signalling, phagosome and nuclear factor kappa-B (NF-kappa B) signalling pathways. The findings provide insight into the molecular features underpinning the low prevalence of intramammary infections (i.e., mastitis) in donkeys.


Subject(s)
Equidae , Mastitis , Female , Animals , Humans , Equidae/genetics , Equidae/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Gene Expression Profiling , Transcriptome , RNA, Messenger/genetics , Immunity
12.
Pathogens ; 12(12)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38133263

ABSTRACT

Streptococcus uberis is one of the primary causative agents of mastitis, a clinically and economically significant disease that affects dairy cattle worldwide. In this study, we analyzed 140 S. uberis strains isolated from mastitis milk samples collected from 74 cow herds in the Czech Republic. We employed whole-genome sequencing to screen for the presence of antimicrobial resistance (AMR) genes and genes encoding virulence factors, and to assess their genetic relationships. Our analysis revealed the presence of 88 different sequence types (STs), with 41% of the isolates assigned to global clonal complexes (GCCs), the majority of which were affiliated with GCC5. The STs identified were distributed across the major phylogenetic branches of all currently known STs. We identified fifty-one putative virulence factor genes, and the majority of isolates carried between 27 and 29 of these genes. A tendency of virulence factors and AMR genes to cluster with specific STs was observed, although such clustering was not evident within GCCs. Principal component analysis did not reveal significant diversity among isolates when grouped by GCC or ST prevalence. The substantial genomic diversity and the wide array of virulence factors found in S. uberis strains present a challenge for the implementation of effective anti-mastitis measures.

13.
Sensors (Basel) ; 23(22)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38005424

ABSTRACT

This study determined the impact of subclinical intramammary infections (IMIs), such as the major and minor udder pathogens (MaPs and MiPs), on the somatic cell count (SCC) in cow milk and investigated the possibilities of indirect sensing of the udder pathogens using the mastitis detection index (MDi) (DeLaval, Tumba, Sweden). The MDi incorporates quarter-level milk electrical conductivity, blood in milk, and milking interval. The case group (n = 21; MDi ≥ 1.4) was compared with the control group (n = 24; MDi < 1.4) for the presence of IMIs. The microbiological investigation of udder quarter foremilk samples was performed two times with an interval of 10 to 14 days. The case and control groups differed in terms of the occurrence of MaPs and MiPs in milk. During the continuous subclinical IMI and the episodic MaP infection, a higher SCC was detected compared with the episodic MiP infection or quarters without IMI. The novel finding of this study was that by using the milk quality sensor for the sensing of subclinical IMIs, there was an indication for the successful detection of episodic MaPs. However, the sensing of the continuous subclinical IMIs was not possible in the current study and still needs to be investigated.


Subject(s)
Milk , Robotics , Animals , Cattle , Female , Milk/microbiology , Cell Count , Mammary Glands, Animal , Sweden , Lactation
14.
J Vet Sci ; 24(5): e72, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38031651

ABSTRACT

BACKGROUND: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) on the surface of Streptococcus dysgalactiae, coded with gapC, is a glycolytic enzyme that was reported to be a moonlighting protein and virulence factor. OBJECTIVE: This study assessed GAPDH as a potential immunization candidate protein to prevent streptococcus infections. METHODS: Mice were vaccinated subcutaneously with recombinant GAPDH and challenged with S. dysgalactiae in vivo. They were then evaluated using histological methods. rGAPDH of mouse bone marrow-derived dendritic cells (BMDCs) was evaluated using immunoblotting, reverse transcription quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay methods. RESULTS: Vaccination with rGAPDH improved the survival rates and decreased the bacterial burdens in the mammary glands compared to the control group. The mechanism by which rGAPDH vaccination protects against S. dysgalactiae was investigated. In vitro experiments showed that rGAPDH boosted the generation of interleukin-10 and tumor necrosis factor-α. Treatment of BMDCs with TAK-242, a toll-like receptor 4 inhibitor, or C29, a toll-like receptor 2 inhibitor, reduced cytokines substantially, suggesting that rGAPDH may be a potential ligand for both TLR2 and TLR4. Subsequent investigations showed that rGAPDH may activate the phosphorylation of MAPKs and nuclear factor-κB. CONCLUSIONS: GAPDH is a promising immunization candidate protein for targeting virulence and enhancing immune-mediated protection. Further investigations are warranted to understand the mechanisms underlying the activation of BMDCs by rGAPDH in a TLR2- and TLR4-dependent manner and the regulation of inflammatory cytokines contributing to mastitis pathogenesis.


Subject(s)
Toll-Like Receptor 4 , Vaccines , Female , Animals , Mice , Toll-Like Receptor 2 , Streptococcus , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Cytokines , Immunity, Innate , Immunologic Factors
15.
Antibiotics (Basel) ; 12(10)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37887228

ABSTRACT

Streptococcus uberis is one of the most important causative agents of mastitis and is a common reason for the use of antimicrobials in dairy cows. In this study, we assessed the antimicrobial susceptibility of 667 S. uberis isolates originating from 216 Czech dairy farms collected between 2019 and 2023 using the broth microdilution method. We tested 140 of the isolates for the presence of antimicrobial genes using whole-genome sequencing and evaluated their relationship with phenotypic resistance. Streptococcus uberis isolates showed high levels of resistance to tetracycline (59%), followed by streptomycin (38%) and clindamycin (29%). Although all of the isolates were susceptible to beta-lactams, a relatively high percentage of intermediately susceptible isolates was recorded for ampicillin (44%) and penicillin (18%). The isolates were mainly resistant to tetracycline alone (31.3%); the second most frequent occurrence of the phenotypic profile was simultaneous resistance to tetracycline, streptomycin, and clindamycin (16.6%). The occurrence of antibiotic resistance genes did not always match the phenotypic results; in total, 36.8% of isolates that possessed the ant(6)-Ia gene did not show phenotypic resistance to streptomycin. To a lesser extent, silent genes were also detected in clindamycin and tetracycline. This study confirmed the high susceptibility of S. uberis to penicillins used as first-line antimicrobials for S. uberis mastitis treatment.

16.
Animals (Basel) ; 13(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37889706

ABSTRACT

Bovine mastitis is the most frequent disease on dairy farms, which leads to a decrease in the health welfare of the animals and great economic losses. This study was aimed at determining the quantitative variations in the milk proteome caused by natural infection by Staphylococcus and Streptococcus species in order to gain further understanding of any discrepancies in pathophysiology and host immune responses, independent of the mastitis level. After identification of Staphylococcus (N = 51) and Streptococcus (N = 67) spp., tandem mass tag (TMT)-labeled quantitative proteomic and liquid chromatography-mass spectrometry (LC-MS/MS) techniques on a modular Ultimate 3000 RSLCnano system coupled to a Q Exactive Plus was applied on aseptically sampled milk from Holstein cows. Proteome Discoverer was used for protein identification and quantitation through the SEQUEST algorithm. Statistical analysis employing R was used to identify differentially abundant proteins between the groups. Protein classes, functions and functional-association networks were determined using the PANTHER and STRING tools and pathway over-representation using the REACTOME. In total, 156 master bovine proteins were identified (two unique peptides, p < 0.05 and FDR < 0.001), and 20 proteins showed significantly discrepant abundance between the genera (p < 0.05 and FDR < 0.5). The most discriminatory proteins per group were odorant-binding protein (higher in staphylococci) and fibrinogen beta chain protein (higher in streptococci). The receiver operating characteristic (ROC) curve showed that protein kinase C-binding protein NELL2, thrombospondin-1, and complement factor I have diagnostic potential for differentiating staphylococci and streptococci intramammary infection and inflammation. Improved understanding of the host response mechanisms and recognition of potential biomarkers of specific-pathogen mastitis, which may aid prompt diagnosis for control implementation, are potential benefits of this study.

17.
Vet Microbiol ; 286: 109876, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37776630

ABSTRACT

Twelve Staphylococcus borealis strains, isolated in Canada and Poland from milk of cows with intramammary infections, were characterized phenotypically (biochemical reactions on ID 32 STAPH and Biolog Phenotype MicroArrays™ PM1 and PM2A, ability of biofilm production) and genotypically (random amplified polymorphic DNA). In addition, a genomic comparison was done with S. borealis strains of human and porcine origin using the multilocus sequence typing (MLST) technique. The bovine isolates showed a high degree of phenotypic and genotypic diversity, however, they could be differentiated from human strains by the negative test for urease (found in all but one bovine isolate examined with ID 32 STAPH) and positive reaction for D-galactose (on Biolog phenotype microarray PM1) and D-lactose (on both commercial systems). The MLST method, utilizing six concatenated genes of the total length of ∼2930 bp, revealed that bovine strains (irrespective of the country of origin) show a distinctly greater degree of mutual relationship than to the strains of human and porcine origin, suggesting that S. borealis has evolved independently in these hosts. In conclusion, bovine-specific S. borealis can be involved in intramammary infections in cattle.


Subject(s)
Cattle Diseases , Mastitis, Bovine , Staphylococcal Infections , Swine Diseases , Humans , Female , Animals , Cattle , Swine , Staphylococcus/genetics , Multilocus Sequence Typing/veterinary , Staphylococcus aureus/genetics , Staphylococcal Infections/veterinary , Milk
18.
Antibiotics (Basel) ; 12(9)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37760650

ABSTRACT

The core objective of this study was to genetically and phenotypically characterize subclinical mastitis-causing multidrug-resistant Staphylococcus aureus (MDRSA). In addition, risk factors associated with subclinical mastitis caused by MDRSA were investigated. Bacterial cultures were performed on 2120 mammary quarters, 40 swabs of milk utensils, 5 bulk tank milk samples, and 11 nostril and 11 hand swabs from milkers from five dairy farms. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was conducted for S. aureus identification. Antimicrobial resistance was screened phenotypically using the disk diffusion test in all S. aureus isolates. A biofilm formation assay; detection of genes associated with beta-lactam resistance, efflux pump, and biofilm formation; and pulsed-field gel electrophoresis (PFGE) were performed in all MDRSA isolates. Multi-locus sequence typing (MLST) was carried out in cefoxitin-resistant MDRSA isolates. A total of 188 S. aureus isolates from milk as well as two from milking utensils and one from bulk tank milk were identified. Most of the isolates (92.7%; 177 of 191) showed beta-lactam resistance, and 7% (14 of 191) were MDRSA. Interestingly, 36% (5 of 14) of MDRSA isolates were cefoxitin-resistant, but none carried mecA or mecC genes. Based on PFGE results, it was observed that S. aureus strains were more likely to be unique to a specific herd. Two clonal complexes were identified, CC97 (ST126; commonly livestock-associated) and CC1 (ST7440; usually community-associated). To the best of our knowledge, this is the first report of ST7440 isolated from bovine mastitis in Brazil. The risk factor results underscored the importance of considering parity, stage of lactation, SCC, milk production, and herd size when studying the risk of subclinical mastitis and antimicrobial resistance in S. aureus. Thus, to implement effective strategies to prevent subclinical mastitis in dairy herds and to minimize MDRSA spread, it is important to understand MDRSA strains' distribution and their antimicrobial resistance profile.

19.
J Dairy Sci ; 106(9): 6342-6352, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37479581

ABSTRACT

The aim of this study was to perform a positive-controlled field study under natural exposure conditions to test the efficacy of a newly developed chlorine dioxide-based postmilking teat disinfectant (experimental product, EX) for noninferiority compared with an already established chlorine dioxide-based teat disinfectant (positive control product, PC). After blocking by parity, approximately 200 Holstein cows in early to mid-lactation stages from a dairy farm near Padua, Italy, were randomly assigned to one of 2 groups. Over a 13-wk period between September and December 2021, the teats of cows were dipped with the EX or the PC after each milking. Milk samples were collected from individual quarters of enrolled cows for 13 wk to determine infection status. Teat condition was assessed at wk 1, 5, and 9. Mixed logistic regression was used to analyze the effect of treatment on the incidence of new intramammary infections. For the noninferiority analysis, the upper limit of the 95% confidence interval for the difference in new intramammary infection (NIMI) rate between the 2 treatments (EX - PC) had to be to the left of the critical value d (0.035) to conclude that EX was noninferior to PC in terms of the risk of NIMI. The results showed that the incidence of new infections in the quarters treated with EX (3.1%) was not different from that in the udder quarters treated with PC (2.6%). No overall difference was found between the treatments in terms of teat condition. As the upper limit of the 95% confidence interval of the NIMI rate difference was smaller than the predefined noninferiority limit, we concluded that the EX was noninferior compared with the PC.


Subject(s)
Disinfectants , Mammary Glands, Animal , Female , Pregnancy , Animals , Cattle , Farms , Italy
20.
Animals (Basel) ; 13(13)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37443967

ABSTRACT

Intramammary infections, which cause mastitis, can increase treatment and labor costs, decrease milk production, and affect milk quality. Meters that measure quarter somatic cell count (SCC) could be used to make more informed dry cow therapy decisions. The objective of this study was to compare the RT-10 iPhone adapter (RT-10; Dairy Quality Inc., Newmarket, ON, Canada), DeLaval Cell Counter (DSCC; DeLaval, Gurnee, IL, USA), Porta Check Quick Test (PortaCheck, White City, OR, USA), California Mastitis Test (ImmuCell, Portland, ME USA), pH meter (Hanna Instruments, Smithfield, RI, USA), electrical conductivity meter (OHAUS, Parsippany, NJ, USA), and the dual laser infrared temperature thermometer (Klein Tools, Lincolnshire, IL, USA) for measuring SCC in individual Holstein mammary quarters in comparison to a reference standard, the Fourier Transform Spectrometer 600 Combi System (Combi; Bentley Instruments, Chaska, MN, USA). Meters were evaluated using 658 individual cow quarter samples and 100 bulk-tank samples to measure SCC. Individual quarter milk samples from 160 cows from four commercial dairy herds were collected just before dry off and tested within 4 h of collection. To test bulk-tank SCC, 100 bulk-tank milk samples (25 mL) were collected from UC Davis Veterinary Medicine Teaching and Research Milk Quality Lab. Meter SCC values were regressed on observed Combi SCC. Goodness of fit was then evaluated by partitioning the mean square predicted error (MSPE). For individual quarter SCC, RT-10 had the highest coefficient of determination (R2 = 0.86), lowest MSPE, and highest proportion of MSPE due to random variation (96%). Both the RT-10 and DSCC had the highest sensitivity and specificity for identifying quarter SCC above and below 200,000 cells/mL. For bulk-tank SCC, DSCC had the highest coefficient of determination (R2 = 0.45), lowest MSPE, and highest proportion of MSPE due to random variation (80%). The RT-10 and DSCC could be used to measure individual quarter SCC to determine which cows to treat at dry off potentially reducing antibiotic use.

SELECTION OF CITATIONS
SEARCH DETAIL
...