Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 192
Filter
1.
Thorac Cancer ; 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973201

ABSTRACT

BACKGROUND: Clinically, most patients with lung cancer (LC) die from tumor spread and metastasis. Specific metastasis-related molecules can provide reference for clinical prediction of efficacy, evaluation of prognosis, and search for the best treatment plan. Troponin T1 (TNNT1) is highly expressed in various cancer tissues, which affects malignant behavior of tumor cells and is related to patients' survival and prognosis. However, the role and molecular mechanism of TNNT1 in LC invasion and metastasis have not yet been investigated. METHODS: Gene expression profiling interactive analysis (GEPIA) online analysis was used to analyze TNNT1 expression in LC tissues. Quantitative real-time-polymerase chain reaction (qRT-PCR) or western blot were performed to measure TNNT1 or epithelial-to-mesenchymal transition (EMT)-related and Wnt/ß-catenin pathway-related protein expression in LC cells. After TNNT1 knockdown, cell scratch healing and transwell assays were introduced to assess cell migration and invasion, respectively. RESULTS: TNNT1 expression in LC tissues and cells was increased. TNNT1 knockdown notably impaired LC cell migration, invasion and EMT. TNNT1 knockdown inhibited Wnt/ß-catenin pathway of LC cells. Lithium chloride (LiCl) addition partially restored the inhibition of TNNT1 knockdown on migration, invasion, EMT and Wnt/ß-catenin of LC cells. CONCLUSION: TNNT1 knockdown attenuated LC migration, invasion and EMT, possibly through Wnt/ß-catenin signaling.

2.
Cureus ; 16(6): e61941, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38978899

ABSTRACT

Background Colorectal cancer (CRC) is a prevalent and deadly disease characterized by significant molecular complexity. Matrix metalloproteinase-2 (MMP2) has been implicated in cancer progression due to its role in extracellular matrix degradation, yet comprehensive studies linking MMP2 expression to CRC progression and its molecular mechanisms remain needed. Methodology This study involved 90 CRC patients, with tumor and adjacent normal tissues analyzed via immunohistochemistry (IHC) to assess MMP2 expression. The human CRC cell line SW480 was treated with an MMP2 inhibitor, ARP100, and evaluated for changes in cell migration, invasion, proliferation, and apoptosis using various assays, including MTT, wound-healing, transwell, caspase activity, and western blot analysis. Results High MMP2 expression was significantly associated with advanced tumor stages, lymph node involvement, and metastasis in CRC patients. Compared to normal tissues, MMP2 expression was markedly higher in cancerous tissues. Inhibition of MMP2 in SW480 cells resulted in reduced migration, invasion, and proliferation, and induced apoptosis, evidenced by increased caspase 3 and 9 activities and higher levels of cleaved caspase proteins. Conclusion Elevated MMP2 expression is correlated with advanced CRC and aggressive tumor characteristics. MMP2 inhibition can suppress CRC cell invasiveness, migration, and proliferation while promoting apoptosis, suggesting its potential as a therapeutic target in CRC treatment.

3.
Biol Reprod ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874283

ABSTRACT

The transcription coactivator YAP1 mediates the major effects of the Hippo signaling pathway. The CCN family is a small group of glycoproteins known to be downstream effectors of YAP1 in diverse tissues. However, whether CCN family members mediate the effects of YAP1 in human trophoblasts is unknown. In this study, placental expression of both YAP1 and CCN1 was found to be impaired in pregnancies complicated by early-onset severe preeclampsia (sPE). CCN1 was expressed not only in cytotrophoblasts, trophoblast columns and mesenchymal cells, similar to active YAP1, but also in syncytiotrophoblasts of normal first-trimester placental villi; moreover, decidual staining of active YAP1 and CCN1 was found in both interstitial and endovascular extravillous trophoblasts. In cultured immortalized human trophoblastic HTR-8/SVneo cells, knockdown of YAP1 decreased CCN1 mRNA and protein expression and led to impaired cell invasion and migration. Also, CCN1 knockdown negatively affected HTR-8/SVneo cell invasion and migration but not viability. YAP1 knockdown was further found to impair HTR-8/SVneo cell viability via G0/G1 cell cycle arrest and apoptosis, while CCN1 knockdown had minimal effect on cell cycle arrest and no effect on apoptosis. Accordingly, treatment with recombinant CCN1 partially reversed the YAP1 knockdown-induced impairment in trophoblast invasion and migration but not in viability. Thus, CCN1 mediates the effects of YAP1 on human trophoblast invasion and migration but not apoptosis, and decreased placental expression of YAP1 and CCN1 in pregnancies complicated by early-onset sPE might contribute to the pathogenesis of this disease.

4.
Cancer Genet ; 284-285: 48-57, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729078

ABSTRACT

Although lncRNAs are recognized to contribute to the development of oral squamous-cell carcinoma (OSCC), their exact function in invasion and cell migration is not clear. In this research, we explored the molecular and cellular mechanisms of FOXD2-AS1 in OSCC. Prognostic and bioinformatics analyses were used to test for the differential expression of FOXD2-AS1-PLOD1. Following FOXD2-AS1 suppression or overexpression, changes in cell viability were measured using the CCK-8 test; changes in cell migration and invasion abilities were measured using the migration and the Transwell assay. The expression of associated genes and proteins was found using Western blot and RT-qPCR. Analysis of luciferase reporter genes was done to look for regulatory connections between various molecules. The FOXD2-AS1-PLOD1 pair, which was highly expressed in OSCC, was analyzed and experimentally verified to be closely related to the prognosis of OSCC, and a nomogram model and correction curve were constructed. The inhibition of FOXD2-AS1 resulted in the reduction of cell activity, migration, invasion ability and changes in genes related to invasion and migration. In vivo validation showed that inhibition of FOXD2-AS1 expression slowed tumor growth, and related proteins changed accordingly. The experiments verified that FOXD2-AS1 negatively regulated miR-185-5 p and that miR-185-5 p negatively regulated PLOD1. In addition, it was found that the expression of PLOD1, p-Akt and p-mTOR proteins in OSCC cells was reduced by the inhibition of FOXD2-AS1, and FOXD2-AS1 and PLOD1 were closely related to the Akt/mTOR pathway. Increased expression of FOXD2-AS1 promotes OSCC growth, invasion and migration, which is important in part by targeting miR-185-5 p/PLOD1/Akt/mTOR pathway activity.


Subject(s)
Cell Movement , Cell Proliferation , MicroRNAs , Mouth Neoplasms , Neoplasm Invasiveness , Proto-Oncogene Proteins c-akt , RNA, Long Noncoding , TOR Serine-Threonine Kinases , Humans , MicroRNAs/genetics , RNA, Long Noncoding/genetics , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Cell Movement/genetics , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Cell Proliferation/genetics , Mice , Animals , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/genetics , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/metabolism , Cell Line, Tumor , Signal Transduction/genetics , Gene Expression Regulation, Neoplastic , Female , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Male , Prognosis , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Mice, Nude
5.
Phytomedicine ; 129: 155614, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692078

ABSTRACT

BACKGROUND: Cellular senescence is an emerging hallmark of cancers, primarily fuels cancer progression by expressing senescence-associated secretory phenotype (SASP). Caveolin-1 (CAV1) is a key mediator of cell senescence. Previous studies from our group have evidenced that the expression of CAV1 is downregulated by Celastrol (CeT). PURPOSE: To investigate the impact of CeT on cellular senescence and its subsequent influence on post-senescence-driven invasion, migration, and stemness of clear cell renal cell carcinoma (ccRCC). STUDY DESIGN AND METHODS: The expression levels of CAV1, canonical senescence markers, and markers associated with epithelial-mesenchymal transition (EMT) and stemness in clinical samples were assessed through Pearson correlation analysis. Senescent cell models were induced using DOX, and their impact on migration, invasion, and stemness was evaluated. The effects of CeT treatment on senescent cells and their pro-tumorigenic effects were examined. Subsequently, the underlying mechanism of CeT were explored using lentivirus transfection and CRISPR/Cas9 technology to silence CAV1. RESULTS: In human ccRCC clinical samples, the expression of the canonical senescence markers p53, p21, and p16 are associated with ccRCC progression. Senescent cells facilitated migration, invasion, and enhanced stemness in both ccRCC cells and ccRCC tumor-bearing mice. As expected, CeT treatment reduced senescence markers (p16, p53, p21, SA-ß-gal) and SASP factors (IL6, IL8, CXCL12), alleviating cell cycle arrest. However, it did not restore the proliferation of senescent cells. Additionally, CeT suppressed senescence-driven migration, invasion, and stemness. Further investigations into the underlying mechanism demonstrated that CAV1 is a critical mediator of cell senescence and represents a potential target for CeT to attenuate cellular senescence. CONCLUSIONS: This study presents a pioneering investigation into the intricate interplay between cellular senescence and ccRCC progression. We unveil a novel mechanism of CeT to mitigate cellular senescence by downregulating CAV1, thereby inhibiting the migration, invasion and stemness of ccRCC driven by senescent cells. These findings provide valuable insights into the underlying mechanisms of CeT and its potential as a targeted therapeutic approach for alleviating the aggressive phenotypes associated with senescent cells in ccRCC.


Subject(s)
Carcinoma, Renal Cell , Caveolin 1 , Cellular Senescence , Epithelial-Mesenchymal Transition , Pentacyclic Triterpenes , Caveolin 1/metabolism , Cellular Senescence/drug effects , Humans , Pentacyclic Triterpenes/pharmacology , Carcinoma, Renal Cell/drug therapy , Cell Line, Tumor , Animals , Epithelial-Mesenchymal Transition/drug effects , Triterpenes/pharmacology , Cell Movement/drug effects , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology , Mice
6.
Exp Cell Res ; 439(1): 114091, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38740168

ABSTRACT

Resatorvid (TAK-242), a small-molecule inhibitor of Toll-like receptor 4 (TLR4), has the ability to cross the blood-brain barrier (BBB). In this study, we explored the role of TAK-242 on glioblastoma (GBM) invasion, migration, and proneural-mesenchymal transition (PMT). RNA sequencing (RNA-Seq) data and full clinical information of glioma patients were downloaded from the Chinese Glioma Genome Atlas (CGGA) and the Cancer Genome Atlas (TCGA) cohorts and then analyzed using R language; patients were grouped based on proneural (PN) and mesenchymal (MES) subtypes. Bioinformatics analysis was used to detect the difference in survival and TLR4-pathway expression between these groups. Cell viability assay, wound-healing test, and transwell assay, as well as an intracranial xenotransplantation mice model, were used to assess the functional role of TAK-242 in GBM in vitro and in vivo. RNA-Seq, Western blot, and immunofluorescence were employed to investigate the possible mechanism. TLR4 expression in GBM was significantly higher than in normal brain tissue and upregulated the expression of MES marker genes. Moreover, TAK-242 inhibited GBM progression in vitro and in vivo via linking with PMT, which could be a novel treatment strategy for inhibiting GBM recurrence.


Subject(s)
Brain Neoplasms , Cell Movement , Epithelial-Mesenchymal Transition , Glioblastoma , Signal Transduction , Sulfonamides , Toll-Like Receptor 4 , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Glioblastoma/pathology , Glioblastoma/metabolism , Glioblastoma/genetics , Humans , Animals , Mice , Sulfonamides/pharmacology , Epithelial-Mesenchymal Transition/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Neoplasm Invasiveness , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Mice, Nude , Cell Proliferation , Xenograft Model Antitumor Assays
7.
Article in English | MEDLINE | ID: mdl-38801615

ABSTRACT

Cancer invasion and migration play a pivotal role in tumor malignancy, which is a major cause of most cancer deaths. Rotating magnetic field (RMF), one of the typical dynamic magnetic fields, can exert substantial mechanical influence on cells. However, studying the effects of RMF on cell is challenging due to its complex parameters, such as variation of magnetic field intensity and direction. Here, we developed a systematic simulation method to explore the influence of RMF on tumor invasion and migration, including a finite element method (FEM) model and a cell-based hybrid numerical model. Coupling with the data of magnetic field from FEM, the cell-based hybrid numerical model was established to simulate the tumor cell invasion and migration. This model employed partial differential equations (PDEs) and finite difference method to depict cellular activities and solve these equations in a discrete system. PDEs were used to depict cell activities, and finite difference method was used to solve the equations in discrete system. As a result, this study provides valuable insights into the potential applications of RMF in tumor treatment, and a series of in vitro experiments were performed to verify the simulation results, demonstrating the model's reliability and its capacity to predict experimental outcomes and identify pertinent factors. Furthermore, these findings shed new light on the mechanical and chemical interplay between cells and the ECM, offering new insights and providing a novel foundation for both experimental and theoretical advancements in tumor treatment by using RMF.

8.
Int J Biol Macromol ; 269(Pt 1): 131990, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704067

ABSTRACT

Animal-derived venom, like snake venom, has been proven to be valuable natural resources for the drug development. Previously, snake venom was mainly investigated in its pharmacological activities in regulating coagulation, vasodilation, and cardiovascular function, and several marketed cardiovascular drugs were successfully developed from snake venom. In recent years, snake venom fractions have been demonstrated with anticancer properties of inducing apoptotic and autophagic cell death, restraining proliferation, suppressing angiogenesis, inhibiting cell adhesion and migration, improving immunity, and so on. A number of active anticancer enzymes and peptides have been identified from snake venom toxins, such as L-amino acid oxidases (LAAOs), phospholipase A2 (PLA2), metalloproteinases (MPs), three-finger toxins (3FTxs), serine proteinases (SPs), disintegrins, C-type lectin-like proteins (CTLPs), cell-penetrating peptides, cysteine-rich secretory proteins (CRISPs). In this review, we focus on summarizing these snake venom-derived anticancer components on their anticancer activities and underlying mechanisms. We will also discuss their potential to be developed as anticancer drugs in the future.


Subject(s)
Antineoplastic Agents , Snake Venoms , Humans , Snake Venoms/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Animals , Neoplasms/drug therapy , L-Amino Acid Oxidase/chemistry , L-Amino Acid Oxidase/pharmacology , Apoptosis/drug effects , Phospholipases A2/metabolism , Phospholipases A2/chemistry , Toxins, Biological/chemistry , Toxins, Biological/pharmacology
9.
Front Microbiol ; 15: 1327464, 2024.
Article in English | MEDLINE | ID: mdl-38585690

ABSTRACT

Colorectal cancer (CRC), one of the most common malignancies in the world, urgently requires more treatment strategies. Although there has been much research on probiotics, limited research has been done in treating cancer. The purpose of this study was to investigate the role of Bifidobacterium longum (B. longum) in the prevention and treatment of CRC. Through Cell Counting Kit-8 and Colony Formation Assays, 8 h and a B. longum count of 1 × 108 CFU/ml were chosen as the best cocultivation conditions with CRC cells. The role of B. longum in inhibiting the progression of CRC cells was verified by a series of functional and immunofluorescence assays. For instance, in vivo assays have verified that B. longum could alleviate CRC progression. In addition, according to the results of in vivo assays and clinical statistical analysis, B. longum could reduce diarrhea symptoms. Mechanistically, by 16S and RNA sequencing, it was found that B. longum could affect the development of CRC by regulating the composition of gut microbes and enhancing immune function. The B. longum might inhibit the occurrence and development of CRC and relieve diarrhea symptoms by regulating intestinal microbes and immune function.

10.
Gene ; 913: 148375, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38490509

ABSTRACT

Deregulation of calcium/calmodulin-dependent protein kinase II (CAMK2) inhibitor 1 (CAMK2N1) has been reported to be associated with the development of several malignancies. To date, there have been few studies on the role of CAMK2N1 in lung cancer. This study aimed to investigate the relationship between CAMK2N1 and the progression of non-small cell lung cancer (NSCLC). Methodological quality was assessed using the ARRIVE guidelines. CAMK2N1 was expressed at low levels in NSCLC tissues. Overexpression of CAMK2N1 in NSCLC cell lines resulted in changes such as proliferation inhibition, metastasis inhibition, autophagy increase, and apoptosis. Mechanistic studies revealed the regulatory role of CAMK2N1/CAMK2 in AKT/mTOR signaling. Upregulation of CAMK2N1 decreased the expression levels of phosphorylated calmodulin kinase 2 (p-CaMK2), phosphorylated Akt (p-Akt), and phosphorylated-mTOR (p-mTOR). In contrast, CAMK2 overexpression increased p-AKT and p-mTOR levels. Inhibition of autophagy or activation of AKT signaling reduced CAMK2N1-mediated tumor suppression. The tumorigenic ability of CAMK2N1 overexpressing cells significantly diminished in nude mice. In conclusion, this study demonstrated the cancer suppressive function of CAMK2N1 in NSCLC and showed that CAMK2N1/CAMK2 exerted anti-cancer effects by inhibiting the AKT/mTOR signaling pathway to promote autophagy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Mice , Carcinoma, Non-Small-Cell Lung/pathology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Lung Neoplasms/pathology , Mice, Nude , Angiogenesis , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Apoptosis/genetics , Calcium-Calmodulin-Dependent Protein Kinases , Autophagy/genetics , Cell Proliferation , Cell Line, Tumor
11.
Cell Signal ; 118: 111126, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38453126

ABSTRACT

Cancer stem-like cells (CSLCs) and anoikis resistance play crucial roles in the metastasis of cancers. However, it remains unclear whether CSLCs are related to anoikis resistance in intrahepatic cholangiocarcinoma (ICC). Here we identified a group of stemness-related anoikis genes (SRAGs) via bioinformatic analysis of public data. Accordingly, a novel anoikis-related classification was established and it divided ICC into C1 and C2 type. Different type ICC displayed distinct prognosis, molecular as well immune characteristics. Furthermore, we found one key SRAGs via several machine learning algorithms. HK2 was up-regulated in tumor-repopulating cells (TRCs) of ICC, a kind of CSLCs with a potent resistance to anoikis. Its up-regulation may be caused by the activation of MTORC1 signaling in ICC-TRCs. And inhibition of HK2 significantly increased anoikis and decreased migration as well invasion in ICC-TRCs. Our studies provide an insight into the molecular mechanism underlying the resistance of ICC-TRCs to anoikis and enhance the evidences for targeting HK2 in ICC.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Anoikis , Cell Line, Tumor , Cholangiocarcinoma/genetics , Bile Ducts, Intrahepatic/pathology , Bile Duct Neoplasms/genetics , Cell Proliferation/genetics
12.
Int J Mol Sci ; 25(3)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38338955

ABSTRACT

Successful implantation requires coordinated migration and invasion of trophoblast cells into a receptive endometrium. Reduced forkhead box M1 (FOXM1) expression limits trophoblast migration and angiogenesis in choriocarcinoma cell lines, and in a rat model, placental FOXM1 protein expression was significantly upregulated in the early stages of pregnancy compared to term pregnancy. However, the precise role of FOXM1 in implantation events remains unknown. By analyzing mice blastocysts at embryonic day (E3.5), we have demonstrated that FOXM1 is expressed as early as the blastocyst stage, and it is expressed in the trophectoderm of the blastocyst. Since controlled oxygen tension is determinant for achieving normal implantation and placentation and a chronic hypoxic environment leads to shallow trophoblast invasion, we evaluated if FOXM1 expression changes in response to different oxygen tensions in the HTR-8/SVneo first trimester human trophoblast cell line and observed that FOXM1 expression was significantly higher when trophoblast cells were cultured at 3% O2, which coincides with oxygen concentrations in the uteroplacental interface at the time of implantation. Conversely, FOXM1 expression diminished in response to 1% O2 that resembles a hypoxic environment in utero. Migration and angiogenesis were assessed following FOXM1 knockdown and overexpression at 3% O2 and 1% O2, respectively, in HTR-8/SVneo cells. FOXM1 overexpression increased transmigration ability and tubule formation. Using a 3D trophoblast invasion model with trophospheres from HTR-8/SVneo cells cultured on a layer of MATRIGEL and of mesenchymal stem cells isolated from menstrual fluid, we observed that trophospheres obtained from 3D trophoblast invasion displayed higher FOXM1 expression compared with pre-invasion trophospheres. Moreover, we have also observed that FOXM1-overexpressing trophospheres increased trophoblast invasion compared with controls. HTR-8/SVneo-FOXM1-depleted cells led to a downregulation of PLK4, VEGF, and MMP2 mRNA expression. Our current findings suggest that FOXM1 participates in embryo implantation by contributing to trophoblast migration and early trophoblast invasion, by inducing transcription activation of genes involved in these processes. Maternal-fetal communication is crucial for trophoblast invasion, and maternal stromal cells may induce higher levels of FOXM1 in trophoblast cells.


Subject(s)
Forkhead Box Protein M1 , Placenta , Trophoblasts , Animals , Female , Humans , Mice , Pregnancy , Rats , Cell Movement , Embryo Implantation , Forkhead Box Protein M1/genetics , Forkhead Box Protein M1/metabolism , Oxygen/metabolism , Placenta/metabolism , Protein Serine-Threonine Kinases/metabolism , Trophoblasts/metabolism
13.
BMC Cancer ; 24(1): 58, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38200443

ABSTRACT

BACKGROUND: Fermitin family member 1 (FERMT1) is highly expressed in many tumors and acts as an oncogene. Nonetheless, the precise function of FERMT1 in non-small cell lung cancer (NSCLC) has not been clearly elucidated. METHODS: Bioinformatics software predicted the FERMT1 expression in NSCLC. Transwell assays facilitated the detection of NSCLC cell migration and invasion. Western blotting techniques were employed to detect the protein levels regulated by FERMT1. RESULTS: FERMT1 exhibited high expression levels in NSCLC and was linked to the patients' poor prognosis, as determined by a variety of bioinformatics predictions combined with experimental verification. FERMT1 promoted the migration and invasion of NSCLC and regulated epithelial to mesenchymal transition (EMT) -related markers. Further studies showed that FERMT1 could up-regulate the expression level of plakophilin 3(PKP3). Further research has indicated that FERMT1 can promote cell migration and invasion via up-regulating PKP3 expression. By exploring downstream signaling pathways, we found that FERMT1 has the capability to activate the p38 mitogen-activated protein kinases (p38 MAPK) signaling pathway, and knocking down PKP3 can counteract the activation induced by FERMT1 overexpression. CONCLUSIONS: FERMT1 was highly expressed in NSCLC and can activate the p38 MAPK signaling pathway through up-regulation of PKP3, thus promoting the invasion and migration of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Epithelial-Mesenchymal Transition/genetics , Lung Neoplasms/genetics , Neoplastic Processes , Cell Movement/genetics , p38 Mitogen-Activated Protein Kinases , Membrane Proteins/genetics , Neoplasm Proteins , Plakophilins/genetics
14.
J Orthop Surg Res ; 19(1): 65, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38218891

ABSTRACT

BACKGROUND: Wu Mei Pills (WMP) is a traditional Chinese medication that exhibits considerable anti-inflammatory effects. While WMP has been documented for its efficacy in treating RA, its mechanism of action on the condition remains unestablished. METHODS: The chemical composition of WMP was analyzed through UPLC-MS. Next, the enzyme-linked immunosorbent assay, cell scratch, Transwell, and Western blotting techniques were used to investigate its intrinsic mechanism. Lastly, the effect of WMP in inhibiting RA was explored by applying it to CIA rats. RESULT: UPLC-MS analysis detected 181 compounds in WMP. RA-FLS migration and invasion mechanisms were significantly hindered by serum containing WMP (2%, 8%). Moreover, WMP (0.5 g/kg, 2 g/kg) restricted arthritis and immune organ indices in CIA rats with type II collagen-induced rheumatoid arthritis by blocking TLR4-NF-κB inflammatory pathway activation. CONCLUSIONS: WMP is valuable in mitigating the course of RA through inhibiting the classical TLR4-NF-κB inflammatory pathway and reducing the secretion of inflammatory factors in the serum of RA-FLS and CIA rats. Moreover, it regulates the dynamic balance of MMP-2/TIMP-2, MMP-9/TIMP-1, modulates the mechanism of RA-FLS invasion, and safeguards articular cartilage tissues in RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Rats , Animals , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Arthritis, Rheumatoid/metabolism , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Fibroblasts/metabolism , Synovial Membrane/metabolism , Cells, Cultured
15.
Int Immunopharmacol ; 126: 111200, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37988913

ABSTRACT

Tumor-associated macrophages (TAMs) are a highly abundant cell population within the tumor microenvironment of oral squamous cell carcinomas (OSCC). Recent studies have identified an intricate cross-talk between cancer cells and macrophages in the tumor microenvironment. However, the underlying mechanism remains unclear. High-mobility group box 1 (HMGB1) was linked to metastasis and an unfavorable prognosis in head and neck squamous cell carcinoma. Furthermore, it was significantly upregulated in moderately differentiated OSCC tissues and the OSCC cell lines CAL27 and SCC9. HMGB1 knockdown impedes the ability of TAMs to induce invasion and migration of OSCC cells. Phenotypic changes in macrophages were measured after incubation of supernatant from OSCC cells transfected with HMGB1 siRNA or supplemented with recombinant HMGB1. HMGB1 induced M1 polarization of macrophages and the secretion of IL-6 via the NF-κB pathway, contributing to the OSCC malignant migration. HMGB1 originating from OSCC cells, along with its downstream signaling pathways, holds promise as a potential therapeutic target for mitigating metastasis and improving the survival rate of OSCC.


Subject(s)
Carcinoma, Squamous Cell , HMGB1 Protein , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck , Carcinoma, Squamous Cell/genetics , NF-kappa B/metabolism , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Interleukin-6 , Tumor-Associated Macrophages/metabolism , HMGB1 Protein/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Tumor Microenvironment
16.
Cytokine Growth Factor Rev ; 75: 12-30, 2024 02.
Article in English | MEDLINE | ID: mdl-37949685

ABSTRACT

The chemokine CXCL12, also known as stromal cell-derived factor 1 (SDF1), has emerged as a pivotal regulator in the intricate molecular networks driving cancer progression. As an influential factor in the tumor microenvironment, CXCL12 plays a multifaceted role that spans beyond its traditional role as a chemokine inducing invasion and metastasis. Indeed, CXCL12 has been assigned functions related to epithelial-to-mesenchymal transition, cancer cell stemness, angiogenesis, and immunosuppression, all of which are currently viewed as specialized biological programs contributing to the "metastatic cascade" among other cancer hallmarks. Its interaction with its cognate receptor, CXCR4, initiates a cascade of events that not only shapes the metastatic potential of tumor cells but also defines the niches within the secondary organs that support metastatic colonization. Given the profound implications of CXCL12 in the metastatic cascade, understanding its mechanistic underpinnings is of paramount importance for the targeted elimination of rate-limiting steps in the metastatic process. This review aims to provide a comprehensive overview of the current knowledge surrounding the role of CXCL12 in cancer metastasis, especially its molecular interactions rationalizing its potential as a therapeutic target.


Subject(s)
Neoplasms , Receptors, CXCR , Humans , Chemokine CXCL12 , Receptors, CXCR4 , Tumor Microenvironment
17.
Gene ; 898: 148111, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38147897

ABSTRACT

BACKGROUND: Hyperthermia is used as an adjunctive treatment for gastric cancer; however, the corresponding antitumor mechanism remains unclear. OBJECTIVE: To investigate the expression of PLEK2 in gastric cancer and the mechanism by which hyperthermia inhibits gastric cancer progression and participating in immunomodulation. METHODS: PLEK2 was screened by combining microarray analysis with gene knockdown and proliferation assays. Analysis based on the TCGA database, GEPIA website, and detection of clinical samples was employed to investigate the expression and correlation of PLEK2 and PD-L1. Knockdown of the expression PLEK2, subsequent experiments including western blotting, RT-qPCR, cell functional assays, and flow cytometry were used to assess the effects on cell migration, invasion, viability, and apoptosis. Intervention with hyperthermia to explore its effects. To evaluate the impact on immunity by detecting T cell proliferation and the release of IFNγ, activated T cells were co-cultured with the target cells. RESULTS: Hyperthermia significantly reduced the expression of PLEK2 and PD-L1, while both were increased in gastric cancer. Knockdown of PLEK2 inhibited PD-L1 expression and significantly inhibited the proliferation, invasion, migration, and viability of gastric cancer cells. A decrease in PLEK2 expression promotes cell apoptosis. Although it cannot affect the proliferation of activated T cells, it can partially reverse IFNγ suppression. CONCLUSION: PLEK2 plays a promoting role in gastric cancer, and hyperthermia downregulates PLEK2/PD-L1, which further inhibits cell proliferation, invasion, and migration, promotes cell apoptosis, and possibly participates in immune regulation.


Subject(s)
Hyperthermia, Induced , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , B7-H1 Antigen/genetics , Cell Proliferation , Immunomodulation , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Membrane Proteins/genetics
18.
Placenta ; 143: 69-79, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37864886

ABSTRACT

INTRODUCTION: Preeclampsia was a serious complication often leaded to adverse pregnancy outcomes. Abnormal placental miR-135b-5p expression in preeclampsia was observed in our preliminary investigation. However, the role of miR-135b-5p in preeclampsia was unclear. METHODS: We determined the miR-135b-5p expression pattern at the fetomaternal interface and levels in placental tissue and exosomes. MiR-135b-5p expression in the trophoblast cell line HTR8/SVneo was manipulated by transient agomir or antagomir transfection or establishment of HTR8/SVneo cell line stably overexpressing miR-135b or miR-135b-5p-sponger. Then the function of miR-135b-5p on the motility of HTR8/SVneo cells, and its effects on cell viability was determined. Finally, we confirmed the relationship between miR-135b-5p and ADAM12. RESULTS: MiR-135b-5p exclusively expressed in the villous cytotrophoblast, and extravillous trophoblast. Significant miR-135b-5p upregulation was observed in the placenta and peripheral plasma exosomes in preeclampsia, and could be a highly sensitive molecular marker for preeclampsia. Elevated miR-135b-5p expression significantly promoted apoptosis and inhibited HTR8/SVneo cell invasion and migration. Binding of miR-135b-5p to the ADAM12 mRNA 3'-untranslated region was predicted by bioinformatics analysis and confirmed using a dual-luciferase reporter assay. High miR-135-5p levels inhibit the invasion and migration of trophoblastic cells, possibly by directly binding to the 3'-UTR of DADM12 and suppressing its translation efficiency, thereby nullifying the promotion of trophoblast invasion and migration via ADAM12. DISCUSSION: Abnormal upregulation of miR-135b-5p may be involved in preeclampsia through triggering trophoblast apoptosis and impeding trophoblast invasion and migration by targeting ADAM12.


Subject(s)
MicroRNAs , Pre-Eclampsia , Female , Humans , Pregnancy , ADAM12 Protein/genetics , Apoptosis/genetics , Cell Movement/genetics , Cell Proliferation/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Placenta/metabolism , Pre-Eclampsia/metabolism , Trophoblasts/metabolism
19.
Zhongguo Zhong Yao Za Zhi ; 48(16): 4483-4492, 2023 Aug.
Article in Chinese | MEDLINE | ID: mdl-37802875

ABSTRACT

This study aims to investigate the effect and mechanism of hydnocarpin(HC) in treating triple negative breast cancer(TNBC). Cell counting kit-8(CCK-8), xCELLigence real-time cellular analysis(RTCA), and colony formation assay were employed to determine the effects of HC on the proliferation of two TNBC cell lines: MDA-MB-231 and MDA-MB-436. The effects of HC on the migration and invasion of TNBC cells were detected by high-content analysis, wound-healing assay, and Transwell assay. The changes in the epithelial-mesenchymal transition(EMT) and the expression of invasion-and migration-associated proteins [E-cadherin, vimentin, Snail, matrix metalloproteinase-2(MMP-2), and MMP-9] were detected by Western blot. Western blot and RT-qPCR were employed to determine the protein and mRNA levels of Yes-associated protein(YAP) and downstream targets(CTGF and Cyr61). TNBC cells were transfected with Flag-YAP for the overexpression of YAP, and the role of YAP as a key target for HC to inhibit TNBC malignant progression was examined by CCK-8 assay, Transwell assay, and wound-healing assay. The pathway of HC-induced YAP degradation was detected by the co-treatment of proteasome inhibitor with HC and ubiquitination assay. The binding of HC to YAP and the E3 ubiquitin ligase Ccr4-not transcription complex subunit 4(CNOT4) was detected by microscale thermophoresis(MST) assay and drug affinity responsive target stability(DARTS) assay. The results showed that HC significantly inhibited the proliferation, colony formation, invasion, and EMT of TNBC cells. HC down-regulated the protein and mRNA levels of CTGF and Cyr61. HC down-regulated the total protein level of YAP, while it had no effect on the mRNA level of YAP. The overexpression of YAP antagonized the inhibitory effects of HC on the proliferation, migration, and invasion of TNBC cells. HC promoted the degradation of YAP through the proteasome pathway and up-regulated the ubiquitination level of YAP. The results of MST and DARTS demonstrated direct binding between HC, YAP, and CNOT4. The above results indicated that HC inhibited the malignant progression of TNBC via CNOT4-mediated degradation and ubiquitination of YAP.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Matrix Metalloproteinase 2/metabolism , Cell Line, Tumor , Cell Proliferation , Cell Movement , Ubiquitination , RNA, Messenger/metabolism , Epithelial-Mesenchymal Transition , Transcription Factors/genetics , Transcription Factors/metabolism
20.
Biomolecules ; 13(10)2023 10 15.
Article in English | MEDLINE | ID: mdl-37892209

ABSTRACT

A newly discovered chromatin remodeler, MORC2, is a Microrchidia (MORC) family member. MORC2 acts as a chromatin remodeler by binding to the DNA and changing chromatin conformation using its ATPase domain. MORC2 is highly expressed in a variety of human cancers. It controls diverse signaling pathways essential for cancer development through its target genes and interacting partners. MORC2 promotes cancer cells' growth, invasion, and migration by regulating the expression of genes involved in these processes. MORC2 is localized primarily in the nucleus and is also found in the cytoplasm. In the cytoplasm, MORC2 interacts with adenosine triphosphate (ATP)-citrate lyase (ACLY) to promote lipogenesis and cholesterogenesis in cancer. In the nucleus, MORC2 interacts with the transcription factor c-Myc to control the transcription of genes involved in glucose metabolism to drive cancer cell migration and invasion. Furthermore, MORC2 recruits on to the promoters of tumor suppressor genes to repress their transcription and expression to promote oncogenesis. In addition to its crucial function in oncogenesis, it plays a vital role in DNA repair. Overall, this review concisely summarizes the current knowledge about MORC2-regulated molecular pathways involved in cancer.


Subject(s)
Chromatin , Neoplasms , Humans , Chromatin/genetics , Transcription Factors/metabolism , Neoplasms/genetics , DNA Repair , Carcinogenesis
SELECTION OF CITATIONS
SEARCH DETAIL
...