Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 176
Filter
1.
Sci Total Environ ; 946: 174444, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964394

ABSTRACT

The rhizosphere microbiome plays a crucial role in the ability of plants to colonize and thrive in stressful conditions such as drought, which could be decisive for the success of exotic plant invasion in the context of global climate change. The aim of this investigation was to examine differences in the composition, structure, and functional traits of the microbial community of the invader Nicotiana glauca R.C. Graham and native species growing at seven different Mediterranean semiarid locations under two distinct levels of water availability, corresponding to the wet and dry seasons. The results show that the phylum Actinobacteriota was an indicator phylum of the dry season as well as for the community of N. glauca. The dominant indicator bacterial families of the dry season were 67-14 (unclassified family), Pseudonocardiaceae, and Sphingomonadaceae, being relatively more abundant in the invasive rhizosphere. The relative abundances of the indicator fungal families Aspergillaceae (particularly the indicator genus Aspergillus), Glomeraceae, and Claroideoglomeraceae were higher in the invasive rhizosphere. The relative abundance of mycorrhizal fungi was higher in the invasive rhizosphere in the dry season (by about 40 % in comparison to that of native plants), without significant differences between invasive and native plants in the wet season. Bacterial potential functional traits related to energy and precursor metabolites production and also biosynthesis of cell wall, cofactors, vitamins, and amino acids as well as catabolic enzymes involved in the P cycle prevailed in the invasive rhizosphere under drought conditions. This study shows that the pronounced and beneficial shifts in the microbiome assembly and functions in the rhizosphere of N. glauca under conditions of low soil water availability can represent a clear advantage for its establishment.

2.
Front Plant Sci ; 15: 1393204, 2024.
Article in English | MEDLINE | ID: mdl-38841283

ABSTRACT

Invasive plants represent a significant global challenge as they compete with native plants for limited resources such as space, nutrients and pollinators. Here, we focused on four invasive species that are widely spread in the French Pyrenees, Buddleja davidii, Reynoutria japonica, Spiraea japonica and Impatiens glandulifera, and analyzed their visual advertisement signals with respect to those displayed by their surrounding native species using a perceptual approach based on the neural mechanisms of bee vision given that bees are regular pollinators of these plants. We collected 543 spectral reflections from the 4 invasive species, and 66 native species and estimated achromatic and chromatic similarities to the bee eye. R. japonica, S. japonica and B. davidii were inconspicuous against the foliage background and could be hardly discriminated in terms of color from their surrounding native plants. These characteristics promote generalization, potentially attracting pollinators foraging on similar native species. Two morphs of I. glandulifera were both highly salient in chromatic and achromatic terms and different from their surrounding native species. This distinctive identity facilitates detection and learning in association with rich nectar. While visual signals are not the only sensory cue accounting for invasive-plant success, our study reveals new elements for understanding biological invasion processes from the perspective of pollinator perceptual processes.

3.
J Environ Manage ; 365: 121555, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38924891

ABSTRACT

Secondary shrublands and transitional woodland/shrub formations are recognised to be particularly susceptible to plant invasions, one of the main global threats to biodiversity, especially in dynamic peri-urban landscapes. Urban fringes are in fact often the place for the sprawl of artificial surfaces, fragmentation of habitats, and complex land transitions (including both agriculture intensification and abandonment), which in turn increase propagule pressure of exotic species over residual semi-natural ecosystems. Within this framework, the present study was aimed at analysing i) how landscape composition and configuration affect the richness of woody exotic species in shrubland and transitional woodland/shrub patches, and ii) how this threat can be addressed by means of green infrastructure design in a peri-urban case study (Metropolitan City of Rome, Italy). Accordingly, the occurrence of exotic plants was recorded with field surveys and then integrated with landscape analyses, both at patch level and over a 250 m buffer area around each patch. Thus, the effect of landscape features on exotic plant richness was investigated with Generalised Linear Models, and the best model identified (pseudo R-square = 0.62) for inferring invasibility of shrublands throughout the study area. Finally, a Green Infrastructure (GI) to contain biological invasion was planned, based on inferred priority sites for intervention and respective, site-tailored, actions. The latter included not only the removal of invasive woody alien plants, but also reforestation and planting of native trees for containment of dispersal and subsequent establishment. Even though specifically developed for the study site, and consistent with local government needs, the proposed approach represents a pilot planning process that might be applied to other peri-urban regions for the combined containment of biological invasions and sustainable development of peripheral complex landscapes.

4.
Appl Plant Sci ; 12(3): e11573, 2024.
Article in English | MEDLINE | ID: mdl-38912123

ABSTRACT

Premise: Species distribution models (SDMs) are widely utilized to guide conservation decisions. The complexity of available data and SDM methodologies necessitates considerations of how data are chosen and processed for modeling to enhance model accuracy and support biological interpretations and ecological applications. Methods: We built SDMs for the invasive aquatic plant European frog-bit using aggregated and field data that span multiple scales, data sources, and data types. We tested how model results were affected by five modeler decision points: the exclusion of (1) missing and (2) correlated data and the (3) scale (large-scale aggregated data or systematic field data), (4) source (specimens or observations), and (5) type (presence-background or presence-absence) of occurrence data. Results: Decisions about the exclusion of missing and correlated data, as well as the scale and type of occurrence data, significantly affected metrics of model performance. The source and type of occurrence data led to differences in the importance of specific explanatory variables as drivers of species distribution and predicted probability of suitable habitat. Discussion: Our findings relative to European frog-bit illustrate how specific data selection and processing decisions can influence the outcomes and interpretation of SDMs. Data-centric protocols that incorporate data exploration into model building can help ensure models are reproducible and can be accurately interpreted in light of biological questions.

5.
Biology (Basel) ; 13(6)2024 May 29.
Article in English | MEDLINE | ID: mdl-38927272

ABSTRACT

The invasive vine Sicyos angulatus L. destroys the natural ecosystem of invaded areas. Understanding the differences in growth and development between S. angulatus and other plants is necessary to explore the invasion mechanisms of S. angulatus and implement appropriate prevention and control measures. Thus, this study compared the growth, photosynthesis, and root characteristics of invasive liana S. angulatus and other three vine plants, Ipomoea nil (L.) Roth, Ipomoea purpurea (L.), and Thladiantha dubia Bunge, at different growth stages: seedling, flowering, and fruiting. The results showed that the total biomass of S. angulatus in the fruiting stage was 3-6 times that of the other three plants, and the root biomass ratio and root-shoot ratio decreased throughout the growth stage. Throughout the growth stage, the total leaf area of S. angulatus was significantly higher than that of the other three plant types, and the specific leaf area of S. angulatus at the seedling and flowering stages was 2.5-3 and 1.4-3 times that of the other three plants, respectively. The photosynthetic rate, stomatal conductance, and transpiration rate of S. angulatus at the fruiting stage were significantly higher than those of the other three plants, and its water use efficiency was higher than that of the other three plants at the three growth stages, indicating its strong photosynthetic capacity. The root activity and root pressure of S. angulatus were also significantly higher than those of the other three plants at the seedling and flowering stages. These results show that S. angulatus flexibly allocates resources to its aboveground parts during the growth stage to ensure that the plant obtains the space necessary for its growth and development and that with the help of higher root pressure and root activity, S. angulatus can maintain higher photosynthesis and water use efficiency with fewer resources. Therefore, the prevention and control of S. angulatus requires a combination of aboveground and underground measures. Spraying conventional weedicide/herbicide and manually removing aboveground plants may lead to its resurgence.

6.
Genes (Basel) ; 15(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38927670

ABSTRACT

Worldwide molecular research of economically important Phalaris arundinacea (Poaceae) is mainly focused on the invasions of this species from Europe to North America. Until the present study, the genetic diversity of the P. arundinacea had not been studied across the Baltic countries. The objective of this research is to evaluate the diversity of Lithuanian populations of P. arundinacea at simple sequence repeat (SSR) loci comparatively among populations of the Baltic countries, Luxembourg, and the Russian Far East (Eurasian), evaluating differentiation between Lithuanian populations and ornamental accessions, and relating these with environmental features. For six selected Lithuanian river basin populations, GBS low density SNPs were used to determine genetic diversity. Bayesian analysis showed that Eurasian populations of Phalaris arundinacea consist of two gene clusters. Statistically significant genetic differentiation among European and Eurasian populations was documented. Lithuanian genotypes growing naturally along rivers are genetically distinct from cultivated ornamentals. GBS-SNPs divided the six selected Nemunas river basins into three distinct groups with one, two, or three rivers in separate groupings for genetic diversity. Genetic diversity is primarily within, rather than among, Lithuanian, eastern European, and Eurasian populations of P. arundinacea across the continent. Thus, restoration efforts would benefit from local population seed origination.


Subject(s)
Microsatellite Repeats , Microsatellite Repeats/genetics , Phalaris/genetics , Polymorphism, Single Nucleotide , Genetic Variation , Europe, Eastern
7.
Ecol Evol ; 14(6): e11605, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38932949

ABSTRACT

Modeling ecological patterns and processes often involve large-scale and complex high-dimensional spatial data. Due to the nonlinearity and multicollinearity of ecological data, traditional geostatistical methods have faced great challenges in model accuracy. As machine learning has increased our ability to construct models on big data, the main focus of the study is to propose the use of statistical models that hybridize machine learning and spatial interpolation methods to cope with increasingly large-scale and complex ecological data. Here, two machine learning algorithms, boosted regression tree (BRT) and least absolute shrinkage and selection operator (LASSO), were combined with ordinary kriging (OK) to model plant invasions across the eastern United States. The accuracies of the hybrid models and conventional models were evaluated by 10-fold cross-validation. Based on an invasive plants dataset of 15 ecoregions across the eastern United States, the results showed that the hybrid algorithms were significantly better at predicting plant invasion when compared to commonly used algorithms in terms of RMSE and paired-samples t-test (with the p-value < .0001). Besides, the additional aspect of the combined algorithms is to have the ability to select influential variables associated with the establishment of invasive cover, which cannot be achieved by conventional geostatistics. Higher accuracy in the prediction of large-scale biological invasions improves our understanding of the ecological conditions that lead to the establishment and spread of plants into novel habitats across spatial scales. The results demonstrate the effectiveness and robustness of the hybrid BRTOK and LASOK that can be used to analyze large-scale and high-dimensional spatial datasets, and it has offered an optional source of models for spatial interpolation of ecology properties. It will also provide a better basis for management decisions in early-detection modeling of invasive species.

8.
Plants (Basel) ; 13(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38931056

ABSTRACT

Elodea canadensis Michx. (common waterweed) and Elodea nuttallii (Planch.) H. St. John (Nuttall's waterweed), two invasive aquatic plants from North America, have coexisted in European water bodies since the early 20th century. New localities for both species in Croatia continued to be discovered during a study that ran from 2016 to 2023 as a part of the annual implementation of Water Framework Directive monitoring that covered the entire territory of Croatia (786 sampling points in total). Based on these data, the distribution and ecology of both species were analysed. Elodea canadensis was found at 30 sampling points, mostly in rivers, and E. nuttallii at 15 sampling points, mostly in artificial canals. Nearly three-quarters (72.5%) of all elodea sampling points were in the Pannonian Ecoregion. Elodea canadensis was discovered for the first time in the Continental-Dinaric and Mediterranean-Dinaric Subecoregions. To study the ecology of the species, for each sampling point, vegetation relevés were performed and monthly measurements of physico-chemical parameters were collected. The most common accompanying species for both elodeas are presented, and the difference in species assemblages between the sites with E. canadensis and E. nuttallii was confirmed with the ANOSIM test. Furthermore, Indicator Species Analysis revealed eight species characteristic of E. canadensis sites and eleven species characteristic of E. nuttallii sites. Fitting multivariate models (CCA and NPMR) to species abundance revealed the ecological reaction of E. canadensis and E. nuttallii to environmental descriptors. The most strongly contributing environmental descriptors that influence the distribution of both Elodea species are biochemical oxygen demand, electrical conductivity and total phosphorus. In Croatia, the replacement of E. canadensis with E. nuttallii was observed in several water bodies with high nutrient loads.

9.
Bull Math Biol ; 86(7): 78, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777934

ABSTRACT

Understanding the propagation of invasive plants at the beginning of invasive spread is important as it can help practitioners eradicate harmful species more efficiently. In our work the propagation regime of the invasive plant species is studied at the short-time scale before a travelling wave is established and advances into space at a constant speed. The integro-difference framework has been employed to deal with a stage-structured population, and a short-distance dispersal mode has been considered in the homogeneous environment and when a road presents in the landscape. It is explained in the paper how nonlinear spatio-temporal dynamics arise in a transient regime where the propagation speed depends on the detection threshold population density. Furthermore, we investigate the question of whether the transient dynamics become different when the homogeneous landscape is transformed into the heterogeneous one. It is shown in the paper how invasion slows down in a transient regime in the presence of a road.


Subject(s)
Ecosystem , Introduced Species , Mathematical Concepts , Models, Biological , Nonlinear Dynamics , Introduced Species/statistics & numerical data , Population Dynamics/statistics & numerical data , Population Density , Computer Simulation , Spatio-Temporal Analysis
10.
Genes (Basel) ; 15(5)2024 04 25.
Article in English | MEDLINE | ID: mdl-38790173

ABSTRACT

Alternanthera sessilis is considered the closest relative to the invasive weed Alternanthera philoxeroides in China, making it an important native species for studying the invasive mechanisms and adaptations of A. philoxeroides. Chloroplasts play a crucial role in a plant's environmental adaptation, with their genomes being pivotal in the evolution and adaptation of both invasive and related species. However, the chloroplast genome of A. sessilis has remained unknown until now. In this study, we sequenced and assembled the complete chloroplast genome of A. sessilis using high-throughput sequencing. The A. sessilis chloroplast genome is 151,935 base pairs long, comprising two inverted repeat regions, a large single copy region, and a small single copy region. This chloroplast genome contains 128 genes, including 8 rRNA-coding genes, 37 tRNA-coding genes, 4 pseudogenes, and 83 protein-coding genes. When compared to the chloroplast genome of the invasive weed A. philoxeroides and other Amaranthaceae species, we observed significant variations in the ccsA, ycf1, and ycf2 regions in the A. sessilis chloroplast genome. Moreover, two genes, ccsA and accD, were found to be undergoing rapid evolution due to positive selection pressure. The phylogenetic trees were constructed for the Amaranthaceae family, estimating the time of independent species formation between A. philoxeroides and A. sessilis to be approximately 3.5186-8.8242 million years ago. These findings provide a foundation for understanding the population variation within invasive species among the Alternanthera genus.


Subject(s)
Amaranthaceae , Genome, Chloroplast , Introduced Species , Phylogeny , Genome, Chloroplast/genetics , Amaranthaceae/genetics , Plant Weeds/genetics , Chloroplasts/genetics , High-Throughput Nucleotide Sequencing , Evolution, Molecular
11.
Plants (Basel) ; 13(6)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38592858

ABSTRACT

Preserving the dwindling native biodiversity in urban settings poses escalating challenges due to the confinement of remaining natural areas to isolated and diminutive patches. Remarkably scarce research has scrutinised the involvement of institutions, particularly universities, in introducing alien plant species in South Africa, thus creating a significant gap in effective monitoring and management. In this study, the Tshwane University of Technology in Tshwane Metropole, South Africa serves as a focal point, where we conducted a comprehensive survey of alien plants both within the university premises and beyond its confines. The investigation involved the classification of invasion status and a meticulous assessment of donor and recipient dynamics. Our findings encompass 876 occurrence records, revealing the presence of 94 alien plant species spanning 44 distinct families. Noteworthy occurrences among the dominant plant families are Asteraceae and Solanaceae. Herbaceous and woody plants emerged as the most prevalent alien species, with common representation across both sampling sites. A substantial majority of recorded species were initially introduced for horticultural purposes (51%) before escaping and establishing self-sustaining populations (62%). Furthermore, 43 species identified are listed in South African invasive species legislation, with some manifesting invasive tendencies and altering the distribution of native species in the remaining natural areas. The notable overlap in species observed between the university premises and adjacent areas provides crucial insights into the influence of institutions on the dynamics of plant invasions within the urban landscape. This underscores the prevailing gaps in the management of invasive alien plants in urban zones and accentuates the imperative of an integrated approach involving collaboration between municipalities and diverse institutions for effective invasive species management in urban environments.

12.
Article in English | MEDLINE | ID: mdl-38629189

ABSTRACT

Symbiotic organisms may contribute to a host plant's success or failure to grow, its ability to maintain viable populations, and potentially, its probability of establishment and spread outside its native range. Intercellular and intracellular microbial symbionts that are asymptomatic in their plant host during some or all of their life cycle - endophytes - can form mutualistic, commensal, or pathogenic relationships, and sometimes novel associations with alien plants. Fungal endophytes are likely the most common endosymbiont infecting plants, with life-history, morphological, physiological, and plant-symbiotic traits that are distinct from other endophytic guilds. Here, we review the community dynamics of fungal endophytes during the process of plant invasion, and how their functional role may shift during the different stages of invasion: transport, introduction (colonisation), establishment, and spread. Each invasion stage presents distinct ecological filters that an alien plant must overcome to advance to the subsequent stage of invasion. Endophytes can alternately aid the host in overcoming stage-specific filters, or contribute to the barriers imposed by filters (e.g. biotic resistance), thereby affecting invasion pathways. A few fungi can be transported as seed endophytes from their native range and be vertically transmitted to future generations in the non-native range, especially in graminoids. In other plant groups, alien plants mostly acquire endophytes via horizontal transmission from the invaded plant community, and the host endophyte community is shaped by host filtering and biogeographic factors (e.g. dispersal limitation, environmental filtering). Endophytes infecting alien plants (both those transported with their host and those accumulated in the non-native range) may influence invasion success by affecting plant growth, reproduction, environmental tolerance, and pathogen and herbivory defences; however, the direction and magnitude of these effects can be contingent upon the host identity, life stage, ecological conditions, and invasion stage. This context dependence may cause endophytic fungi to shift to a non-endophytic (e.g. pathogenic) functional life stage in the same or different hosts, which can modify alien-native plant community dynamics. We conclude by identifying paths in which alien hosts can exploit the context dependency of endophyte function in novel abiotic and biotic conditions and at the different stages of invasion.

13.
Plants (Basel) ; 13(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38498474

ABSTRACT

Trianthema portulacastrum L. (Aizoaceae), commonly known as desert horse purslane or black pigweed, is a C4 dicot succulent annual herb that is widespread in Southeast Asia, tropical America, Africa, and Australia. In Israel, it is an invasive weed of increasing importance in agricultural fields. The aim of this study was to investigate the biology of this invasive weed and its spread in the Hula Valley of Israel. Initial studies included the investigation of the T. portulacastrum specimens held at the Israel National Herbarium. On-site surveillance for the identification of weed infestation locations was conducted in the Hula Valley throughout 2019-2022, and an infestation map was assembled. In a study of the plant biology, greenhouse pot experiments revealed that T. portulacastrum seeds emerge best from the upper soil levels, and as seed depth increases, the emergence rate decreases, so that at 6 cm soil depth, there was no emergence. In controlled-environment growth chamber studies, there were no significant differences in germination with or without light. A maximum germination of 81% was observed for a 12 h night/day of 25/35 °C regime. Germination rates decreased with the decrease in temperature. A seed germination thermal time model that was developed for estimating the minimum temperature required for germination (Tbase) computed this temperature to be 10 °C. This study revealed the biology, in particular seed germination and emergence requirements, of the invasive weed T. portulacastrum that has spread in the Hula Valley in Israel and beyond. Future research will focus on an examination of control measures to combat this invasive weed.

14.
Phytochemistry ; 221: 114051, 2024 May.
Article in English | MEDLINE | ID: mdl-38452878

ABSTRACT

The genus Vincetoxicum includes a couple of highly invasive vines in North America that threaten biodiversity and challenge land management strategies. Vincetoxicum species are known to produce bioactive phenanthroindolizidine alkaloids that might play a role in the invasiveness of these plants via chemical interactions with other organisms. Untargeted, high-resolution mass spectrometry-based metabolomics approaches were used to explore specialized metabolism in Vincetoxicum plants collected from invaded sites in Ontario, Canada. All metabolites corresponding to alkaloids in lab and field samples of V. rossicum and V. nigrum were identified, which collectively contained 25 different alkaloidal features. The biosynthesis of these alkaloids was investigated by the incorporation of the stable isotope-labelled phenylalanine precursor providing a basis for an updated biosynthetic pathway accounting for the rapid generation of chemical diversity in invasive Vincetoxicum. Aqueous extracts of aerial Vincetoxicum rossicum foliage had phytotoxic activity against seedlings of several species, resulting in identification of tylophorine as a phytotoxin; tylophorine and 14 other alkaloids from Vincetoxicum accumulated in soils associated with full-sun and a high-density of V. rossicum. Using desorption-electrospray ionization mass spectrometry, 15 alkaloids were found to accumulate at wounded sites of V. rossicum leaves, a chemical cocktail that would be encountered by feeding herbivores. Understanding the specialized metabolism of V. rossicum provides insight into the roles and influences of phenanthroindolizidine alkaloids in ecological systems and enables potential, natural product-based approaches for the control of invasive Vincetoxicum and other weedy species.


Subject(s)
Alkaloids , Indolizines , Phenanthrenes , Vincetoxicum , Mass Spectrometry
15.
AoB Plants ; 16(2): plae003, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38384340

ABSTRACT

The assessment of seed banks could provide useful hints towards ensuring restoration planning and invasive species management. In this study, the impacts of two invaders such as Hyptis suaveolens and Urena lobata on the soil seed banks were investigated. We also assessed the seed characteristics of the invaders at the invaded sites. This was achieved using 10 sites each for H. suaveolens- and U. lobata-invaded habitats and -non-invaded habitats making a total of 30 sites. We collected 200 soil samples from each habitat type. A seedling emergence method was used to determine the seed bank recruitment of both invasive plants. The diversity indices of the above-ground vegetation of sites invaded by the two plants were significantly lower than those of the non-invaded sites. Only two plant species emerged from the seed banks of H. suaveolens and five plants from those of U. lobata when compared with non-invaded sites where 53 species emerged. A larger portion of the seeds was located in the soil's lower layer at all the sites invaded by H. suaveolens while those of U. lobata and non-invaded sites were found in the upper layers and there are significant associations between the habitats. The lower soil layers of the two species have the highest percentage of viable seeds. These results help us to understand more about the invasiveness of both species as related to their impacts on the seed banks and native vegetation. It also indicates that the native species that emerged from the invaded seed banks could be used for the restoration of the invaded habitats.

16.
Nat Prod Res ; : 1-6, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38288990

ABSTRACT

The aim of the present investigation was to elucidate the phytochemical characterisation, antimicrobial and antioxidant efficacies of methanol extracts of leaf, stem, and root parts of S. wightianus. The phytochemical characterisation by GC-MS analysis revealed the presence of different phytocompounds such as Lupenone (38.02% in leave extract), Leupeyl acetate (33.43% in root extract), 24- Noursa -3, 12- diene (27.16% stem extract). S. wightianus methanol extracts demonstrate IC50, 8.52 µg/ml, 7.72 µg/ml and 9.08 µg/ml using DPPH, FRAP and MCA scavenging assay, respectively. The antibacterial activity of different methanol extracts was evaluated against four microorganisms with a mean zone diameter of inhibition ranging from 13 to 19 mm. For quantitative phytochemical analysis, the highest Total Phenolic Content (TPC) and Total Flavonol Content (TFC-2) were found for steam methanol extract (321.7 mg GAE/g of dry extract, 162.4 mg QE/g of dry extract respectively).

17.
Ecol Appl ; 34(1): e2833, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36864716

ABSTRACT

Few studies tried to explore the mitigation effect and underlying mechanisms of biochar and their complex for negative allelopathy from invasive plants, which may provide a new way in the invasive plant management. Herein, an invasive plant (Solidago canadensis)-derived biochar (IBC) and its composite with hydroxyapatite (HAP/IBC) were synthesized by high temperature pyrolysis, and characterized by scanning electron microscopy, energy dispersion spectrometer, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Then, both the batch adsorption and pot experiments were conducted to compare the removal effects of kaempferol-3-O-ß-D-glucoside (C21 H20 O11 , kaempf), an allelochemical from S. canadensis, on IBC and HAP/IBC, respectively. HAP/IBC showed a stronger affinity for kaempf than IBC due to its higher specific surface area, more functional groups (P-O, P-O-P, PO4 3- ), stronger crystallization [Ca3 (PO4 )2 ]. The maximum kaempf adsorption capacity on HAP/IBC was six times higher than on IBC (10.482 mg/g > 1.709 mg/g) via π-π interactions, functional groups, and metal complexation. The kaempf adsorption process could be fitted best by both pseudo-second-order kinetic and Langmuir isotherm models. Furthermore, HAP/IBC addition into soils could enhance and even recover the germination rate and/or seedling growth of tomato inhibited by negative allelopathy from the invasive S. canadensis. These results indicate that the composite of HAP/IBC could more effectively mitigate the allelopathy from S. canadensis than IBC, which may be a potential efficient approach to control the invasive plant and improve invaded soils.


Subject(s)
Solidago , Water Pollutants, Chemical , Allelopathy , Durapatite/chemistry , Charcoal/chemistry , Soil , Water Pollutants, Chemical/analysis
18.
Ecol Appl ; 34(1): e2835, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36890673

ABSTRACT

Large-scale water conservancy projects benefit human life but have modified the landscape and provided opportunities for alien plant invasions. Understanding the environmental (e.g., climate), human-related (e.g., population density, proximity to human activities), and biotic (e.g., native plant, community structure) factors driving invasions is essential in the management of alien plants and biodiversity conservation in areas with intense human pressure. To this end, we investigated the spatial patterns of alien plant species distribution in the Three Gorges Reservoir Area (TGRA) of China and distinguished the role of the external environment and community characteristics in determining the occurrence of alien plants with differing levels of known invasion impacts in China using random forest analyses and structural equation models. A total of 102 alien plant species belonging to 30 families and 67 genera were recorded, the majority being annual and biennial herbs (65.7%). The results showed a negative diversity-invasibility relationship and supported the biotic resistance hypothesis. Moreover, percentage coverage of native plants was found to interact with native species richness and had a predominant role in resisting alien plant species. We found alien dominance was mainly the result of disturbance (e.g., changes in hydrological regime), which drove native plant loss. Our results also demonstrated that disturbance and temperature were more important for the occurrence of malignant invaders than all alien plants. Overall, our study highlights the importance of restoring diverse and productive native communities in resistance to invasion.


Subject(s)
Biodiversity , Introduced Species , Humans , Plants , Temperature , Climate , Ecosystem
19.
Ecol Appl ; 34(1): e2811, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36708137

ABSTRACT

Biological invasions have become a worldwide problem, and measures to efficiently prevent and control invasions are still in development. Like many other parts of the world, China is undergoing a dramatic increase in plant invasions. Most of the currently 933 established (i.e., naturalized) plant species, of which 214 are categorized as invasive, have been introduced into China for cultivation. It is likely that many of those species are still being traded, particularly online, by plant nurseries. However, studies assessing whether naturalized and invasive species are currently being traded more or less than nonnaturalized aliens are rare. We extracted online-trade information for 13,718 cultivated alien plant taxa on 1688.com, the largest website for domestic B2B in China. We analyzed how the presence in online-nursery catalogs, the number of online nurseries that offerred the species for sale, and the product type (i.e., seeds, live plants and vegetative organs) differed among nonnaturalized, naturalized noninvasive, and invasive species. Compared to nonnaturalized taxa, naturalized noninvasive and invasive taxa were 3.7-5.2 times more likely to be available for purchase. Naturalized noninvasive and invasive taxa were more frequently offered as seeds by online nurseries, whereas nonnaturalized taxa were more frequently offered as live plants. Based on these findings, we propose that, to reduce the further spread of invasive and potentially invasive plants, implementation of plant-trade regulations and a monitoring system of the online horticultural supply chain will be essential.


Subject(s)
Introduced Species , Plants , Seeds , Commerce , China
20.
Plant J ; 117(2): 449-463, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37846604

ABSTRACT

Heracleum sosnowskyi, belonging to a group of giant hogweeds, is a plant with large effects on ecosystems and human health. It is an invasive species that contributes to the deterioration of grassland ecosystems. The ability of H. sosnowskyi to produce linear furanocoumarins (FCs), photosensitizing compounds, makes it very dangerous. At the same time, linear FCs are compounds with high pharmaceutical value used in skin disease therapies. Despite this high importance, it has not been the focus of genetic and genomic studies. Here, we report a chromosome-scale assembly of Sosnowsky's hogweed genome. Genomic analysis revealed an unusually high number of genes (55106) in the hogweed genome, in contrast to the 25-35 thousand found in most plants. However, we did not find any traces of recent whole-genome duplications not shared with its confamiliar, Daucus carota (carrot), which has approximately thirty thousand genes. The analysis of the genomic proximity of duplicated genes indicates on tandem duplications as a main reason for this increase. We performed a genome-wide search of the genes of the FC biosynthesis pathway and surveyed their expression in aboveground plant parts. Using a combination of expression data and phylogenetic analysis, we found candidate genes for psoralen synthase and experimentally showed the activity of one of them using a heterologous yeast expression system. These findings expand our knowledge on the evolution of gene space in plants and lay a foundation for further analysis of hogweed as an invasive plant and as a source of FCs.


Subject(s)
Daucus carota , Heracleum , Humans , Heracleum/genetics , Introduced Species , Ecosystem , Phylogeny , Gene Duplication
SELECTION OF CITATIONS
SEARCH DETAIL
...