Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Lebensm Wiss Technol ; 188: 115433, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-38022393

ABSTRACT

The potential of Hibiscus sabdariffa L. beverage as a dietary iron source for sub-Saharan Africans was investigated. The target was to provide 6 mg of iron through 250 mL of the beverage daily. However, the iron content of the dried hibiscus calyces was determined to be 9.73 ± 0.31 mg/100 g and from that only ∼30% was extractable, resulting in 0.93 ± 0.19 mg Fe/250 mL of the selected beverage formulation. Therefore, ferrous sulfate was explored as a fortificant. The beverage contains polyphenols which could form non-absorbable chelation complexes with iron during digestion. Subsequently, the effect of polyphenols on the bioaccessibility of native and added iron was assessed using spectrophotometric methods. The presence of iron-polyphenol complexes in samples of the unfortified and fortified beverages, adjusted to pH 6.5 (pH at site of iron absorption in the gut) was established. However, only ∼25% of the added iron was found to be bound in the complex. It was shown that the viability of H. sabdariffa L. beverage as an iron source is impacted by extraction losses and the inhibitory effect of polyphenols. Nonetheless, if iron-polyphenol complexation was reduced/prevented then, a fortified hibiscus beverage could be a useful iron source.

2.
Food Chem ; 372: 131286, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34818733

ABSTRACT

The investigation was undertaken to maximise the bioaccessibility of iron and zinc of a complementary food mix by multiple approaches of dephytinisation and addition of organic acids. A wheat, pulse and oilseed protein flour mix was dephytinized by phytase activation and different thermal treatments. As the mineral content of the mix was low, the spray dried mix was fortified with different iron and zinc salts to identify the salt with the highest bioaccessibility in this matrix. Based on the percent bioaccessibility, the mix with sodium iron EDTA and zinc oxide was chosen for fortification. Bioaccessibility was enhanced by the addition of fruit powders and pure organic acids. Fruit powders showed a significant increase, but citric acid at a higher dose was beneficial in enhancing bioaccessible iron. The strategy of dephytinisation followed by fortification and the addition of fruit powders or organic acids is promising in alleviating iron and zinc deficiencies.


Subject(s)
Zinc Oxide , Zinc , Flour , Food, Fortified , Iron
3.
Food Res Int ; 121: 404-411, 2019 07.
Article in English | MEDLINE | ID: mdl-31108764

ABSTRACT

Wild harvested edible insects are characterised by high protein and mineral contents with potential to contribute substantially to nutrition security. However, nutritional content is only beneficial when proteins are digestible and minerals bioaccessible. This study determined the effects of domestic processing on protein digestibility and mineral bioaccessibility of two wild harvested insect species: Eulepida mashona (beetle) and Henicus whellani (cricket). Samples of both insects were subjected to boiling, roasting, or combined boiling and roasting, imitating the way insects are traditionally prepared in Zimbabwe. Moreover, they were in vitro digested according to INFOGEST protocol. Boiling of both insects resulted in loss of protein as it leached into the boiling water. The raw insects had a higher protein in vitro digestibility than the boiled and roasted insects, and the maximal decrease in protein digestibility was around 25% for twice boiling of the beetles and for boiled and roasted crickets. For both insect species, boiling resulted in non-significant loss of iron and zinc. Iron was the least bioaccessible mineral in both insects, based on the concentrations of soluble mineral measured by ICP-AES. However, beetles had a much higher iron bioaccessibility (30.7%) as compared to crickets (8.11%). Interestingly, boiling resulted in about 50% decrease in iron and zinc bioaccessibility in both species while roasting did not. The reduced protein digestibility and mineral accessibility with processing can be explained by protein modification and interactions of minerals with other food components, such as chitin and phytochemicals. Because of the reduction in protein digestibility and mineral accessibility during boiling, roasting should be favoured over boiling and in any case short boiling time is recommended.


Subject(s)
Cooking , Edible Insects , Insect Proteins/metabolism , Animals , Biological Availability , Food Analysis , Iron/analysis , Iron/pharmacokinetics , Trace Elements/analysis , Zimbabwe , Zinc/analysis , Zinc/pharmacokinetics
4.
Food Sci. Technol (SBCTA, Impr.) ; 38(1): 157-163, Jan.-Mar. 2018. tab, graf
Article in English | LILACS | ID: biblio-892250

ABSTRACT

Abstract A 32 factorial design was employed to develop an in vitro digestion method for estimation of Fe bioaccessible fractions in cooked chicken meat. The effects of sample size and the in vitro bioaccessible fractions of this essential element were evaluated. A sample preparation method employing a microwave assisted digestion with dilute nitric acid was used prior to total Fe determination. For the bioacessibility studies, the optimized procedure employed 7.5 g of sample and 6% w/v of an acid pepsin solution. This procedure was applied to two kinds of chicken meat samples: breast and liver. Flame Atomic Absorption Spectrometry was used to determine total and bioaccessible (chyme or soluble portion) levels of iron in the samples. With respect to total Fe content, the bioaccessible fractions of Fe found in these samples were around 23% and 56 %, for breast and chicken liver, respectively. The chicken liver sample showed the highest total (400 ± 10 mg kg-1) and bioaccessible Fe contents (223 ± 18 mg kg-1) and stands out as a good source of this micronutrient.

5.
Foods ; 6(7)2017 Jul 22.
Article in English | MEDLINE | ID: mdl-28737681

ABSTRACT

Dark green leafy vegetables (DGLVs) are considered as important sources of iron and vitamin A. However, iron concentration may not indicate bioaccessibility. The objectives of this study were to compare the nutrient content and iron bioaccessibility of five sweet potato cultivars, including three orange-fleshed types, with other commonly consumed DGLVs in Ghana: cocoyam, corchorus, baobab, kenaf and moringa, using the in vitro digestion/Caco-2 cell model. Moringa had the highest numbers of iron absorption enhancers on an "as-would-be-eaten" basis, ß-carotene (14169 µg/100 g; p < 0.05) and ascorbic acid (46.30 mg/100 g; p < 0.001), and the best iron bioaccessibility (10.28 ng ferritin/mg protein). Baobab and an orange-fleshed sweet potato with purplish young leaves had a lower iron bioaccessibility (6.51 and 6.76 ng ferritin/mg protein, respectively) compared with that of moringa, although these three greens contained similar (p > 0.05) iron (averaging 4.18 mg/100 g) and ß-carotene levels. The ascorbic acid concentration of 25.50 mg/100 g in the cooked baobab did not enhance the iron bioaccessibility. Baobab and the orange-fleshed sweet potato with purplish young leaves contained the highest levels of total polyphenols (1646.75 and 506.95 mg Gallic Acid Equivalents/100 g, respectively; p < 0.001). This suggests that iron bioaccessibility in greens cannot be inferred based on the mineral concentration. Based on the similarity of the iron bioaccessibility of the sweet potato leaves and cocoyam leaf (a widely-promoted "nutritious" DGLV in Ghana), the former greens have an added advantage of increasing the dietary intake of provitamin A.

6.
J Food Sci Technol ; 53(4): 2033-9, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27413231

ABSTRACT

The in vitro bioaccessibility of iron in context to fortification of key foods to cereal based diets was studied to optimize the meals for enhanced iron bioaccessibility to meet the needs of vegetarian and non-vegetarian adult women. Four individual food items and thirty six composite meals were selected to represent a wide spectrum of meal ingredients. The four individual foods: chapati, rice, dal and saag were choosen on the basis of data reported on meal pattern of surveyed households of north India. The basic meals were then fortified with key food ingredients which may influence in vitro iron bioaccessibility. Eight selected key foods were salad, orange, lemonade, milk, curd, chicken, egg and tea. The results revealed that inclusion of 200 g of chicken, 135 g of salad and 120 g of orange to the basic meals of rice or chapati with either dal or saag enhanced iron bioaccessibility by 1.6 fold to 5.0 fold; 5.2 to 28.9 % and 4.7 to 10.7 %, respectively. The best enhancer of iron absorption for vegetarians was lemonade (250 ml) which resulted in 70.2 and 61.0 % increase of in vitro bioaccessibility of iron to the rice based meals with dal and saag, respectively. The inclusion of lemonade resulted in 1.3 fold increase in iron bioaccessibility in chapati based meals. The major inhibitors of iron bioaccessibility were egg and tea, the percent reduction caused by egg being 16.1 to 50.2 % while by tea, it was between 21.5 to 55.3 %. The study recommends that those vulnerable to iron deficiency should be encouraged to increase overall intake of iron from iron rich foods. The increase should be coupled with efforts to combine appropriate foods in the diet to enhance the bioaccessibility of iron and reduce inhibitory factors.

7.
Plant Foods Hum Nutr ; 71(1): 96-101, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26860526

ABSTRACT

The aim of this work was to evaluate copper-chelating, iron-chelating and anticariogenic activity of peptides obtained by enzymatic hydrolysis of P. columbina protein concentrate and to study the effects of chelating peptides on iron bio-accessibility. Two hydrolyzates were obtained from P. columbina protein concentrate (PC) using two hydrolysis systems: alkaline protease (A) and alkaline protease + Flavourzyme (AF). FPLC gel filtration profile of PC shows a peak having molecular weight (MW) higher than 7000 Da (proteins). A and AF hydrolyzates had peptides with medium and low MW (1013 and 270 Da), respectively. Additionally, AF presented free amino acids with MW around 82 Da and higher content of His and Ser. Peptides from AF showed the highest chelating properties measured as copper-chelating activity (the lowest ß-carotene oxidation rate: Ro; 0.7 min(-1)), iron-chelating activity (33%), and phosphorous and Ca(2+) release inhibition (87 and 81%, respectively). These properties could indicate antioxidant properties, promotion of iron absorption and anticariogenic activity, respectively. In fact, hydrolyzates promoted iron dialyzability (≈ 16%), values being higher than that found for P. columbina seaweed. Chelating peptides from both hydrolyzates can maintain the iron in a soluble and bio-accessible form after gastrointestinal digestion.


Subject(s)
Chelating Agents/chemistry , Iron/metabolism , Peptides/chemistry , Rhodophyta/chemistry , Amino Acids/metabolism , Antioxidants/chemistry , Antioxidants/metabolism , Bacterial Proteins/metabolism , Calcium/chemistry , Calcium/metabolism , Chelating Agents/isolation & purification , Copper/chemistry , Copper/metabolism , Endopeptidases/metabolism , Hydrolysis , Iron/chemistry , Molecular Weight , Oxidation-Reduction , Peptides/isolation & purification , Phosphorus/chemistry , Phosphorus/metabolism , Plant Proteins/chemistry , Plant Proteins/isolation & purification , beta Carotene/chemistry
8.
Food Chem ; 174: 60-7, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25529652

ABSTRACT

The effect of removing phytate (IP6), iron-binding polyphenols, and dietary fibers on iron bioaccessibility in wheat-red sorghum (WrS) and teff-white sorghum (TwS) flour blends used in Ethiopia to make injera, a fermented pancake, was evaluated through the application of exogenous enzymes. Phytase treatment led to >90% reduction in IP6 and to an IP6:Fe molar ratio <1, but iron bioaccessibility was not improved (P > 0.05). Phytase + xylanase + cellulase (P + X + C) treatment increased iron bioaccessibility in TwS (non-detectableto1.6%) and WrS (1.9-3.2%), whereas phytase + polyphenol oxidase (P + PPO) treatment only showed improvement in the TwS blend. P + X + C + PPO treatment of the WrS blend increased the soluble non-dialysable iron fraction (6.7%) more than P + PPO treatment (3.9%). Although responses to enzyme treatments and iron bioaccessibility were matrix dependent, a positive effect of dietary fiber hydrolysis with X + C was obtained, irrespective of the blend. Dietary fibers had a negative effect on iron bioaccessibility independent of phytates.


Subject(s)
Dietary Fiber/analysis , Flour/analysis , Iron/metabolism , Phytic Acid/chemistry , Polyphenols/chemistry , Sorghum/chemistry , 6-Phytase/chemistry , Biocatalysis , Cellulase/chemistry , Dietary Fiber/metabolism , Endo-1,4-beta Xylanases/chemistry , Ethiopia , Fermentation , Humans , Iron/analysis , Models, Biological , Phytic Acid/metabolism , Polyphenols/metabolism , Sorghum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...