Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.047
Filter
1.
Endocrinology ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954536

ABSTRACT

BACKGROUND: Nephrin is a transmembrane protein with well-established signaling roles in kidney podocytes, and a smaller set of secretory functions in pancreatic ß cells are implicated in diabetes. Nephrin signaling is mediated in part through its three cytoplasmic YDxV motifs, which can be tyrosine phosphorylated by high glucose and ß cell injuries. Although in vitro studies demonstrate these phosphorylated motifs can regulate ß cell vesicle trafficking and insulin release, in vivo evidence of their role in this cell type remains to be determined. METHODS: To further explore the role of nephrin YDxV phosphorylation in ß cells, we used a mouse line with tyrosine to phenylalanine substitutions at each YDxV motif (nephrin-Y3F) to inhibit phosphorylation. We assessed islet function via primary islet glucose-stimulated insulin secretion assays and oral glucose tolerance tests. RESULTS: Nephrin-Y3F mice successfully developed pancreatic endocrine and exocrine tissues with minimal structural differences. Unexpectedly, male and female nephrin-Y3F mice showed elevated insulin secretion, with a stronger increase observed in male mice. At 8 months of age, no differences in glucose tolerance were observed between WT and nephrin-Y3F mice. However, aged nephrin-Y3F mice (16 months of age) demonstrated more rapid glucose clearance compared to WT controls. CONCLUSION: Taken together, loss of nephrin YDxV phosphorylation does not alter baseline islet function. Instead, our data suggest a mechanism linking impaired nephrin YDxV phosphorylation to improved islet secretory ability with age. Targeting nephrin phosphorylation could provide novel therapeutic opportunities to improve ß cell function.

2.
Diabetologia ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958700

ABSTRACT

AIMS/HYPOTHESIS: Strategies to augment functional beta cell mass include directed differentiation of stem cells towards a beta cell fate, which requires extensive knowledge of transcriptional programs governing endocrine progenitor cell differentiation in vivo. We aimed to study the contributions of the Brahma-related gene-1 (BRG1) and Brahma (BRM) ATPase subunits of the SWI/SNF chromatin remodelling complex to endocrine cell development. METHODS: We generated mice with endocrine progenitor-specific Neurog3-Cre BRG1 removal in the presence of heterozygous (Brg1Δendo;Brm+/-) or homozygous (double knockout: DKOΔendo) BRM deficiency. Whole-body metabolic phenotyping, islet function characterisation, islet quantitative PCR and histological characterisation were performed on animals and tissues postnatally. To test the mechanistic actions of SWI/SNF in controlling gene expression during endocrine cell development, single-cell RNA-seq was performed on flow-sorted endocrine-committed cells from embryonic day 15.5 control and mutant embryos. RESULTS: Brg1Δendo;Brm+/- mice exhibit severe glucose intolerance, hyperglycaemia and hypoinsulinaemia, resulting, in part, from reduced islet number; diminished alpha, beta and delta cell mass; compromised islet insulin secretion; and altered islet gene expression programs, including reductions in MAFA and urocortin 3 (UCN3). DKOΔendo mice were not recovered at weaning; however, postnatal day 6 DKOΔendo mice were severely hyperglycaemic with reduced serum insulin levels and beta cell area. Single-cell RNA-seq of embryonic day 15.5 lineage-labelled cells revealed endocrine progenitor, alpha and beta cell populations from SWI/SNF mutants have reduced expression of Mafa, Gcg, Ins1 and Ins2, suggesting limited differentiation capacity. Reduced Neurog3 transcripts were discovered in DKOΔendo endocrine progenitor clusters, and the proliferative capacity of neurogenin 3 (NEUROG3)+ cells was reduced in Brg1Δendo;Brm+/- and DKOΔendo mutants. CONCLUSIONS/INTERPRETATION: Loss of BRG1 from developing endocrine progenitor cells has a severe postnatal impact on glucose homeostasis, and loss of both subunits impedes animal survival, with both groups exhibiting alterations in hormone transcripts embryonically. Taken together, these data highlight the critical role SWI/SNF plays in governing gene expression programs essential for endocrine cell development and expansion. DATA AVAILABILITY: Raw and processed data for scRNA-seq have been deposited into the NCBI Gene Expression Omnibus (GEO) database under the accession number GSE248369.

3.
Endocrine ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971945

ABSTRACT

Diabetes is one of the major diseases and concerns of public health systems that affects over 200 million patients worldwide. It is estimated that 90% of these patients suffer from diabetes type 2, while 10% present diabetes type 1. This type of diabetes and certain types of diabetes type 2, are characterized by dysregulation of blood glycemic levels due to the total or partial depletion of insulin-secreting pancreatic ß-cells. Different approaches have been proposed for long-term treatment of insulin-dependent patients; amongst them, cell-based approaches have been the subject of basic and clinical research since they allow blood glucose level sensing and in situ insulin secretion. The current gold standard for insulin-dependent patients is on-demand exogenous insulin application; cell-based therapies aim to remove this burden from the patient and caregivers. In recent years, protocols to isolate and implant pancreatic islets from diseased donors have been developed and tested in clinical trials. Nevertheless, the shortage of donors, along with the need of immunosuppressive companion therapies, have pushed researchers to focus their attention and efforts to overcome these disadvantages and develop alternative strategies. This review discusses current tested clinical approaches and future potential alternatives for diabetes type 1, and some diabetes type 2, insulin-dependent patients. Additionally, advantages and disadvantages of these discussed methods.

4.
NMR Biomed ; : e5207, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979683

ABSTRACT

For patients with type 1 diabetes mellitus complicated by severe hypoglycemia, clinical islet transplantation is an efficacious alternative to whole pancreas transplantation. While islet transplantation has improved over the last few years, there remain questions regarding its cost-effectiveness and donor allosensitization, which is exacerbated when islets from more than one donor are required. Understanding the features of a pancreas that would provide viable islets prior to isolation may lead to development of an accurate assay that could identify suitable pancreases and provide significant cost savings to a clinical islet transplantation program. In this pilot study, solid-state high-resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy was used to assess samples of convenience of human pancreatic tissue taken prior to islet isolation both before and after incubation using the two-layer perfluorocarbon (PFC)/University of Wisconsin (UW) solution cold-storage method. We observed that, prior to incubation, human pancreatic tissue exhibited evidence of hypoxia with decreased peak integrals associated with glucose and increased peak integrals corresponding to lactate and free fatty acids. After incubation, we observed a reversal of the hypoxia-induced damage, as integrals corresponding to glucose increased, and those corresponding to lactate and free fatty acid resonances decreased. Interestingly, a significant correlation between the ratio of the glucose integral (at 3.0-4.5 ppm) to the sum of the fatty acid (at 0.9 ppm) and lactate + fatty acid (at 1.3 ppm) integrals and glucose responsiveness, a measure of islet viability, of the isolated islets, was observed after incubation in PFC/UW solution for pancreases that responded to PFC/UW solution incubation (p = 0.02). Notably, pancreases with little or no change in the integral ratio after PFC/UW solution incubation had poor recovery. These results suggest that tissue recovery is a key feature for determining islet cell viability, and further that HRMAS NMR may be a practical method to quickly assess human donor pancreatic tissue prior to islet isolation for clinical transplantation.

5.
Endocr Res ; : 1-9, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982737

ABSTRACT

OBJECTIVE: Type 1 diabetes mellitus (T1DM) is an autoimmune disease where immune cells attack insulin-producing beta cells. Islet transplantation is a promising treatment for T1DM. This study aims to evaluate the effects of adipose tissue-derived mesenchymal stem cells (AT-MSCs) in combination with pancreatic islet transplantation using hydrogel. METHODS: T1DM mouse model was established using streptozotocin (STZ). Islets and AT-MSCs were co-embedded in a hydrogel and transplanted into diabetic mice. Five groups with six animals in each (control, hydrogel alone, AT-MSCs embedded hydrogel, islet embedded in hydrogel, and islet + AT-MSCs co-imbedded into a hydrogel) were evaluated in terms of blood glucose, insulin levels and serum and lavage cytokine production. RESULTS: During 32 days, blood glucose levels decreased from over 400 mg/dl to less than 150 mg/dl in the transplanted mice. Analysis showed increased transformation growth factor beta (TGF-ß1) and IL-4 levels, while IL-17 and IFN-γ levels significantly decreased in the MSC-treated groups. CONCLUSION: These findings suggest that using AT-MSCs with hydrogel could be a beneficial alternative for enhancing pancreatic islet engraftment and function.

6.
Article in English | MEDLINE | ID: mdl-38984949

ABSTRACT

Type 1 diabetes recipients of intrahepatic islet transplantation exhibit glucose-dependent suppression of insulin and activation of glucagon secretion in response to insulin-induced hypoglycemia associated with clinical protection from hypoglycemia. Whether sympathetic activation of adrenergic receptors on transplanted islets is required for these responses in defense against hypoglycemia is not known. To evaluate the adrenergic contribution to post-transplant glucose counterregulation, we performed a randomized, double-blind crossover study of responses during a hyperinsulinemic euglycemic-hypoglycemic clamp under phentolamine (α-adrenergic blockage), propranolol (ß-adrenergic blockage), or placebo infusion. Participants (5 female/4 male) were median (range) age 53 (34-63) years, diabetes duration 29 (18-56) years, post-transplant 7.0 (1.9-8.4) years, HbA1c 5.8 (4.5-6.8)%, insulin in-/dependent 5/4, all on tacrolimus-based immunosuppression. During the clamp, blood pressure was lower with phentolamine and heart rate lower with propranolol vs. placebo (P <0.05). There was no difference in suppression of endogenous insulin secretion (derived from C-peptide measurements) during the euglycemic or hypoglycemic phases, and while levels of glucagon were similar with phentolamine or propranolol vs. placebo, the increase in glucagon from eu- to hypoglycemia was greater with propranolol vs. placebo (P < 0.05). Pancreatic polypeptide was greater with phentolamine vs. placebo during the euglycemic phase (P < 0.05), and free fatty acids were lower and the glucose infusion rate higher with propranolol vs. placebo during the hypoglycemic phase (P < 0.05). These results indicate that neither physiologic α- nor ß-adrenergic blockade attenuates transplanted islet responses to hypoglycemia, suggesting sympathetic re-innervation of the islet graft is not necessary for post-transplant glucose counterregulation.

7.
Physiol Genomics ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949617

ABSTRACT

Type 2 diabetes (T2D) is a common metabolic disease due to insufficient insulin secretion by pancreatic beta cells in the context of insulin resistance. Islet molecular pathology reveals a role for protein misfolding in beta cell dysfunction and loss with islet amyloid derived from islet amyloid polypeptide (IAPP), a protein co-expressed and co-secreted with insulin. The most toxic form of misfolded IAPP is intracellular membrane disruptive toxic oligomers present in beta cells in T2D and in beta cells of mice transgenic for human IAPP (hIAPP). Prior work revealed a high degree of overlap of transcriptional changes in islets from T2D and pre-diabetic 9-10-week-old mice transgenic for hIAPP with most changes being pro-survival adaptations and therefore of limited therapeutic guidance. Here we investigated islets from hIAPP transgenic mice at an earlier age (6 weeks) to screen for potential mediators of hIAPP toxicity that precede predominance of pro-survival signaling. We identified early suppression of cholesterol synthesis and trafficking along with aberrant intra-beta cell cholesterol and lipid deposits, and impaired cholesterol trafficking to cell membranes. These findings align with comparable lipid deposits present in beta cells in T2D and increased vulnerability to develop T2D in individuals taking medications that suppress cholesterol synthesis.

8.
Front Endocrinol (Lausanne) ; 15: 1395028, 2024.
Article in English | MEDLINE | ID: mdl-38989001

ABSTRACT

Introduction: Biphasic insulin secretion is an intrinsic characteristic of the pancreatic islet and has clinical relevance due to the loss of first-phase in patients with Type 2 diabetes. As it has long been shown that first-phase insulin secretion only occurs in response to rapid changes in glucose, we tested the hypothesis that islet response to an increase in glucose is a combination of metabolism plus an osmotic effect where hypertonicity is driving first-phase insulin secretion. Methods: Experiments were performed using perifusion analysis of rat, mouse, and human islets. Insulin secretion rate (ISR) and other parameters associated with its regulation were measured in response to combinations of D-glucose and membrane-impermeable carbohydrates (L-glucose or mannitol) designed to dissect the effect of hypertonicity from that of glucose metabolism. Results: Remarkably, the appearance of first-phase responses was wholly dependent on changes in tonicity: no first-phase in NAD(P)H, cytosolic calcium, cAMP secretion rate (cAMP SR), or ISR was observed when increased D-glucose concentration was counterbalanced by decreases in membrane-impermeable carbohydrates. When D-glucose was greater than 8 mM, rapid increases in L-glucose without any change in D-glucose resulted in first-phase responses in all measured parameters that were kinetically similar to D-glucose. First-phase ISR was completely abolished by H89 (a non-specific inhibitor of protein kinases) without affecting first-phase calcium response. Defining first-phase ISR as the difference between glucose-stimulated ISR with and without a change in hypertonicity, the peak of first-phase ISR occurred after second-phase ISR had reached steady state, consistent with the well-established glucose-dependency of mechanisms that potentiate glucose-stimulated ISR. Discussion: The data collected in this study suggests a new model of glucose-stimulated biphasic ISR where first-phase ISR derives from (and after) a transitory amplification of second-phase ISR and driven by hypertonicity-induced rise in H89-inhibitable kinases likely driven by first-phase responses in cAMP, calcium, or a combination of both.


Subject(s)
Glucose , Insulin Secretion , Insulin , Animals , Insulin Secretion/drug effects , Glucose/metabolism , Rats , Humans , Insulin/metabolism , Mice , Male , Islets of Langerhans/metabolism , Islets of Langerhans/drug effects , Cyclic AMP/metabolism , Calcium/metabolism
9.
Front Pharmacol ; 15: 1407200, 2024.
Article in English | MEDLINE | ID: mdl-38989151

ABSTRACT

Introduction: Panax ginseng C. A. Mey. (Araliaceae; Ginseng Radix et Rhizoma), a traditional plant commonly utilized in Eastern Asia, has demonstrated efficacy in treating neuro-damaging diseases and diabetes mellitus. However, its precise roles and mechanism in alleviating type 2 diabetes mellitus (T2DM) need further study. The objective of this study is to explore the pharmacological effects of ginseng extract and elucidate its potential mechanisms in protecting islets and promoting ß-cell regeneration. Methods: The T2DM mouse model was induced through streptozotocin combined with a high-fat diet. Two batches of mice were sacrificed on the 7th and 28th days following ginseng extract administration. Body weight, fasting blood glucose levels, and glucose tolerance were detected. Morphological changes in the pancreatic islets were examined via H & E staining. Levels of serum insulin, glucagon, GLP-1, and inflammatory factors were measured using ELISA. The ability of ginseng extract to promote pancreatic islet ß-cell regeneration was evaluated through insulin & PCNA double immunofluorescence staining. Furthermore, the mechanism behind ß-cells regeneration was explored through insulin & glucagon double immunofluorescence staining, accompanied by immunohistochemical staining and western blot analyses. Results and Discussion: The present research revealed that ginseng extract alleviates symptoms of T2DM in mice, including decreased blood glucose levels and improved glucose tolerance. Serum levels of insulin, GLP-1, and IL-10 increased following the administration of ginseng extract, while levels of glucagon, TNF-α, and IL-1ß decreased. Ginseng extract preserved normal islet morphology, increased nascent ß-cell population, and inhibited inflammatory infiltration within the islets, moreover, it decreased α-cell proportion while increasing ß-cell proportion. Mechanistically, ginseng extract might inhibit ARX and MAFB expressions, increase MAFA level to aid in α-cell to ß-cell transformation, and activate AKT-FOXM1/cyclin D2 to enhance ß-cell proliferation. Our study suggests that ginseng extract may be a promising therapy in treating T2DM, especially in those with islet injury.

10.
World J Diabetes ; 15(6): 1142-1161, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38983831

ABSTRACT

Diabetes is a heterogeneous metabolic disease characterized by elevated blood glucose levels resulting from the destruction or malfunction of pancreatic ß cells, insulin resistance in peripheral tissues, or both, and results in a non-sufficient production of insulin. To adjust blood glucose levels, diabetic patients need exogenous insulin administration together with medical nutrition therapy and physical activity. With the aim of improving insulin availability in diabetic patients as well as ameliorating diabetes comorbidities, different strategies have been investigated. The first approaches included enhancing endogenous ß cell activity or transplanting new islets. The protocol for this kind of intervention has recently been optimized, leading to standardized procedures. It is indicated for diabetic patients with severe hypoglycemia, complicated by impaired hypoglycemia awareness or exacerbated glycemic lability. Transplantation has been associated with improvement in all comorbidities associated with diabetes, quality of life, and survival. However, different trials are ongoing to further improve the beneficial effects of transplantation. Furthermore, to overcome some limitations associated with the availability of islets/pancreas, alternative therapeutic strategies are under evaluation, such as the use of mesenchymal stem cells (MSCs) or induced pluripotent stem cells for transplantation. The cotransplantation of MSCs with islets has been successful, thus providing protection against proinflammatory cytokines and hypoxia through different mechanisms, including exosome release. The use of induced pluripotent stem cells is recent and requires further investigation. The advantages of MSC implantation have also included the improvement of diabetes-related comorbidities, such as wound healing. Despite the number of advantages of the direct injection of MSCs, new strategies involving biomaterials and scaffolds have been developed to improve the efficacy of mesenchymal cell delivery with promising results. In conclusion, this paper offered an overview of new alternative strategies for diabetes management while highlighting some limitations that will need to be overcome by future approaches.

11.
Diabetologia ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967669

ABSTRACT

AIMS/HYPOTHESIS: tRNAs play a central role in protein synthesis. Besides this canonical function, they were recently found to generate non-coding RNA fragments (tRFs) regulating different cellular activities. The aim of this study was to assess the involvement of tRFs in the crosstalk between immune cells and beta cells and to investigate their contribution to the development of type 1 diabetes. METHODS: Global profiling of the tRFs present in pancreatic islets of 4- and 8-week-old NOD mice and in extracellular vesicles released by activated CD4+ T lymphocytes was performed by small RNA-seq. Changes in the level of specific fragments were confirmed by quantitative PCR. The transfer of tRFs from immune cells to beta cells occurring during insulitis was assessed using an RNA-tagging approach. The functional role of tRFs increasing in beta cells during the initial phases of type 1 diabetes was determined by overexpressing them in dissociated islet cells and by determining the impact on gene expression and beta cell apoptosis. RESULTS: We found that the tRF pool was altered in the islets of NOD mice during the initial phases of type 1 diabetes. Part of these changes were triggered by prolonged exposure of beta cells to proinflammatory cytokines (IL-1ß, TNF-α and IFN-γ) while others resulted from the delivery of tRFs produced by CD4+ T lymphocytes infiltrating the islets. Indeed, we identified several tRFs that were enriched in extracellular vesicles from CD4+/CD25- T cells and were transferred to beta cells upon adoptive transfer of these immune cells in NOD.SCID mice. The tRFs delivered to beta cells during the autoimmune reaction triggered gene expression changes that affected the immune regulatory capacity of insulin-secreting cells and rendered the cells more prone to apoptosis. CONCLUSIONS/INTERPRETATION: Our data point to tRFs as novel players in the crosstalk between the immune system and insulin-secreting cells and suggest a potential involvement of this novel class of non-coding RNAs in type 1 diabetes pathogenesis. DATA AVAILABILITY: Sequences are available from the Gene Expression Omnibus (GEO) with accession numbers GSE242568 and GSE256343.

12.
Biochem Biophys Res Commun ; 725: 150254, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-38901223

ABSTRACT

Decreased pancreatic ß-cell volume is a serious problem in patients with type 2 diabetes mellitus, and there is a need to establish appropriate treatments. Increasingly, sodium/glucose cotransporter 2 (SGLT2) inhibitors, which have a protective effect on pancreatic ß-cells, are being prescribed to treat diabetes; however, the underlying mechanism is not well understood. We previously administered SGLT2 inhibitor dapagliflozin to a mouse model of type 2 diabetes and found significant changes in gene expression in the early-treated group, which led us to hypothesize that epigenetic regulation was a possible mechanism of these changes. Therefore, we performed comprehensive DNA methylation analysis by methylated DNA immunoprecipitation using isolated pancreatic islets after dapagliflozin administration to diabetic model mice. As a result, we identified 31 genes with changes in expression due to DNA methylation changes. Upon immunostaining, cystic fibrosis transmembrane conductance regulator and cadherin 24 were found to be upregulated in islets in the dapagliflozin-treated group. These molecules may contribute to the maintenance of islet morphology and insulin secretory capacity, suggesting that SGLT2 inhibitors' protective effect on pancreatic ß-cells is accompanied by DNA methylation changes, and that the effect is long-term and not temporary. In future diabetes care, SGLT2 inhibitors may be expected to have positive therapeutic effects, including pancreatic ß-cell protection.


Subject(s)
Benzhydryl Compounds , DNA Methylation , Diabetes Mellitus, Type 2 , Glucosides , Islets of Langerhans , Sodium-Glucose Transporter 2 Inhibitors , Animals , Benzhydryl Compounds/pharmacology , Benzhydryl Compounds/therapeutic use , DNA Methylation/drug effects , Glucosides/pharmacology , Glucosides/therapeutic use , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/pathology , Mice , Islets of Langerhans/metabolism , Islets of Langerhans/drug effects , Islets of Langerhans/pathology , Male , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Mice, Inbred C57BL , Disease Models, Animal , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Epigenesis, Genetic/drug effects , Gene Expression Regulation/drug effects , Cadherins/metabolism , Cadherins/genetics
13.
bioRxiv ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38895427

ABSTRACT

Preventing the onset of autoimmune type 1 diabetes (T1D) is feasible through pharmacological interventions that target molecular stress-responsive mechanisms. Cellular stresses, such as nutrient deficiency, viral infection, or unfolded proteins, trigger the integrated stress response (ISR), which curtails protein synthesis by phosphorylating eIF2α. In T1D, maladaptive unfolded protein response (UPR) in insulin-producing ß cells renders these cells susceptible to autoimmunity. We show that inhibition of the eIF2α kinase PERK, a common component of the UPR and ISR, reverses the mRNA translation block in stressed human islets and delays the onset of diabetes, reduces islet inflammation, and preserves ß cell mass in T1D-susceptible mice. Single-cell RNA sequencing of islets from PERK-inhibited mice shows reductions in the UPR and PERK signaling pathways and alterations in antigen processing and presentation pathways in ß cells. Spatial proteomics of islets from these mice shows an increase in the immune checkpoint protein PD-L1 in ß cells. Golgi membrane protein 1, whose levels increase following PERK inhibition in human islets and EndoC-ßH1 human ß cells, interacts with and stabilizes PD-L1. Collectively, our studies show that PERK activity enhances ß cell immunogenicity, and inhibition of PERK may offer a strategy to prevent or delay the development of T1D.

14.
Article in English | MEDLINE | ID: mdl-38912736

ABSTRACT

Islet ß-cell dysfunction is an underlying factor for type I diabetes (T1D) development. Insulin sensing and secretion is tightly regulated in ß-cells at multiple subcellular levels. The epithelial intermediate filament protein keratin (K) 8 is the main ß-cell keratin, constituting the filament network with K18. To identify the cell-autonomous functions of K8 in ß-cells, mice with targeted deletion of ß-cell K8 (K8flox/flox; Ins-Cre) were analyzed for islet morphology, ultrastructure and integrity, as well as blood glucose regulation and streptozotocin (STZ)-induced diabetes development. Glucose transporter 2 (GLUT2) localization was studied in ß-cells in vivo and in MIN6 cells with intact or disrupted K8/K18 filaments. Loss of ß-cell K8 leads to a major reduction in K18. Islets without ß-cell K8 are more fragile and these ß-cells display disjointed plasma membrane organization with less membranous E-cadherin and smaller mitochondria, with diffuse cristae. Lack of ß-cell K8 also leads to a reduced glucose stimulated insulin secretion response in vivo, despite undisturbed systemic blood glucose regulation. K8flox/flox; Ins-Cre mice have a decreased sensitivity to STZ compared to K8 wild-type mice, which is in line with decreased membranous GLUT2 expression observed in vivo, as GLUT2 is required for STZ uptake in ß-cells. In vitro, MIN6 cell plasma membrane GLUT2 is rescued in cells overexpressing K8/K18 filaments, but mistargeted in cells with disrupted K8/K18 filaments. ß-cell K8 is required for islet and ß-cell structural integrity, normal mitochondrial morphology and GLUT2 plasma membrane targeting, and has implications on STZ sensitivity as well as systemic insulin responses.

15.
Front Immunol ; 15: 1391504, 2024.
Article in English | MEDLINE | ID: mdl-38887292

ABSTRACT

Diabetes is a prevalent chronic disease that traditionally requires severe reliance on medication for treatment. Oral medication and exogenous insulin can only temporarily maintain blood glucose levels and do not cure the disease. Most patients need life-long injections of exogenous insulin. In recent years, advances in islet transplantation have significantly advanced the treatment of diabetes, allowing patients to discontinue exogenous insulin and avoid complications.Long-term follow-up results from recent reports on islet transplantation suggest that they provide significant therapeutic benefit although patients still require immunotherapy, suggesting the importance of future transplantation strategies. Although organ shortage remains the primary obstacle for the development of islet transplantation, new sources of islet cells, such as stem cells and porcine islet cells, have been proposed, and are gradually being incorporated into clinical research. Further research on new transplantation sites, such as the subcutaneous space and mesenteric fat, may eventually replace the traditional portal vein intra-islet cell infusion. Additionally, the immunological rejection reaction in islet transplantation will be resolved through the combined application of immunosuppressant agents, islet encapsulation technology, and the most promising mesenchymal stem cells/regulatory T cell and islet cell combined transplantation cell therapy. This review summarizes the progress achieved in islet transplantation, and discusses the research progress and potential solutions to the challenges faced.


Subject(s)
Islets of Langerhans Transplantation , Islets of Langerhans Transplantation/methods , Humans , Animals , Graft Rejection/immunology , Graft Rejection/prevention & control , Diabetes Mellitus, Type 1/therapy , Diabetes Mellitus, Type 1/surgery , Diabetes Mellitus, Type 1/immunology
16.
Front Immunol ; 15: 1345494, 2024.
Article in English | MEDLINE | ID: mdl-38915393

ABSTRACT

Background: Type 1 diabetes (T1D) is preceded by a heterogenous pre-clinical phase, islet autoimmunity (IA). We aimed to identify pre vs. post-IA seroconversion (SV) changes in DNAm that differed across three IA progression phenotypes, those who lose autoantibodies (reverters), progress to clinical T1D (progressors), or maintain autoantibody levels (maintainers). Methods: This epigenome-wide association study (EWAS) included longitudinal DNAm measurements in blood (Illumina 450K and EPIC) from participants in Diabetes Autoimmunity Study in the Young (DAISY) who developed IA, one or more islet autoantibodies on at least two consecutive visits. We compared reverters - individuals who sero-reverted, negative for all autoantibodies on at least two consecutive visits and did not develop T1D (n=41); maintainers - continued to test positive for autoantibodies but did not develop T1D (n=60); progressors - developed clinical T1D (n=42). DNAm data were measured before (pre-SV visit) and after IA (post-SV visit). Linear mixed models were used to test for differences in pre- vs post-SV changes in DNAm across the three groups. Linear mixed models were also used to test for group differences in average DNAm. Cell proportions, age, and sex were adjusted for in all models. Median follow-up across all participants was 15.5 yrs. (interquartile range (IQR): 10.8-18.7). Results: The median age at the pre-SV visit was 2.2 yrs. (IQR: 0.8-5.3) in progressors, compared to 6.0 yrs. (IQR: 1.3-8.4) in reverters, and 5.7 yrs. (IQR: 1.4-9.7) in maintainers. Median time between the visits was similar in reverters 1.4 yrs. (IQR: 1-1.9), maintainers 1.3 yrs. (IQR: 1.0-2.0), and progressors 1.8 yrs. (IQR: 1.0-2.0). Changes in DNAm, pre- vs post-SV, differed across the groups at one site (cg16066195) and 11 regions. Average DNAm (mean of pre- and post-SV) differed across 22 regions. Conclusion: Differentially changing DNAm regions were located in genomic areas related to beta cell function, immune cell differentiation, and immune cell function.


Subject(s)
Autoantibodies , Autoimmunity , DNA Methylation , Diabetes Mellitus, Type 1 , Disease Progression , Islets of Langerhans , Humans , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/genetics , Female , Male , Autoimmunity/genetics , Islets of Langerhans/immunology , Autoantibodies/blood , Autoantibodies/immunology , Child , Adolescent , Longitudinal Studies , Child, Preschool , Genome-Wide Association Study , Epigenesis, Genetic
17.
Clinics (Sao Paulo) ; 79: 100392, 2024.
Article in English | MEDLINE | ID: mdl-38908048

ABSTRACT

BACKGROUND: This study explored the correlation between pancreatic islet α cell function, as reflected by the plasma glucagon levels, and Diabetic Peripheral Neuropathy (DPN) in patients with Type 2 Diabetes Mellitus (T2DM). METHODS: A total of 358 patients with T2DM were retrospectively enrolled in this study and divided into the Non-DPN (NDPN) group (n = 220) and the DPN group (n = 138). All patients underwent an oral glucose tolerance test to detect levels of blood glucose, insulin and glucagon, and the Area Under the Curve (AUC) for Glucagon (AUCglu) was used to estimate the overall glucagon level. The Peripheral Nerve Conduction Velocity (PNCV), Amplitude (PNCA) and Latency (PNCL) were obtained with electromyography, and their Z scores were calculated. RESULTS: There were significant differences regarding the age, disease duration, serum levels of alanine aminotransferase, aspartate aminotransferase, urea nitrogen, high-density lipoprotein, and 2h-C peptide between these two groups (p < 0.05). The NDPN group had higher glucagon levels at 30, 60 and 120 min and AUCglu (p < 0.05). The Z-scores of PNCV and PNCA showed an increasing trend (p < 0.05), while the Z-score of PNCL showed a decreasing trend (p < 0.05). The glucagon levels were positively correlated with PNCV and PNCA, but negatively correlated with PNCL, with Gluca30min having the strongest correlation (p < 0.05). Gluca30min was independently related to PNCV, PNCL, PNCA and DPN, respectively (p < 0.05). The function of pancreatic α islet cells, as reflected by the plasma glucagon level, is closely related to the occurrence of DPN in T2DM patients. CONCLUSION: Gluca30min may be a potentially valuable independent predictor for the occurrence of DPN.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Glucagon , Glucose Tolerance Test , Neural Conduction , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/physiopathology , Male , Middle Aged , Female , Diabetic Neuropathies/blood , Diabetic Neuropathies/physiopathology , Diabetic Neuropathies/etiology , Glucagon/blood , Retrospective Studies , Blood Glucose/analysis , Neural Conduction/physiology , Aged , Adult , Electromyography , Glucagon-Secreting Cells , Insulin/blood , Area Under Curve , Time Factors , Reference Values
18.
Virchows Arch ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922355

ABSTRACT

The presence of remaining insulin-positive cells in type 1 diabetes (T1D) is well-known. These cells are part of islets or appear as extra-islet insulin-positive cells scattered in the exocrine parenchyma. The latter are poorly described, and the presence of scattered endocrine cells expressing other islet hormones than insulin has not been explored. This study aimed to compare the extra-islet insulin- or glucagon-positive cells concerning their frequency, transcription-factor expression, and mitotic activity in subjects with and without T1D. Multispectral imaging was used to examine extra-islet cells by staining for insulin, glucagon, ARX, PDX1, and Ki67. This was done in well-preserved pancreatic tissue obtained from heart-beating organ donors with or without T1D. In three T1D donors, lobes with insulin-containing islets (ICI) were found. Within these, a higher frequency of extra-islet insulin-positive cells was observed compared to lobes with insulin-deficient islets (IDI). Increased frequency of glucagon-positive extra-islet cells was observed in donors with T1D (median 53 cells/mm2) when compared with non-diabetic donors (11 cells/mm2, p = 0.004). Proliferating endocrine cells were present in donors with, and without T1D, as demonstrated by Ki67-positive staining (0-3% of the cells expressing insulin or glucagon). The reduced frequency of extra-islet insulin-positive cells in lobes with IDI in donors with T1D suggests that the pathological mechanism causing beta cell demise in T1D affects entire lobes. The presence of an increased frequency of glucagon-positive extra-islet cells supports the notion of a preserved capacity to regenerate the endocrine pancreas in donors with T1D.

19.
Front Endocrinol (Lausanne) ; 15: 1427723, 2024.
Article in English | MEDLINE | ID: mdl-38904049

ABSTRACT

The pathogeneses of type 1 and type 2 diabetes involve the progressive loss of functional beta cell mass, primarily attributed to cellular demise and/or dedifferentiation. While the scientific community has devoted significant attention to unraveling beta cell dedifferentiation in type 2 diabetes, its significance in type 1 diabetes remains relatively unexplored. This perspective article critically analyzes the existing evidence for beta cell dedifferentiation in type 1 diabetes, emphasizing its potential to reduce beta cell autoimmunity. Drawing from recent advancements in both human studies and animal models, we present beta cell identity as a promising target for managing type 1 diabetes. We posit that a better understanding of the mechanisms of beta cell dedifferentiation in type 1 diabetes is key to pioneering interventions that balance beta cell function and immunogenicity.


Subject(s)
Cell Dedifferentiation , Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Animals , Humans , Autoimmunity , Cell Dedifferentiation/physiology , Diabetes Mellitus, Type 1/pathology , Insulin-Secreting Cells/pathology , Insulin-Secreting Cells/physiology
20.
Surg Endosc ; 38(7): 3948-3956, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38844730

ABSTRACT

INTRODUCTION: Total pancreatectomy with islet autotransplantation (TPIAT) treats refractory pain in chronic pancreatitis, prevents episodes of acute exacerbation, and mitigates postoperative brittle diabetes. The minimally invasive (MIS) approach offers a decreased surgical access trauma and enhanced recovery. Having established a laparoscopic TPIAT program, we adopted a robotic approach (R-TPIAT) and studied patient outcomes compared to open TPIAT. METHODS: Between 2013 and 2021, 61 adult patients underwent TPIAT after a comprehensive evaluation (97% chronic pancreatitis). Pancreatic islets were isolated on-site during the procedure. We analyzed and compared intraoperative surgical and islet characteristics, postoperative morbidity and mortality, and 1-year glycemic outcomes. RESULTS: MIS-TPIAT was performed in 41 patients (67%, 15 robotic and 26 laparoscopic), and was associated with a shorter mean length of intensive care unit stay compared to open TPIAT (2.9 vs 4.5 days, p = 0.002). R-TPIAT replaced laparoscopic TPIAT in 2017 as the MIS approach of choice and demonstrated decreased blood loss compared to open TPIAT (324 vs 843 mL, p = 0.004), similar operative time (609 vs 562 min), 30-day readmission rate (7% vs 15%), and 90-day complication rate (13% vs 20%). The glycemic outcomes including C-peptide detection at 1-year (73% vs 88%) and insulin dependence at 1-year (75% vs 92%) did not differ. The mean length of hospital stay after R-TPIAT was 8.6 days, shorter than for laparoscopic (11.5 days, p = 0.031) and open TPIAT (12.6 days, p = 0.017). Both MIS approaches had a 1-year mortality rate of 0%. CONCLUSIONS: R-TPIAT was associated with a 33% reduction in length of hospital stay (4-day benefit) compared to open TPIAT. R-TPIAT was similar to open TPIAT on measures of feasibility, safety, pain control, and 1-year glycemic outcomes. Our data suggest that robotic technology, a new component in the multidisciplinary therapy of TPIAT, is poised to develop into the primary surgical approach for experienced pancreatic surgeons.


Subject(s)
Islets of Langerhans Transplantation , Pancreatectomy , Pancreatitis, Chronic , Robotic Surgical Procedures , Transplantation, Autologous , Humans , Pancreatitis, Chronic/surgery , Robotic Surgical Procedures/methods , Islets of Langerhans Transplantation/methods , Male , Female , Pancreatectomy/methods , Middle Aged , Adult , Laparoscopy/methods , Length of Stay/statistics & numerical data , Retrospective Studies , Operative Time , Treatment Outcome , Minimally Invasive Surgical Procedures/methods , Postoperative Complications/epidemiology , Postoperative Complications/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...