Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 228
Filter
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124557, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38830332

ABSTRACT

The photophysical properties of conformationally flexible (TPA-C) and partially rigidified (Cz-C) triarylamine acids were explored in solid as well as solution state and correlated with the structure. TPA-C and Cz-C exhibited moderate solid-state fluorescence (Φf = 6.2 % (TPA-C) and 5.6 % (Cz-C)) and self-reversible mechanofluorochromism. TPA-C produced fluorescent polymorphs (TPA-C-1 and TPA-C-2) with tunable fluorescence. TPA-C-1 showed unusual carboxylic acid intermolecular interactions whereas TPA-C-2 and Cz-C showed usual carboxylic acid dimer. TPA-C exhibited strong solvent polarity dependent tunable fluorescence (Φf = 0.01 to 0.11 compared to quinine sulphate standard) but Cz-C was non-emissive in the solution state. The dual emissive TPA-C showed highly sensitive fluorescence changes in organic solvents (CH3CN, THF, DMF, EtOH) when trace amount of water was added. In CH3CN, TPA-C showed weak fluorescence at 474 nm and addition of water (1 %) exhibited significant blue shift (λmax = 416 nm). The fluorescence intensity was gradually decreased with blue shifting in DMF, THF and EtOH with water addition. Importantly, TPA-C showed drastically different fluorescence in n-propanol (n-PA) and iso-propanol (IPA). TPA-C in n-PA showed fluorescence at 408 nm that was clearly red shifted to 438 nm with 0.1 % addition of IPA. The limit of detection (LOD) of water in CH3CN, DMF, THF and EtOH by TPA-C revealed 0.02, 0.7, 0.08 and 0.77 %, respectively. The LOD of IPA sensing in n-PA is 0.05 % and indicated the very efficient sensing and distinguishing propanol isomers. Thus, simple triphenylamine acid showed excellent water sensing and propanol isomers discrimination that could be attributed to the twisted intramolecular charge transfer (TICT) formation.

2.
ACS Appl Mater Interfaces ; 16(21): 27560-27565, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38757777

ABSTRACT

A direct soft imprint lithography was proposed to realize the direct fabrication of residue-free, well-shaped functional patterns through a single step. This imprint method requires only a simply prepared isopropanol-treated polydimethylsiloxane (PDMS) stamp without any additional resists. Residue-free Ag patterns were successfully fabricated on different substrates by directly imprinting the Ag ink with the isopropanol-treated PDMS stamp. Furthermore, the coffee-ring effect of the imprinting Ag patterns can be eliminated by optimizing the imprinting time, isopropanol-treating time, and imprinting temperatures. Studies show that the residual Ag ink in the contact region can be absorbed by the isopropanol-treated PDMS stamp due to the "like dissolves like" principle. Finally, this method was employed to fabricate the Ag electrodes for the thin-film transistors, attaining a mobility of ∼8 cm2 V-1 s-1, which is comparable to those with vacuum-processed electrodes. This process provides a simple, low-cost, residue-free, coffee-ring-free, and fast patterning method in the field of microelectronics.

3.
Food Chem (Oxf) ; 8: 100201, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38577346

ABSTRACT

The objective of this study was to develop a DNA-based method for the identification and tracking of edible oils, which is important for health management. Three different DNA extraction methods (CTAB, MBST kit, and manual hexane-based method) were used to obtain high-purity DNA from crude and refined soybean, maize, and canola oils. PCR was then conducted using specific primers to identify the presence of genes related to each oil type and to assess transgenicity. The results showed that DNA was present in crude and refined oils, but in very low amounts. However, using method 3 for DNA extraction provided sufficient quantity and quality of DNA for successful PCR amplification. The study concluded that the main challenge in DNA extraction from oils is the presence of PCR inhibitors, which can be overcome using the manual hexane-based method. Also, the examination of protein presence in the oils using SDS-PAGE did not indicate any protein bands.

4.
Talanta ; 275: 126115, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38663068

ABSTRACT

High-quality DNA is an important guarantee to start downstream experiments in many biological and medical research areas. Magnetic particle-based DNA extraction methods from blood mainly depend on electrostatic adsorption in a low-pH environment. However, the strong acidic environment can influence the DNA stability. Herein, a polydopamine-functionalized magnetic particle (PDA@Fe3O4)-based protocol was developed for DNA extraction from whole blood samples. In the protocol, Mg2+ and Ca2+ were utilized to bridge the adsorption of DNA by PDA@Fe3O4 via the metal-mediated coordination. Isopropanol was found to efficiently promote DNA adsorption by triggering the change of the conformation of DNA from B-form to more compact A-form. In 50 % isopropanol solution, the DNA adsorption efficiency was nearly 100 % in the presence of 0.5 mM Ca2+ or 1.5 mM Mg2+. The role of metal ions and isopropanol in DNA adsorption was explored. The protocol averts the strong acidic environment and PCR inhibitors, such as high concentrations of salt or polyethylene glycol. It demonstrates superiority in DNA yield (59.13 ± 3.63 ng µL-1) over the commercial kit (27.33 ± 4.98 ng µL-1) and phenol-chloroform methods (37.90 ± 0.47 ng µL-1). In addition, to simplify the operastion, an automated nucleic acid extraction device was designed and fabricated to extract whole genomic DNA from blood. The feasibility of the device was verified by extracting DNA from cattle and pig blood samples. The extracted DNA was successfully applied to discriminate the beef authenticity by a duplex PCR system. The results demonstrate that the DNA extraction protocol and the automated device have great potential in blood samples.


Subject(s)
2-Propanol , DNA , Indoles , Polymers , Polymers/chemistry , 2-Propanol/chemistry , DNA/chemistry , DNA/isolation & purification , DNA/blood , Indoles/chemistry , Adsorption , Magnesium/chemistry , Animals , Calcium/chemistry , Calcium/blood , Cattle , Magnetite Nanoparticles/chemistry
5.
Chemosphere ; 356: 141869, 2024 May.
Article in English | MEDLINE | ID: mdl-38575081

ABSTRACT

This study evaluates the repurposing of expired isopropanol (IPA) COVID-19 disinfectant (64% w/w) to pretreat algal biomass for enhancing methane (CH4) yield. The impact of harvesting methods (centrifugation and polymer flocculation) and microwave pretreatment on CH4 production from Scenedesmus sp. microalgal biomass were also investigated. Results show minimal impact of harvesting methods on the CH4 yield, with wet centrifuged and polymer-harvested biomass exhibiting comparable and low CH4 production at 66 and 74 L/kgvolatile solid, respectively. However, microalgae drying significantly increased CH4 yield compared to wet biomass, attributed to cell shrinkage and enhanced digestibility. Consequently, microwave and IPA pretreatment significantly enhanced CH4 production when applied to dried microalgae, yielding a 135% and 212% increase, respectively, compared to non-pretreated wet biomass. These findings underscore the advantage of using dried Scenedesmus sp. over wet biomass and highlight the synergistic effect of combining oven drying with IPA treatment to boost CH4 production whilst reducing COVID-19 waste.


Subject(s)
Biomass , COVID-19 , Disinfectants , Methane , Scenedesmus , Scenedesmus/drug effects , Disinfectants/pharmacology , Methane/metabolism , COVID-19/prevention & control , Microalgae/drug effects , Polymers/chemistry , Polymers/pharmacology , 2-Propanol/pharmacology , 2-Propanol/chemistry , SARS-CoV-2/drug effects
6.
Biotechnol Biofuels Bioprod ; 17(1): 13, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38281982

ABSTRACT

BACKGROUND: Isopropanol (IPA) is a commodity chemical used as a solvent or raw material for polymeric products, such as plastics. Currently, IPA production depends largely on high-CO2-emission petrochemical methods that are not sustainable. Therefore, alternative low-CO2 emission methods are required. IPA bioproduction using biomass or waste gas is a promising method. RESULTS: Moorella thermoacetica, a thermophilic acetogenic microorganism, was genetically engineered to produce IPA. A metabolic pathway related to acetone reduction was selected, and acetone conversion to IPA was achieved via the heterologous expression of secondary alcohol dehydrogenase (sadh) in the thermophilic bacterium. sadh-expressing strains were combined with acetone-producing strains, to obtain an IPA-producing strain. The strain produced IPA as a major product using hexose and pentose sugars as substrates (81% mol-IPA/mol-sugar). Furthermore, IPA was produced from CO, whereas acetate was an abundant byproduct. Fermentation using syngas containing both CO and H2 resulted in higher IPA production at the specific rate of 0.03 h-1. The supply of reducing power for acetone conversion from the gaseous substrates was examined by supplementing acetone to the culture, and the continuous and rapid conversion of acetone to IPA showed a sufficient supply of NADPH for Sadh. CONCLUSIONS: The successful engineering of M. thermoacetica resulted in high IPA production from sugars. M. thermoacetica metabolism showed a high capacity for acetone conversion to IPA in the gaseous substrates, indicating acetone production as the bottleneck in IPA production for further improving the strain. This study provides a platform for IPA production via the metabolic engineering of thermophilic acetogens.

7.
Chemphyschem ; 25(1): e202300018, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37903732

ABSTRACT

The dehydrogenation and dehydration of isopropanol on the SrO and TiO2 terminated surfaces, of the SrTiO3 perovskite, is addressed by periodic DFT calculations in order to shed light on the involved mechanisms. The results show that the dehydrogenation occurs through a mechanism involving the dissociative adsorption of the alcohol on the SrO terminated surface, followed the nucleophilic attack of a hydride species on the previously adsorbed hydrogen atom to form molecular hydrogen and the corresponding carbonyl compound. The dehydration instead occurs by the molecular adsorption of the alcohol on the TiO2 terminated surface, followed by various possible E1 elimination pathways leading to the formation of the corresponding alkene and a water molecule. The article reports a thorough study on the involved mechanisms, including identification of the transition states and intermediates along the reaction paths, and evaluation of the respective activation barriers, as well. Thus, this article provides significant insights about the mechanisms of dehydrogenation and dehydration of isopropanol on the SrTiO3 , not reported earlier in literature. The calculated barrier energies are in good agreement with experimental values.

8.
AAPS J ; 26(1): 7, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38114792

ABSTRACT

The FDA initiated a cross-sectional, statistically based sampling and testing study to characterize the quality of marketed alcohol-based hand sanitizer (ABHS) by evaluating the alcohol content and impurities present in ABHS products manufactured by establishments that registered with the FDA during March-April 2020. A stratified sampling design divided the population of manufacturers into independent groups based on each establishment's level of experience with FDA oversight and its geographic location. ABHS products were collected and analyzed by spatially offset Raman spectroscopy and gas chromatography with mass spectrometry (GC-MS). The GC-MS results for 310 products, from 196 newly registered domestic manufacturers, showed that 71.6% (± 5.7%) of these manufacturers had violative products. In 104 (33.5%) cases, the alcohol content did not meet label claim assay specifications but still fell within CDC efficacy ranges. Ethanol ABHS products failed more often overall (assay and impurities) (84.3%) and for impurities (84.3%), than isopropanol ABHS products (11.2% and 6.2%, respectively). Differences in test results across active ingredients were statistically significant. Ethanol ABHS products often (63.5% of cases) failed due to the presence of acetal or acetaldehyde, particularly in products with pH ≤ 6. Other impurities were also detected in several ABHS products, suggesting the use of low-grade alcohol in the manufacture of these products. Evidence was insufficient to conclude that having experience manufacturing FDA-regulated products, or lack thereof, influenced product-level violative results. This study highlights the importance of sourcing and testing active pharmaceutical ingredients to produce quality drug products.


Subject(s)
COVID-19 , Hand Sanitizers , Humans , Hand Sanitizers/chemistry , Cross-Sectional Studies , Ethanol , Acetaldehyde
9.
Bioengineering (Basel) ; 10(12)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38135972

ABSTRACT

The depletion of fossil fuel resources and the CO2 emissions coupled with petroleum-based industrial processes present a relevant issue for the whole of society. An alternative to the fossil-based production of chemicals is microbial fermentation using acetogens. Acetogenic bacteria are able to metabolize CO or CO2 (+H2) via the Wood-Ljungdahl pathway. As isopropanol is widely used in a variety of industrial branches, it is advantageous to find a fossil-independent production process. In this study, Acetobacterium woodii was employed to produce isopropanol via plasmid-based expression of the enzymes thiolase A, CoA-transferase, acetoacetate decarboxylase and secondary alcohol dehydrogenase. An examination of the enzymes originating from different organisms led to a maximum isopropanol production of 5.64 ± 1.08 mM using CO2 + H2 as the carbon and energy source. To this end, the genes thlA (encoding thiolase A) and ctfA/ctfB (encoding CoA-transferase) of Clostridium scatologenes, adc (encoding acetoacetate decarboxylase) originating from C. acetobutylicum and sadH (encoding secondary alcohol dehydrogenase) of C. beijerinckii DSM 6423 were employed. Since bottlenecks in the isopropanol production pathway are known, optimization of the strain was investigated, resulting in a 2.5-fold increase in isopropanol concentration.

10.
Mol Divers ; 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37935911

ABSTRACT

A series of novel quinazolinone derivatives (E1-E31) containing the 1,2,4-triazole Schiff base moiety and an isopropanol linker were designed, synthesized and assessed as antimicrobial agents in agriculture. All the target compounds were fully characterized by 1 H NMR, 13 C NMR, and high-resolution mass spectrometry (HRMS). Among them, the structure of compound E12 was further confirmed via single crystal X-ray diffraction method. The experimental results indicated that many compounds displayed good in vitro antibacterial efficacies against the tested phytopathogenic bacteria including Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas axonopodis pv. citri (Xac), and Ralstonia solanacearum (Rs). For example, compounds E3, E4, E10, E13, and E22 had EC50 (half-maximal effective concentration) values of 55.4, 39.5, 49.5, 53.5, and 57.4 µg/mL against Xoo, respectively, superior to the commercialized bactericide Bismerthiazol (94.5 µg/mL). In addition, the antibacterial efficacies of compounds E10 and E13 against Xac were about two times more effective than control Bismerthiazol, in terms of their EC50 values. Last, the antifungal assays showed that compounds E22 and E30 had the inhibition rates of 52.7% and 54.6% at 50 µg/mL against Gibberella zeae, respectively, higher than the commercialized fungicide Hymexazol (48.4%).

11.
Foods ; 12(19)2023 Oct 08.
Article in English | MEDLINE | ID: mdl-37835347

ABSTRACT

The use of water-ethanol mixtures in hot pressurized liquid extraction (HPLE) to recover phenolic compounds from agro-industrial waste has been successfully investigated. However, the unresolved challenge of reducing solvent costs associated with the process hinders the scaling of this eco-friendly technology. This study evaluated the use of isopropanol as an alternative, lower-cost solvent for recovering polyphenols from discarded blueberries through the HPLE process. HPLE was carried out using water-isopropanol mixtures (0, 15 and 30%) at 70, 100, and 130 °C. The total polyphenol content (TPC), antioxidant capacity (DPPH and ORAC), glucose and fructose contents, and polyphenol profile of the extracts were determined. HPLE extracts obtained using high isopropanol concentrations (30%) and high temperatures (130 °C) presented the highest TPC (13.57 mg GAE/gdw) and antioxidant capacity (IC50: 9.97 mg/mL, ORAC: 246.47 µmol ET/gdw). Moreover, the use of 30% water-isopropanol resulted in higher yields of polyphenols and removal of reducing sugars compared to atmospheric extraction with water-acetone (60%). The polyphenolic profiles of the extracts showed that flavanols and phenolic acids were more soluble at high concentrations of isopropanol (30%). Contrarily, flavonols and stilbenes were better recovered with 15% isopropanol and pure water. Therefore, isopropanol could be a promising solvent for the selective recovery of different bioactive compounds from discarded blueberries and other agro-industrial residues.

12.
Front Bioeng Biotechnol ; 11: 1218099, 2023.
Article in English | MEDLINE | ID: mdl-37397966

ABSTRACT

The use of environmentally damaging petrochemical feedstocks can be displaced by fermentation processes based on engineered microbial chassis that recycle biomass-derived carbon into chemicals and fuels. The stable retention of introduced genes, designed to extend product range and/or increase productivity, is essential. Accordingly, we have created multiply marked auxotrophic strains of Clostridium acetobutylicum that provide distinct loci (pyrE, argH, purD, pheA) at which heterologous genes can be rapidly integrated using allele-coupled exchange (ACE). For each locus, ACE-mediated insertion is conveniently selected on the basis of the restoration of prototrophy on minimal media. The Clostridioides difficile gene (tcdR) encoding an orthogonal sigma factor (TcdR) was integrated at the pyrE locus under the control of the lactose-inducible, bgaR::PbgaL promoter to allow the simultaneous control of genes/operons inserted at other disparate loci (purD and pheA) that had been placed under the control of the PtcdB promoter. In control experiments, dose-dependent expression of a catP reporter gene was observed with increasing lactose concentration. At the highest doses tested (10 mM) the level of expression was over 10-fold higher than if catP was placed directly under the control of bgaR::PbgaL and over 2-fold greater than achieved using the strong Pfdx promoter of the Clostridium sporogenes ferredoxin gene. The utility of the system was demonstrated in the production of isopropanol by the C. acetobutylicum strain carrying an integrated copy of tcdR following the insertion of a synthetic acetone operon (ctfA/B, adc) at the purD locus and a gene (sadh) encoding a secondary dehydrogenase at pheA. Lactose induction (10 mM) resulted in the production of 4.4 g/L isopropanol and 19.8 g/L Isopropanol-Butanol-Ethanol mixture.

13.
MethodsX ; 11: 102274, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37484519

ABSTRACT

Since the beginning of the COVID-19 pandemic, the use and manufacture of alcohol-based hand sanitizers increased exponentially. Efficacy of hand sanitizers mainly depends on active ingredients like ethanol and isopropanol (IPA). Even though methanol is extremely hazardous to people, it is still illegally used in hand sanitizers in Bangladesh. Developing a quick and simple analytical method for detecting and quantifying ethanol/IPA/methanol is crucial. Here, Fourier transform infrared spectroscopy (FTIR) was used to identify and quantify alcohol content in commercially available hand sanitizers in a quick and easy way. Comparing the FTIR and GC data, provided quite similar results. Unlike previous studies by FTIR, C-H, CH3-C-CH3 stretching, and C-H bending vibrational modes were employed to construct analytical calibration curves to detect and quantify alcohol in hand sanitizers. According to FTIR and GC findings, ethanol and IPA content were found to be 43-82% and 40-69%, and 56-64% and 61-66%, respectively, whereas ethanol was labeled at 66-80% and IPA at 65-70%. FTIR and GC revealed methanol content ranging from 37 to 98 and 19 to 81%, respectively. Also, the FTIR was significantly faster than the GC. Therefore, FTIR can be used to commercially analyze the quality of hand sanitizers.•FTIR was used to identify and quantify alcohol content in commercially available hand sanitizers in a quick and easy way.•Comparing the FTIR and GC data, provided quite similar results.•Out of ten samples, five contained ethanol, three IPA, and two methanol.

14.
Sci Total Environ ; 896: 165053, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37348732

ABSTRACT

Large amounts of waste isopropanol (IPA) are generated in industry, rendering the recovery of IPA highly desirable due to the economic and environmental benefits. Because it forms an azeotropic mixture with water, IPA is difficult to separate from the waste stream. In the present work, a novel CO2-switchable monoethanolamine-butanol deep eutectic solvent (DES) ([MEA][BuOH]) was identified as a superior medium for separating IPA and water at ambient temperature by forming butanol-IPA mixtures. The switchable solvent system combines the advantages of homogeneous and heterogeneous systems, i.e., rapid mixing due to the low mass transfer limitations and facile product separation, respectively. The low viscosity of [MEA][BuOH], the similar physical features (polarity, dipole moment, and dielectric constant) of butanol and IPA, and the H-bonding interactions of [BuOH] with IPA are thought to enable effective IPA capture from water by the butanol. Recovery of the IPA and formation of a butanol-IPA mixture is appealing because the resultant mixture could serve as an additive or substitute for alternative fuels. The results suggest that the developed process will provide a low-cost, energy-saving, effective, and environmentally benign route to recycling and repurposing waste IPA, an environmental hazard, as a potential alternative fuel.

15.
J Colloid Interface Sci ; 646: 254-264, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37196499

ABSTRACT

Photocatalysis provides a new way for synchronous H2 production and organic synthesis at normal temperature and pressure, usually, water and organic substrate function as sources of hydrogen protons and organic products, which are complex and limited by two half-reactions. Employing alcohols as reaction substrates to simultaneously produce H2 and valuable organics in a redox cycle is worthy studying, to which catalyst design at atomic level holds the key. In this paper, Co elements doped Cu3P (CoCuP) quantum dots (QDs) are prepared and coupled with ZnIn2S4 (ZIS) nanosheets to form a 0D/2D p-n nanojunction which can effectively boost aliphatic and aromatic alcohols activation to simultaneously produce H2 and corresponding ketones (or aldehydes). The optimal CoCuP/ZIS composite demonstrated the highest activity for dehydrogenation of isopropanol to acetone (17.77 mmol⋅g-1⋅h-1) and H2 (26.8 mmol⋅g-1⋅h-1), which was 2.40 and 1.63 times higher than that of Cu3P/ZIS composite, respectively. Mechanistic investigations revealed that such high-performance originated from the accelerated electron transfer of the formed p-n junction and the thermodynamic optimization caused by the Co dopant which was the active site of oxydehydrogenation as a prerequisite step for isopropanol oxidation over the surface of the CoCuP/ZIS composite. Besides that, coupling of the CoCuP QDs can lower the dehydrogenation activation energy of isopropanol to form a key radical intermediate of (CH3)2CHO* for improving the activity of simultaneous production of H2 and acetone. This strategy provides an overall reaction strategy to obtain two meaningful products (H2 and ketones (or aldehydes)) and deeply explores the integrated redox reaction of alcohol as substrate for high solar-chemical energy conversion.

16.
Heliyon ; 9(5): e15881, 2023 May.
Article in English | MEDLINE | ID: mdl-37215867

ABSTRACT

The leaves of Ailanthus glandulosa were extracted with the Soxhlet apparatus using isopropanol. A new method was used to separate and isolate eleven chemical compounds present in the leaves of bird's tongue. The separation was carried out by column chromatography using displacement solvents (petroleum ether, chloroform, dichloromethane, methanol) and four eluates were obtained. The four eluates were treated with a number of solvents, yielding thirty-four compounds. The chemical content of the mordants was determined using GC/MS technology. The samples tested contained six ester compounds, three aldehyde compounds, three ketone compounds, two alcoholic compounds, eight carboxylic acid compounds, five silicone compounds, five aromatic compounds and one phosphate compound. Eleven compounds were isolated, the most important of which are: 2-naphthoxyacetic acid, 2,6-bis (1,1-dimethylethyl)-4-ethylphenol, 2,5-tert-butylnitrobenzene, 5-hexyl-2-furaldehyde, 16-nitrobicyclo [10.4.0] hexadecan-1-ol-13-one, cyclooctasiloxan hexadecamethyl.

17.
J Biotechnol ; 366: 25-34, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36870479

ABSTRACT

Strain robustness during production of recombinant molecules is of major interest to ensure bioprocess profitability. The heterogeneity of populations has been shown in the literature as a source of instability in bioprocesses. Thus, the heterogeneity of the population was studied by evaluating the robustness of the strains (stability of plasmid expression, cultivability, membrane integrity and macroscopic cell behavior) during well-controlled fedbatch cultures. On the context of microbial production of chemical molecules, isopropanol (IPA) has been produced by recombinant strains of Cupriavidus necator. Plasmid stability was monitored by the plate count method to assess the impact of isopropanol production on plasmid stability, depending on implanted plasmid stabilization systems for strain engineering designs. With the reference strain Re2133/pEG7c, an isopropanol titer of 15.1 g·L-1 could be achieved. When the isopropanol concentration has reached about 8 g. L-1, cell permeability increased (up to 25 %) and plasmid stability decreased significantly (up to 1.5 decimal reduction rate) resulting in decreased isopropanol production rates. Bioprocess robustness under isopropanol producing conditions was then investigated with two plasmid construction strategies (1) Post Segregational Killing hok/sok (in Re2133/pEG20) and (2) expression of GroESL chaperon proteins (in Re2133/pEG23). Plasmid stability for strain Re2133/pEG20 (PSK hok/sok) appears to be improved up to 11 g. L-1 of IPA compared to the reference strain (8 g. L-1 IPA). Nevertheless, cell permeability followed the same dynamic as the reference strain with a drastic increase around 8 g. L-1 IPA. On the contrary, the Re2133/pEG23 strain made it possible to minimize the cell permeability (with a constant value at 5 % IP permeability) and to increase the growth capacities in response to increased isopropanol concentrations but plasmid stability was the weakest. The metabolic burden, linked to either the overexpression of GroESL chaperones or the PSK hok/sok system, seems to be deleterious for the overall isopropanol production compared to the reference strain (RE2133/pEG7c) even if we have shown that the overexpression chaperones GroESL improve membrane integrity and PSK system hok/sok improve plasmid stability as long as isopropanol concentration does not exceed 11 g L- 1.


Subject(s)
2-Propanol , Escherichia coli , 2-Propanol/metabolism , Escherichia coli/genetics , RNA, Bacterial/metabolism , Plasmids/genetics , Bioreactors
18.
Small ; 19(25): e2300388, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36932943

ABSTRACT

Metallene with outstanding physicochemical properties is an efficient two-dimensional electrocatalysts for sustainable hydrogen (H2 ) production applications. However, the controllable fabrication of extended atomically thin metallene nanoribbons remains a formidable challenge. Herein, this work proposes a controllable preparation strategy for atomically thin defect-rich PdIr bimetallene nanoribbons (PdIr BNRs) with a thickness of only 1.5 nm for the efficient and stable isopropanol-assisted seawater electrolytic H2 production. When using PdIr BNRs as catalyst to build an isopropanol-assisted seawater electrolysis system, a voltage of only 0.38 V is required at @10 mA cm-2 to achieve energy-saving H2 production, while producing high value-added acetone at the anode. The aberration-corrected high-resolution transmission electron microscopy (HRTEM) clearly reveals that the PdIr BNRs possess abundant structural defects, which can additionally serve as highly catalytically active sites. Density functional theory (DFT) calculations combined with X-ray absorption spectroscopy studies reveal that the introduction of Ir atoms can induce the formation of a localized charge region and shift the d-band center of Pd down, thereby reducing the adsorption energy on the catalyst in favor of the rapid desorption of H2 . This work opens the way for the controllable design and construction of defect-rich atomically thin metallene nanoribbons for efficient electrocatalytic applications.

19.
mSystems ; 8(2): e0127422, 2023 04 27.
Article in English | MEDLINE | ID: mdl-36971551

ABSTRACT

Rational engineering of gas-fermenting bacteria for high yields of bioproducts is vital for a sustainable bioeconomy. It will allow the microbial chassis to renewably valorize natural resources from carbon oxides, hydrogen, and/or lignocellulosic feedstocks more efficiently. To date, rational design of gas-fermenting bacteria such as changing the expression levels of individual enzymes to obtain the desired pathway flux is challenging, because pathway design must follow a verifiable metabolic blueprint indicating where interventions should be executed. Based on recent advances in constraint-based thermodynamic and kinetic models, we identify key enzymes in the gas-fermenting acetogen Clostridium ljungdahlii that correlate with the production of isopropanol. To this extent, we integrated a metabolic model in comparison with proteomics measurements and quantified the uncertainty for a variety of pathway targets needed to improve the bioproduction of isopropanol. Based on in silico thermodynamic optimization, minimal protein requirement analysis, and ensemble modeling-based robustness analysis, we identified the top two significant flux control sites, i.e., acetoacetyl-coenzyme A (CoA) transferase (AACT) and acetoacetate decarboxylase (AADC), overexpression of which could lead to increased isopropanol production. Our predictions directed iterative pathway construction, which enabled a 2.8-fold increase in isopropanol production compared to the initial version. The engineered strain was further tested under gas-fermenting mixotrophic conditions, where more than 4 g/L isopropanol was produced when CO, CO2, and fructose were provided as the substrates. In a bioreactor environment sparging with CO, CO2, and H2 only, the strain produced 2.4 g/L isopropanol. Our work highlighted that the gas-fermenting chasses can be fine-tuned for high-yield bioproduction by directed and elaborative pathway engineering. IMPORTANCE Highly efficient bioproduction from gaseous substrates (e.g., hydrogen and carbon oxides) will require systematic optimization of the host microbes. To date, the rational redesign of gas-fermenting bacteria is still in its infancy, due in part to the lack of quantitative and precise metabolic knowledge that can direct strain engineering. Here, we provide a case study by engineering isopropanol production in gas-fermenting Clostridium ljungdahlii. We demonstrate that a modeling approach based on the thermodynamic and kinetic analysis at the pathway level can provide actionable insights into strain engineering for optimal bioproduction. This approach may pave the way for iterative microbe redesign for the conversion of renewable gaseous feedstocks.


Subject(s)
2-Propanol , Carbon Dioxide , 2-Propanol/metabolism , Carbon Dioxide/metabolism , Metabolic Engineering , Kinetics , Clostridium/genetics , Gases/metabolism , Hydrogen/metabolism , Thermodynamics
20.
Food Chem X ; 17: 100588, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36845519

ABSTRACT

Bischofia polycarpa seed oil is rich in nutrition and positively affects on human health. We analyzed and compared the chemical compositions, antioxidant activities, and quality characteristics of Bischofia polycarpa seed oils using different solvents and cold-pressing. Hx: Iso (n-hexane/isopropanol, 3:2 v/v) had the highest lipid yield (35.13 %), while Folch (chloroform/methanol, 2:1 v/v) had the highest linolenic acid (50.79 %), LnLnLn (43.42 %), and LnLnL (23.43 %). Tocopherols (2108.99 mg/kg) were extracted most efficiently with Folch, whereas phytosterols (3852.97 mg/kg) and squalene (55.21 mg/kg) were extracted most efficiently with petroleum ether. Although the lower phytosterol was obtained using isopropanol, the polyphenol content (271.34 mg GAE/kg) was significantly higher than other solvents, showing the best antioxidant ability. Additionally, polyphenols were observed to be the most significant factor predicting antioxidant activity from the correlation analysis. The above information can provide a useful reference for manufacturers to obtain satisfactory Bischofia polycarpa seed oil.

SELECTION OF CITATIONS
SEARCH DETAIL
...