Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 286
Filter
Add more filters











Publication year range
1.
Beilstein J Org Chem ; 20: 2270-2279, 2024.
Article in English | MEDLINE | ID: mdl-39286789

ABSTRACT

The utility of bio-isosteres is broad in drug discovery and methodology herein enables the preparation of deuterium-labeled products is the most fundamental of known bio-isosteric replacements. As such we report the use of both [D1]-aldehydes and [D2]-isonitriles across 8 multicomponent reactions (MCRs) to give diverse arrays of deuterated products. A highlight is the synthesis of several FDA-approved calcium channel blockers, selectively deuterated at a t 1/2 limiting metabolic soft-spot via use of [D1]-aldehydes. Surrogate pharmacokinetic analyses of microsomal stability confirm prolongation of t 1/2 of the new deuterated analogs. We also report the first preparation of [D2]-isonitriles from [D3]-formamides via a modified Leuckart-Wallach reaction and their use in an MCR to afford products with [D2]-benzylic positions and likely significantly enhanced metabolic stability, a key parameter for property-based design efforts.

2.
Methods Enzymol ; 704: 259-290, 2024.
Article in English | MEDLINE | ID: mdl-39300650

ABSTRACT

Rieske oxygenases catalyze an exceptionally broad range of discrete types of reactions despite the utilization of a highly conserved quaternary structure and metal cofactor complement. Oxygen activation within this family occurs at a mononuclear FeII site, which is located approximately 12 Å from a one-electron reduced Rieske-type iron-sulfur cluster. Electron transfer from the Rieske cluster to the mononuclear iron site occurs during O2 activation and product formation. A key question is whether all Rieske oxygenase reactions involve the same type of activated oxygen species. This question has been explored using the Rieske oxygenase salicylate 5-hydroxylase, which catalyzes both aromatic hydroxylation of salicylate and aromatic methyl hydroxylation when a methyl substituent is placed in the normal position of aromatic ring hydroxylation. We show here that the combined application of kinetic, biophysical, computational, and isotope effect methods reveals a uniform mechanism for initial O2 activation and substrate attack for both types of reactivity. However, the mechanism diverges during the later phases of the reactions in response to the electronic nature and geometry of the substrates as well as the lifetime of intermediates. Similar factors may be encountered broadly in the Rieske oxygenase family.


Subject(s)
Mixed Function Oxygenases , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/chemistry , Kinetics , Hydroxylation , Oxygen/metabolism , Substrate Specificity , Models, Molecular , Electron Transport Complex III
3.
J Hazard Mater ; 480: 135929, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39321483

ABSTRACT

This study investigates the use of multi-element compound-specific isotope analysis (ME-CSIA) to monitor degradation processes of methoxychlor, a persistent organochlorine insecticide. Laboratory experiments examined the kinetics, release of transformation products, and carbon and chlorine isotope effects during methoxychlor degradation through alkaline hydrolysis, oxidation with alkaline-activated persulfate, and biotic reductive dechlorination. Results showed that hydrolysis and oxidation did not cause significant carbon and chlorine isotope fractionation, indicating that C-H rather than C-Cl bond cleavage was the rate-determining step. Conversely, biotic reductive dechlorination by a field-derived microcosm under strictly anoxic conditions displayed significant carbon (εC = -0.9 ± 0.3 ‰) and chlorine (εCl = -1.9 ± 1.0 ‰) isotope fractionation. Its corresponding calculated dual isotope slope (ΛC/Cl = 0.4 ± 0.1) and apparent kinetic isotope effects (AKIEC = 1.014 ± 0.005 and AKIECl = 1.006 ± 0.003) indicate a C-Cl bond cleavage as the rate-determining step, highlighting the difference with respect to the other studied degradation mechanisms. Changes in the microbial community diversity revealed that families such as Dojkabacteria, Anaerolineaceae, Dysgonomonadaceae, Bacteroidetes vadinHA17, Pseudomonadaceae, and Spirochaetaceae, may be potential agents of methoxychlor reductive dechlorination under anoxic conditions. This study advances the understanding of degradation mechanisms of methoxychlor and improves the ability to track its transformation in contaminated environments, including for the first time an isotopic perspective.

4.
Water Res X ; 24: 100257, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39314825

ABSTRACT

This study explored the impact of varying nitrate to sulfide (N/S) ratios on nitrogen removal efficiency (NRE) in the sulfide-driven autotrophic denitrification and anammox (SDAD-anammox) system. Optimal nitrogen removal was observed at N/S ratios between 1.5 and 2.0. Isotope tracing results showed that the contribution of anammox to nitrogen removal was enhanced with increasing N/S ratios, reaching up to 37 % at the N/S ratio of 2.5. Additionally, complex nitrogen pathways were identified, including dissimilatory nitrate reduction to ammonium (DNRA). Furthermore, isotope tracing was innovatively applied to investigate N2O emissions, demonstrating that higher N/S ratios significantly reduced N2O emissions, with the lowest emissions at N/S ratio of 2.5. Gene expression analysis indicated that nitrogen and sulfide transformation genes decreased with increasing N/S ratios, while anammox-related genes first increased and then decreased, reflecting the system's microbial dynamics. These findings offer insights into nitrogen transformation pathways and N2O production mechanisms in the SDAD-anammox process.

5.
J Inorg Biochem ; 260: 112701, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39173495

ABSTRACT

Human cytochrome P450 CYP17A1 catalyzes the hydroxylation of pregnenolone and progesterone at the C17 position, with subsequent C17-C20 bond scission, to form dehydroepiandrosterone and androstenedione respectively. The first hydroxylation reaction is faster in H2O than in D2O, while the second carbon­carbon bond scission event demonstrates an inverse solvent isotope effect, which is more pronounced for 17-hydroxy pregnenolone. In order to better understand the cause of this difference, we compared the optical absorption spectra of oxygenated CYP17A1 with the four substrates (pregnenolone, progesterone, 17-hydroxy pregnenolone and 17-hydroxy progesterone) in both H2O and D2O. We also studied the temperature-dependent decay of the peroxo-ferric and hydroperoxo-ferric intermediates generated by cryoradiolysis of the corresponding oxygenated heme proteins at 77 K. For both pregnenolone and 17-hydroxypregnenolone, annealing of the peroxo-intermediates was observed at lower temperatures in H2O than in D2O. In contrast, no solvent isotope effect was detected when progesterone or 17-hydroxyprogesterone were used as substrates. These differences are attributed to their different positioning in the P450 active site with respect to the heme bound peroxo (Fe-OO-) moiety, which is in agreement with earlier structural and spectroscopic investigations. Analysis of the samples run in both H2O and in D2O, where 17-hydroxyprogesterone is the substrate, demonstrated significant (∼25%) yield of androstenedione product relative to the oxygenated starting material.


Subject(s)
Pregnenolone , Steroid 17-alpha-Hydroxylase , Steroid 17-alpha-Hydroxylase/metabolism , Steroid 17-alpha-Hydroxylase/chemistry , Humans , Pregnenolone/chemistry , Pregnenolone/metabolism , Progesterone/chemistry , Progesterone/metabolism , Deuterium Oxide/chemistry , Hydroxylation
6.
Chemphyschem ; : e202400487, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38946221

ABSTRACT

Hydrogen isotopic effect, as the key to revealing the origin of Earth's water, arises from the H/D mass difference and quantum dynamics at the transition state of reaction. The ion-molecule charge-exchange reaction between water (H2O/D2O) and argon ion (Ar+) proceeds spontaneously and promptly, where there is no transition-state or intermediate complex. In this energetically resonant process, we find an inverse kinetic isotope effect (KIE) leading to the higher charge transfer rate for D2O, by the velocity map imaging measurements of H2O+/D2O+ products. Using the average dipole orientation capture model, we estimate the orientation angles of C2v axis of H2O/D2O relative to the Ar+ approaching direction and attribute to the difference of stereodynamics. According to the long-distance Landau-Zener charge transfer model, this inverse KIE could be also attributed to the density-of-state difference of molecular bending motion between H2O+ and D2O+ around the resonant charge transfer.

7.
Protein Sci ; 33(7): e5069, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38864740

ABSTRACT

Photoconvertible fluorescent proteins (pcFPs) undergo a slow photochemical transformation when irradiated with blue light. Since their emission is shifted from green to red, pcFPs serve as convenient fusion tags in several cutting-edge biological imaging technologies. Here, a pcFP termed the Least Evolved Ancestor (LEA) was used as a model system to determine the rate-limiting step of photoconversion. Perdeuterated histidine residues were introduced by isotopic enrichment and chromophore content was monitored by absorbance. pH-dependent photoconversion experiments were carried out by exposure to 405-nm light followed by dark equilibration. The loss of green chromophore correlated well with the rise of red, and maximum photoconversion rates were observed at pH 6.5 (0.059 ± 0.001 min-1 for red color acquisition). The loss of green and the rise of red provided deuterium kinetic isotope effects (DKIEs) that were identical within error, 2.9 ± 0.9 and 3.8 ± 0.6, respectively. These data indicate that there is one rate-determining step in the light reactions of photoconversion, and that CH bond cleavage occurs in the transition state of this step. We propose that these reactions are rate-limited on the min time scale by the abstraction of a proton at the His62 beta-carbon. A conformational intermediate such as a twisted or isomerized chromophore is proposed to slowly equilibrate in the dark to generate the red form. Additionally, His62 may shuttle protons to activate Glu211 to serve as a general base, while also facilitating beta-elimination. This idea is supported by a recent X-ray structure of methylated His62.


Subject(s)
Luminescent Proteins , Kinetics , Luminescent Proteins/chemistry , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Hydrogen-Ion Concentration , Photochemical Processes , Red Fluorescent Protein , Histidine/chemistry , Deuterium/chemistry , Light
8.
Int J Mol Sci ; 25(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38928048

ABSTRACT

Olive oil phenols are recognized as molecules with numerous positive health effects, many of which rely on their antioxidative activity, i.e., the ability to transfer hydrogen to radicals. Proton-coupled electron transfer reactions and hydrogen tunneling are ubiquitous in biological systems. Reactions of olive oil phenols, hydroxytyrosol, tyrosol, oleuropein, oleacein, oleocanthal, homovanillyl alcohol, vanillin, and a few phenolic acids with a DPPH• (2,2-diphenyl-1-picrylhydrazyl) radical in a 1,4-dioxane:water = 95:5 or 99:1 v/v solvent mixture were studied through an experimental kinetic analysis and computational chemistry calculations. The highest rate constants corresponding to the highest antioxidative activity are obtained for the ortho-diphenols hydroxytyrosol, oleuropein, and oleacein. The experimentally determined kinetic isotope effects (KIEs) for hydroxytyrosol, homovanillyl alcohol, and caffeic acid reactions are 16.0, 15.4, and 16.7, respectively. Based on these KIEs, thermodynamic activation parameters, and an intrinsic bond orbital (IBO) analysis along the IRC path calculations, we propose a proton-coupled electron transfer mechanism. The average local ionization energy and electron donor Fukui function obtained for the phenolic compounds show that the most reactive electron-donating sites are associated with π electrons above and below the aromatic ring, in support of the IBO analysis and proposed PCET reaction mechanism. Large KIEs and isotopic values of Arrhenius pre-exponential factor AH/AD determined for the hydroxytyrosol, homovanillyl alcohol, and caffeic acid reactions of 0.6, 1.3, and 0.3, respectively, reveal the involvement of hydrogen tunneling in the process.


Subject(s)
Hydrogen , Olive Oil , Phenols , Protons , Olive Oil/chemistry , Hydrogen/chemistry , Phenols/chemistry , Electron Transport , Kinetics , Thermodynamics , Antioxidants/chemistry
9.
J Chromatogr A ; 1730: 465062, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38889581

ABSTRACT

Hydrogen/deuterium (H/D) isotope effects are not unusual in chromatography and such phenomena have been observed in both gas- and liquid-phase separations. Despite the numerous reports on this topic, the understanding of mechanisms and the underlying noncovalent interactions at play remains rather challenging. In our recent study, we reported baseline separation of isotopologoues of some amphetamine (AMP) derivatives on achiral and polysaccharide-based chiral columns, as well as some correlations between the degree of separation of enantiomers and isotopologues on (the same) polysaccharide-based chiral column(s). Following our previous findings on isotope effects in high-performance liquid chromatography, we report herein a comparative study on the isotope effects observed with AMP and methamphetamine (MET). The impact of some pivotal factors such as the number of deuterium atoms part of AMP isotopologues, the structure of its isotopomers, the chemical structure of the achiral and chiral stationary phases used in this study, and the use of methanol- vs acetonitrile-containing mobile phases on the isotope effects was examined and discussed. Quantitative correlations between the observed isotope effects and the enantioselectivity of the chiral columns used are also shortly discussed. Furthermore, considering the chromatographic results as benchmark experimental data, we attempted to elucidate the molecular bases of the observed phenomena using quantum mechanics calculations.


Subject(s)
Amphetamine , Deuterium , Polysaccharides , Chromatography, High Pressure Liquid/methods , Stereoisomerism , Deuterium/chemistry , Amphetamine/chemistry , Amphetamine/isolation & purification , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Methamphetamine/chemistry , Methamphetamine/isolation & purification , Acetonitriles/chemistry , Methanol/chemistry
10.
ChemMedChem ; 19(16): e202400201, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-38740557

ABSTRACT

Deuterated drugs (heavy drugs) have recently been spotlighted as a new modality for small-molecule drugs because the pharmacokinetics of pharmaceutical drugs can be enhanced by replacing C-H bonds with more stable C-D bonds at metabolic positions. Therefore, deuteration methods for drug candidates are a hot topic in medicinal chemistry. Among them, the H/D exchange reaction (direct transformation of C-H bonds to C-D bonds) is a useful and straightforward method for creating novel deuterated target molecules, and over 20 reviews on the synthetic methods related to H/D exchange reactions have been published in recent years. Although various deuterated drug candidates undergo clinical trials, approved deuterated drugs possess CD3 groups in the same molecule. However, less diversification, except for the CD3 group, is a problem for future medicinal chemistry. Recently, we developed various deuterated alkyl (dn-alkyl) sulfonium salts based on the H/D exchange reaction of the corresponding hydrogen form using D2O as an inexpensive deuterium source to introduce CD3, CH3CD2, and ArCH2CD2 groups into drug candidates. This concept summarises recent reviews related to H/D exchange reactions and novel reagents that introduce the CD3 group, and our newly developed electrophilic dn-alkyl reagents are discussed.


Subject(s)
Deuterium , Drug Discovery , Deuterium/chemistry , Sulfonium Compounds/chemistry , Salts/chemistry , Salts/chemical synthesis , Molecular Structure , Indicators and Reagents/chemistry , Humans , Deuterium Exchange Measurement
11.
Proc Natl Acad Sci U S A ; 121(17): e2321616121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38635630

ABSTRACT

Experimental results are presented showing the variation in the relationship between odd isotopes of tin (Sn) in mass-independent fractionation caused by the magnetic isotope effect (MIE), which has previously only been observed for mercury. These results are consistent with the trend predicted from the difference between the magnitudes of nuclear magnetic moments of odd isotopes with a nuclear spin. However, the correlation between odd isotopes in fractionation induced by the MIE for the reaction system used in this study (solvent extraction using a crown ether) was different from that reported for the photochemical reaction of methyltin. This difference between the two reaction systems is consistent with a theoretical prediction that the correlation between odd isotopes in fractionation induced by the MIE is controlled by the relationship between the spin conversion time and radical lifetime. The characteristic changes in the correlation between odd isotopes in fractionation induced by the MIE observed for Sn in this study provide a guideline for quantitatively determining fractionation patterns caused by the MIE for elements that have multiple isotopes with a nuclear spin. These results improve our understanding of the potential impact of the MIE on mass-independent fractionation observed in natural samples, such as meteorites, and analytical artifacts of high-precision isotope analysis for heavy elements.

12.
Isotopes Environ Health Stud ; 60(3): 272-285, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38597681

ABSTRACT

In earlier quantum chemical calculations of isotope effects, chemical species in the liquid phase were generally treated as existing in the gas phase. In recent years, however, advances in computational programs have made it easier for the self-consistent reaction field (SCRF) method to handle chemical species in the liquid phase, and as a result, it has become easier to apply the SCRF method to isotope effect calculations. This paper concerns the scope of application of the DFT-SCRF method to reversible processes for hydrogen isotope enrichment. It is found that the applicability of the method depends on the type of the intermolecular interaction in the liquid phase and the degree of hydrogen isotope effect (separation factor) on which the process is based. When the magnitude of the isotope effect of the separation system is greater than 10-1, the simple SCRF method is fully applicable; when the magnitude is around 10-2, SCRF with a dimer model, in which the monomer is replaced by a dimer, is applicable for the analysis of the liquid phase with relatively strong intermolecular interactions. Anharmonic correction to the separation factor calculated based on harmonic frequencies may be effective to systems with the liquid phase with weak intermolecular interactions.


Subject(s)
Hydrogen , Models, Chemical , Hydrogen/chemistry , Density Functional Theory , Deuterium/chemistry , Deuterium/analysis , Isotopes/chemistry , Isotopes/analysis
13.
Water Res ; 255: 121507, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38537490

ABSTRACT

Additional organics are generally supplemented in the sulfide-driven autotrophic denitrification system to accelerate the denitrification rate and reduce sulfate production. In this study, different concentrations of sodium acetate (NaAc) were added to the sulfide-driven autotrophic denitrification reactor, and the S0 accumulation increased from 7.8% to 100% over a 120-day operation period. Batch experiments revealed a threefold increase in total nitrogen (TN) removal rate at an Ac--C/N ratio of 2.8 compared to a ratio of 0.5. Addition of organic carbon accelerated denitrification rate and nitrite consumption, which shortened the emission time of N2O, but increased the N2O production rate. The lowest N2O emissions were achieved at the Ac--C/N ratio of 1.3. Stable isotope fractionation is a powerful tool for evaluating different reaction pathways, with the 18ε/15ε values in nitrate reduction ranging from 0.5 to 1.0. This study further confirmed that isotope fractionation can reveal denitrifying nutrient types, with the 18ε (isotopic enrichment factor of oxygen)/15ε (isotopic enrichment factor of nitrogen) value approaching 1.0 for autotrophic denitrification and 0.5 for heterotrophic denitrification. Additionally, the 18ε/15ε values can indicate changes in nitrate reductase. There is a positive correlation between the 18ε/15ε values and the abundance of the functional gene napA, and a negative correlation with the abundance of the gene narG. Moreover, 18ε and 15ε were associated with changes in kinetic parameters during nitrate reduction. In summary, the combination of functional gene analysis and isotope fractionation effectively revealed the complexities of mixotrophic denitrification systems, providing insights for optimizing denitrification processes.

14.
Water Res ; 255: 121494, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38552485

ABSTRACT

Contrasting effects of sulfidation on contaminants reduction by zero-valent iron (ZVI) has been reported in literature but the underlying mechanisms remain unclear. Here, under well-controlled conditions, we compared the performance of ZVI and sulfidated ZVI (S-ZVI) toward a series of chlorinated compounds. Results revealed that, although S-ZVI was more reactive than ZVI toward hexachloroethane, pentachloroethane, tetrachloroethylene, and trichloroethene, sulfidation hindered the dechlorination of the other ten tested chlorinated aliphatics by a factor of 1.5-125. Moreover, S-ZVI may lead to an accumulation of toxic partially-dechlorinated products. Analogous to its effects on ZVI reactivity, sulfidation also exerted positive, negligible, or negative effects on the electron efficiency of ZVI. Solvent kinetic isotope effect analysis suggested that direct electron transfer rather than reaction with atomic hydrogen was the dominant reduction mechanism in S-ZVI system. Hence, the sulfidation enhancing effects could be expected only when direct electron transfer is the preferred reduction route for target contaminants. Furthermore, linear free energy relationships analysis indicated one-electron reduction potential could be used to predict the transformation of chlorinated ethanes by S-ZVI, whereas for chlorinated ethenes, their adsorption properties on S-ZVI determined the dechlorination process. All these findings may offer guidance for the decision-making regarding the application of S-ZVI.

15.
Molecules ; 29(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38542900

ABSTRACT

The dynamic mechanisms and intramolecular isotope effects of the Be(1S) + HD (v0 = 2, j0 = 0) → BeH/BeD + H/D reaction are studied at the state-to-state level using the time-dependent wave packet method on a high-quality potential energy surface. This reaction can proceed along the indirect pathway that features a barrier and a deep well or the smooth direct pathway. The reaction probabilities, total and state-resolved integral cross sections, and differential cross sections are analyzed in detail. The calculated dynamics results show that both of the products are mainly formed by the dissociation of a collinear HBeD intermediate when the collision energy is slightly larger than the threshold. As the collision energy increases, the BeH + D channel is dominated by the direct abstraction process, whereas the BeD + H channel mainly follows the complex-forming mechanism.

16.
Beilstein J Org Chem ; 20: 479-496, 2024.
Article in English | MEDLINE | ID: mdl-38440168

ABSTRACT

Kinetic studies on the intramolecular hydroamination of protected variants of 2,2-diphenylpent-4-en-1-amine were carried out under a variety of conditions with cationic gold catalysts supported by phosphine ligands. The impact of ligand on gold, protecting group on nitrogen, and solvent and additive on reaction rates was determined. The most effective reactions utilized more Lewis basic ureas, and more electron-withdrawing phosphines. A DCM/alcohol cooperative effect was quantified, and a continuum of isotope effects was measured with low KIE's in the absence of deuterated alcoholic solvent, increasing to large solvent KIE's when comparing reactions in pure MeOH to those in pure MeOH-d4. The effects are interpreted both within the context of a classic gold π-activation/protodeauration mechanism and a general acid-catalyzed mechanism without intermediate gold alkyls.

17.
ACS Nano ; 18(10): 7444-7454, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38411123

ABSTRACT

We report a strong and structurally sensitive 13C intramolecular conductance isotope effect (CIE) for oligophenyleneimine (OPI) molecular wires connected to Au electrodes. Wires were built from Au surfaces beginning with the formation of 4-aminothiophenol self-assembled monolayers (SAMs) followed by subsequent condensation reactions with 13C-labeled terephthalaldehyde and phenylenediamine; in these monomers the phenylene rings were either completely 13C-labeled or the naturally abundant 12C isotopologues. Alternatively, perdeuterated versions of terephthalaldehyde and phenylenediamine were employed to make 2H(D)-labeled OPI wires. For 13C-isotopologues of short OPI wires (<4 nm) in length where the charge transport mechanism is tunneling, there was no measurable effect, i.e., 13C CIE ≈ 1, where CIE is defined as the ratio of labeled and unlabeled wire resistances, i.e., CIE = Rheavy/Rlight. However, for long OPI wires >4 nm, in which the transport mechanism is polaron hopping, a strong 13C CIE = 4-5 was observed. A much weaker inverse CIE < 1 was evident for the longest D-labeled wires. Importantly, the magnitude of the 13C CIE was sensitive to the number and spacing of 13C-labeled rings, i.e., the CIE was structurally sensitive. The structural sensitivity is intriguing because it may be employed to understand polaron hopping mechanisms and charge localization/delocalization in molecular wires. A preliminary theoretical analysis explored several possible explanations for the CIE, but so far a fully satisfactory explanation has not been identified. Nevertheless, the latest results unambiguously demonstrate structural sensitivity of the heavy atom CIE, offering directions for further utilization of this interesting effect.

18.
Anal Chim Acta ; 1289: 342198, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38245203

ABSTRACT

BACKGROUND: The molecular isotopologues in laser-induced plasma exhibit riddling emission behaviors in terms of wavelength, intensity, and temporal evolution of spectra due to the isotope effect. Although this phenomenon introduces uncertainty to isotope analyses based on molecular spectra, its underlying mechanism remains undisclosed. RESULTS: In this study, laser-induced breakdown spectroscopy (LIBS) is employed to identify the emission behavior of hydrogen, oxygen, and nitrogen isotopologues in a plasma plume. The goal is to discern the details of the isotope effect and mitigate resulting uncertainty. The molecular emissions of hydroxyl (OH) and imidogen (NH) were measured from plasma ablated on isotopically enriched water samples. Time-resolved detection clearly reveals distinct isotopic disparities in intensity variation and optimum gate delay, which were attributed to plasma thermo-hydrodynamics. Lighter isotopologues exhibit earlier and faster associations than their heavier counterparts due to their fast reaction rates and expansion velocities. The extent of the isotope effect hinged on plasma characteristics governed by measurement conditions. Consequently, comparing spectral intensity between molecular isotopologues cannot directly indicate the nominal isotope abundance of the sample. To address it, a compensation strategy has been devised, quantifying isotope effects through parameters like the slope and optimum delay of time-resolved detection. The approach successfully predicts nominal isotope abundance using compensated intensity ratios, with an absolute bias of less than 3 %. SIGNIFICANCE: This study not only offered fundamental insights into the isotope effect in laser-induced plasma but also proposed an alternative method for isotope quantification that circumvents complicated calibration processes.

19.
Angew Chem Int Ed Engl ; 63(10): e202317571, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38230818

ABSTRACT

Insight into effect of deuterium isotopes on organic near-IR (NIR) emitters was explored by the use of self-assembled Pt(II) complexes H-3-f and HPh-3-f, and their deuterated analogues D-3-f and DPh-3-f, respectively (Scheme 2). In vacuum deposited thin film, albeit having nearly identical emission spectral feature maximized at ~810 nm, H-3-f and D-3-f exhibit remarkable difference in photoluminescence quantum yield (PLQY) of 29 % and 50 %, respectively. Distinction in PLQY is also observed for HPh-3-f (800 nm, 50 %) and DPh-3-f (798 nm, 67 %). We then elucidated the theoretical differences in the impact on near-infrared (NIR) luminescence between Pt(II) complexes and organic small molecules upon deuteration. The results establish a general guideline for the deuteration on NIR emission efficiency. From a perspective of practical application, NIR OLEDs based on D-3-f and DPh-3-f emitters attain EQEmax of 15.5 % (radiance 31,287 mW Sr-1 m-2 ) and 16.6 % (radiance of 32,279 mW Sr-1 m-2 ) at 764 nm and 796 nm, respectively, both of which set new records for NIR OLEDs of >750 nm.

20.
ACS Catal ; 13(20): 13369-13382, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-38130475

ABSTRACT

The pseudoglycosyltransferase (PsGT) enzyme VldE is a homologue of the retaining glycosyltransferase (GT) trehalose 6-phosphate synthase (OtsA) that catalyzes a coupling reaction between two pseudo-sugar units, GDP-valienol and validamine 7-phosphate, to give a product with α,α-N-pseudo-glycosidic linkage. Despite its biological importance and unique catalytic function, the molecular bases for its substrate specificity and reaction mechanism are still obscure. Here, we report a comparative mechanistic study of VldE and OtsA using various engineered chimeric proteins and point mutants of the enzymes, X-ray crystallography, docking studies, and kinetic isotope effects. We found that the distinct substrate specificities between VldE and OtsA are most likely due to topological differences within the hot spot amino acid regions of their N-terminal domains. We also found that the Asp158 and His182 residues, which are in the active site, play a significant role in the PsGT function of VldE. They do not seem to be directly involved in the catalysis but may be important for substrate recognition or contribute to the overall architecture of the active site pocket. Moreover, results of the kinetic isotope effect experiments suggest that VldE catalyzes a C-N bond formation between GDP-valienol and validamine 7-phosphate via an SNi-like mechanism. The study provides new insights into the substrate specificity and catalytic mechanism of a member of the growing family of PsGT enzymes, which may be used as a basis for developing new PsGTs from GTs.

SELECTION OF CITATIONS
SEARCH DETAIL