Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 198
Filter
1.
Cell Genom ; : 100659, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39317187

ABSTRACT

Evidence from clinical trials suggests that CXCR4 antagonists enhance immunotherapy effectiveness in several cancers. However, the specific mechanisms through which CXCR4 contributes to immune cell phenotypes are not fully understood. Here, we employed single-cell transcriptomic analysis and identified CXCR4 as a marker gene in T cells, with CD8+PD-1high exhausted T (Tex) cells exhibiting high CXCR4 expression. By blocking CXCR4, the Tex phenotype was attenuated in vivo. Mechanistically, CXCR4-blocking T cells mitigated the Tex phenotype by regulating the JAK2-STAT3 pathway. Single-cell RNA/TCR/ATAC-seq confirmed that Cxcr4-deficient CD8+ T cells epigenetically mitigated the transition from functional to exhausted phenotypes. Notably, clinical sample analysis revealed that CXCR4+CD8+ T cells showed higher expression in patients with a non-complete pathological response. Collectively, these findings demonstrate the mechanism by which CXCR4 orchestrates CD8+ Tex cells and provide a rationale for combining CXCR4 antagonists with immunotherapy in clinical trials.

2.
Development ; 151(17)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39250533

ABSTRACT

The cell-intrinsic mechanisms underlying the decision of a stem/progenitor cell to either proliferate or differentiate remain incompletely understood. Here, we identify the transmembrane protein Lrig1 as a physiological homeostatic regulator of FGF2-driven proliferation and self-renewal of neural progenitors at early-to-mid embryonic stages of cortical development. We show that Lrig1 is expressed in cortical progenitors (CPs), and its ablation caused expansion and increased proliferation of radial/apical progenitors and of neurogenic transit-amplifying Tbr2+ intermediate progenitors. Notably, our findings identify a previously unreported EGF-independent mechanism through which Lrig1 negatively regulates neural progenitor proliferation by modulating the FGF2-induced IL6/Jak2/Stat3 pathway, a molecular cascade that plays a pivotal role in the generation and maintenance of CPs. Consistently, Lrig1 knockout mice showed a significant increase in the density of pyramidal glutamatergic neurons placed in superficial layers 2 and 3 of the postnatal neocortex. Together, these results support a model in which Lrig1 regulates cortical neurogenesis by influencing the cycling activity of a set of progenitors that are temporally specified to produce upper layer glutamatergic neurons.


Subject(s)
Janus Kinase 2 , Membrane Glycoproteins , Mice, Knockout , Neural Stem Cells , Neurogenesis , Neurons , STAT3 Transcription Factor , Signal Transduction , Animals , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Janus Kinase 2/metabolism , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Mice , Neurogenesis/genetics , Neurons/metabolism , Neurons/cytology , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Cell Proliferation , Cerebral Cortex/metabolism , Cerebral Cortex/cytology , Cerebral Cortex/embryology , Cell Differentiation , Fibroblast Growth Factors/metabolism , Nerve Tissue Proteins
3.
BMC Cancer ; 24(1): 957, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39103776

ABSTRACT

PURPOSE: Exosomal microRNAs have been identified as important mediators of communication between tumor cells and macrophages in the microenvironment. miR-541-5p was reported to be involved in hepatocellular carcinoma progression, but its role in gastric cancer (GC) and in GC cell-macrophage crosstalk is unknown. METHODS: Cell proliferation, migration and invasion were respectively assessed by CCK-8 assay, scratch and Transwell assays. RT-qPCR was used to detect the level of miR-541-5p, macrophage markers and DUSP3. The percentage of CD11b+CD206+ cell population was analyzed by flow cytometry. Western blotting was employed to evaluate DUSP3-JAK2/STAT3 pathway proteins and exosome markers. The interaction between miR-541-5p and DUSP3 was verified by luciferase assay. RESULTS: The results showed that miR-541-5p was upregulated in GC tissues and cells, and stimulated GC cell growth, migration and invasion in vitro. GC cells induce M2 macrophage polarization by secreting the exosomal miR-541-5p. Exosomal miR-541-5p maintained JAK2/STAT3 pathway activation in macrophages by targeting negative regulation of DUSP3. Inhibiting miR-541-5p significantly limited tumor growth in vivo. CONCLUSION: In conclusion, miR-541-5p promotes GC cell progression. GC cells may induce macrophage M2 polarization through the exosomal miR-541-5p-mediated DUSP3/JAK2/STAT3 pathway. miR-541-5p may be a potential therapeutic target for GC.


Subject(s)
Cell Proliferation , Dual Specificity Phosphatase 3 , Exosomes , Janus Kinase 2 , Macrophages , MicroRNAs , STAT3 Transcription Factor , Stomach Neoplasms , Animals , Female , Humans , Male , Mice , Cell Line, Tumor , Cell Movement/genetics , Dual Specificity Phosphatase 3/metabolism , Dual Specificity Phosphatase 3/genetics , Exosomes/metabolism , Exosomes/genetics , Gene Expression Regulation, Neoplastic , Janus Kinase 2/metabolism , Janus Kinase 2/genetics , Macrophages/metabolism , Mice, Nude , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism
4.
Ren Fail ; 46(2): 2378210, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39090966

ABSTRACT

Objectives: To explore the therapeutic effects of M2 macrophages in diabetic nephropathy (DN) and their mechanism.Methods: We infused M2 macrophages stimulated with IL-4 into 10-week-old db/db mice once a week for 4 weeks through the tail vein as M2 group. Then we investigated the role of M2 macrophages in alleviating the infammation of DN and explored the mechanism.Results: M2 macrophages hindered the progression of DN, reduced the levels of IL-1ß (DN group was 34%, M2 group was 13%, p < 0.01) and MCP-1 (DN group was 49%, M2 group was 16%, p < 0.01) in the glomeruli. It was also proven that M2 macrophages alleviate mesangial cell injury caused by a high glucose environment. M2 macrophage tracking showed that the infused M2 macrophages migrated to the kidney, and the number of M2 macrophages in the kidney reached a maximum on day 3. Moreover, the ratio of M2 to M1 macrophages was 2.3 in the M2 infusion group, while 0.4 in the DN group (p < 0.01). Mechanistically, M2 macrophages downregulated Janus kinase (JAK) 2 and signal transducer and activator of transcription (STAT) 3 in mesangial cells.Conclusions: Multiple infusions of M2 macrophages significantly alleviated inflammation in the kidney and hindered the progression of DN at least partially by abrogating the M1/M2 homeostasis disturbances and suppressing the JAK2/STAT3 pathway in glomerular mesangial cells. M2 macrophage infusion may be a new therapeutic strategy for DN treatment.


Subject(s)
Diabetic Nephropathies , Janus Kinase 2 , Macrophages , STAT3 Transcription Factor , Signal Transduction , Animals , Janus Kinase 2/metabolism , Diabetic Nephropathies/metabolism , STAT3 Transcription Factor/metabolism , Mice , Macrophages/metabolism , Male , Mesangial Cells/metabolism , Disease Models, Animal , Kidney Glomerulus/pathology , Kidney Glomerulus/metabolism , Chemokine CCL2/metabolism , Mice, Inbred C57BL , Interleukin-1beta/metabolism
5.
J Physiol Biochem ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39155330

ABSTRACT

Acute kidney injury is a serious public health problem worldwide, being ischemia and reperfusion (I/R) the main lesion-aggravating factor that contributes to the evolution towards chronic kidney disease. Nonetheless, intervention approaches currently available are just considered palliative options. In order to offer an alternative treatment, it is important to understand key factors involved in the development of the disease including the rescue of the affected cells and/or the release of paracrine factors that are crucial for tissue repair. Bioactive lipids such as sphingosine 1-phosphate (S1P) have significant effects on the modulation of signaling pathways involved in tissue regeneration, such as cell survival, proliferation, differentiation, and migration. The main objective of this work was to explore the protective effect of S1P using human kidney proximal tubule cells submitted to a mimetic I/R lesion, via ATP depletion. We observed that the S1P pre-treatment increases cell survival by 50% and preserves the cell proliferation capacity of injured cells. We showed the presence of different bioactive lipids notably related to tissue repair but, more importantly, we noted that the pre-treatment with S1P attenuated the ischemia-induced effects in response to the injury, resulting in higher endogenous S1P production. All receptors but S1PR3 are present in these cells and the protective and proliferative effect of S1P/S1P receptors axis occur, at least in part, through the activation of the SAFE pathway. To our knowledge, this is the first time that S1PR4 and S1PR5 are referred in these cells and also the first indication of JAK2/STAT3 pathway involvement in S1P-mediated protection in an I/R renal model.

6.
Vet Microbiol ; 298: 110235, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39213728

ABSTRACT

Porcine epidemic diarrhea (PED) is an acute, virulent, and highly contagious disease caused by the porcine epidemic diarrhea virus (PEDV). The high mutation rate of PEDV makes it difficult to effectively control using traditional vaccines, emphasizing the need for novel anti-PEDV-specific drugs. Therefore, this study aimed to investigate the activity and mechanism of action of andrographolide (AND) against PEDV in vitro and in vivo. In vitro experiments showed that AND treatment significantly inhibited PEDV replication in a cell model. The mechanism is that AND treatment significantly suppressed PEDV-induced activation of the JAK2-STAT3 pathway, which promoted apoptosis and inhibited the proliferation of the virus. Moreover, PEDV-infected 3-day-old piglets were treated with AND, and clinical symptoms, intestinal morphology, and viral load were examined. In vivo experiments showed that AND treatment reduced clinical symptoms, ameliorated intestinal damage, and increased the survival rate of infected piglets by 16.7 %. Conclusively, this study contributes to the field of PEDV antiviral drug development and provides new directions for PED prevention and treatment.

7.
Mol Cell Biochem ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39168951

ABSTRACT

Dysregulation in lipid metabolism is among the most prominent metabolic alterations in cancer. Stimulated by retinoic acid 6 (STRA6), a vitamin A transporter has shown to be involved in the pathogenesis of cancers. Nevertheless, the function of STRA6 in non-small cell lung cancer (NSCLC) progression remains undefined. We obtained cancer and adjacent tissues from NSCLC patients and conducted functional experiments on STRA6 on NSCLC cell lines and mice. High STRA6 expression is correlated with poor prognosis in patients with NSCLC. Results from in vitro and in vivo animal studies showed that STRA6 knockdown suppressed the proliferation, migration, and invasion of NSCLC cells in vitro and tumor growth in vivo through regulation of lipid synthesis. Mechanistically, STRA6 activated a Janus kinase 2/signal transducer and activator of transcription 3 (JAK2-STAT3) signaling cascade which inducing the expression of STAT3 target gene. By inducing the expression of the target gene of STAT3, sterol regulatory element binding protein 1 (SREBP-1), STRA6 promotes SREBP-1-mediated adipogenesis and provides energy for NSCLC cell growth. Our study uncovers a novel STRA6/STAT3/SREBP-1 regulatory axis that enhances NSCLC metastasis by reprogramming of lipid metabolism. These results demonstrate the potential use of STRA6 as a biomarker for diagnosing NSCLC, which may therefore potentially serve as a therapeutic target for NSCLC.

8.
Front Oncol ; 14: 1283428, 2024.
Article in English | MEDLINE | ID: mdl-38974233

ABSTRACT

Radiotherapy (RT) and immune checkpoint inhibitor (ICI) are important treatments for esophageal cancer. Some studies have confirmed the safety and effectiveness of using RT in combination with ICI, while serious side effects have been exhibited by some patients. We report a patient with metastatic esophageal cancer who received RT combined with ICI. The patient experienced severe thrombocytopenia, and treatment with thrombopoietin and corticosteroids were ineffective. Finally, the patient developed abscopal hyperprogression outside the radiation field. Interestingly, next-generation sequencing revealed increased JAK2 gene copies in the surgical slices. The JAK2/STAT3 pathway is involved in the regulation of megakaryocyte development. Recurrent thrombocytopenia may activate the JAK2/STAT3 pathway, leading to megakaryocyte differentiation and platelet biogenesis. However, persistent activation of the JAK2/STAT3 pathway has been associated with immune ICI resistance and tumor progression. This case indicates that thrombocytopenia and increased JAK2 gene copies may be risk factors for poor prognosis after ICI and RT treatment.

9.
Phytother Res ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39079890

ABSTRACT

Magnoflorine (Mag), a natural alkaloid component originating from the Ranunculaceae Juss. Family, has a various of pharmacological activities. This study aimed to investigate the therapeutic effects and potential mechanism of Mag on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) based on comprehensive approaches. Therapeutic effects of Mag on 3% DSS-induced UC mice were analyzed. UHPLC-Q-TOF/MS was performed to investigate the potential metabolites and signaling pathway of Mag on DSS-induced UC. Furthermore, the predicted mRNA and protein levels of JAK2/STAT3 signaling pathway in colon tissue were verified and assessed by qRT-PCR and Western Blotting, respectively. Therapeutic effects of Mag on UC mice were presented in down-regulation serum biochemical indices, alleviating histological damage of colon tissue. Serum untargeted metabolomics analysis showed that the potential mechanism of Mag on UC is mainly associated with the regulation of six biomarkers and 11 pathways, which may be responsible for the therapeutic efficacy of UC. The "component-metabolites-targets" interactive network indicated that Mag exerts its anti-UC effect by regulating PTGS1 and PTGS2, thereby regulating arachidonic acid. Moreover, the results of qRT-PCR showed that Mag could substantially decrease the relative mRNA expression level of Hub genes. In addition, it was found that Mag could inhibit the relative mRNA and protein expression of JAK2/STAT3 signaling pathway. The present results highlighted the role of Mag ameliorated colon injury in DSS-induced UC mice by inhibiting the JAK2/STAT3 signaling pathway. These results suggest that Mag may be an effective agent for the treatment of UC.

10.
Heliyon ; 10(14): e34634, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39082011

ABSTRACT

Purpose: This study aims to determine whether Jianpi Qingre Tongluo Decoction (JQP) alleviates ankylosing spondylitis (AS) inflammation via the NONHSAT227927.1/JAK2/STAT3 axis. Methods: The effect of JQP on immune-inflammatory indicators in AS patients was explored through a combination of data mining, association rule analysis, and random walk model evaluation. Subsequently, network pharmacology and molecular docking were performed to screen out the potential signaling pathway. ELISA, PCR and wb were used to evaluate the effect of JQP on AS-FLS activity and inflammatory factors. The role of NONHSAT227927.1/JAK2/STAT3 combination in inflammation was studied by editing NONHSAT227927.1 and adding the JAK2/STAT3 inhibitor AG490. Involvement of the JAK2/STAT3 pathway was detected by PCR, WB, or immunofluorescence analysis. Results: Retrospective data mining results show that JQP can effectively reduce the immune inflammatory response in AS patients. Through network pharmacology and molecular docking, it is speculated that JQP exerts its effect on AS through the JAK2/STAT3 pathway. Overexpression of NONHSAT227927.1 activated the JAK2/STAT3 pathway and promoted the expression of inflammatory factors, while serum containing JQP reversed the effects of NONHSAT227927.1 overexpression. NONHSAT227927.1 silencing inhibits the proliferation of AS-FLSs, inhibits the levels of inflammatory factors, and reduces the expression of JAK2/STAT3 protein. After adding the pathway blocker AG490, it was observed that the cell viability of AS-FLSs was reduced by inflammatory factors and the levels of JAK2/STAT3 were inhibited. , and overexpression of NONHSAT227927.1 can reverse this trend. Conclusions: JQP exerted an anti-inflammatory effect on AS by inhibiting the NONHSAT227927.1/JAK2/STAT3 axis.

11.
Int J Mol Sci ; 25(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39062998

ABSTRACT

The objective of this study was to elucidate the protective role of quercetin in atherosclerosis by examining its effect on the phenotypic switch of vascular smooth muscle cells (VSMCs) to macrophage-like cells and the underlying regulatory pathways. Aorta tissues from apolipoprotein E-deficient (ApoE KO) mice fed a high-fat diet (HFD), treated with or without 100 mg/kg/day quercetin, were analyzed for histopathological changes and molecular mechanisms. Quercetin was found to decrease the size of atherosclerotic lesions and mitigate lipid accumulation induced by HFD. Fluorescence co-localization analysis revealed a higher presence of macrophage-like vascular smooth muscle cells (VSMCs) co-localizing with phospho-Janus kinase 2 (p-JAK2), phospho-signal transducer and activator of transcription 3 (p-STAT3), and Krüppel-like factor 4 (KLF4) in regions of foam cell aggregation within aortic plaques. However, this co-localization was reduced following treatment with quercetin. Quercetin treatment effectively inhibited the KLF4-mediated phenotypic switch in oxidized low-density lipoprotein (ox-LDL)-loaded mouse aortic vascular smooth muscle cells (MOVAS), as indicated by decreased expressions of KLF4, LGALS3, CD68, and F4/80, increased expression of alpha smooth muscle actin (α-SMA), reduced intracellular fluorescence Dil-ox-LDL uptake, and decreased lipid accumulation. In contrast, APTO-253, a KLF4 activator, was found to reverse the effects of quercetin. Furthermore, AG490, a JAK2 inhibitor, effectively counteracted the ox-LDL-induced JAK2/STAT3 pathway-dependent switch to a macrophage-like phenotype and lipid accumulation in MOVAS cells. These effects were significantly mitigated by quercetin but exacerbated by coumermycin A1, a JAK2 activator. Our research illustrates that quercetin inhibits the KLF4-mediated phenotypic switch of VSMCs to macrophage-like cells and reduces atherosclerosis by suppressing the JAK2/STAT3 pathway.


Subject(s)
Atherosclerosis , Macrophages , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Quercetin , STAT3 Transcription Factor , Signal Transduction , Animals , Male , Mice , Aorta/metabolism , Aorta/drug effects , Aorta/pathology , Apolipoproteins E/metabolism , Apolipoproteins E/genetics , Atherosclerosis/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/pathology , Diet, High-Fat/adverse effects , Janus Kinase 2/metabolism , Kruppel-Like Factor 4/metabolism , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Lipoproteins, LDL/metabolism , Macrophages/metabolism , Macrophages/drug effects , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Phenotype , Quercetin/pharmacology , Signal Transduction/drug effects , STAT3 Transcription Factor/metabolism
12.
Neuroscience ; 554: 96-106, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38964451

ABSTRACT

Cerebral ischemia/reperfusion injury (CIRI) is a common feature of ischemic stroke leading to a poor prognosis. Effective treatments targeting I/R injury are still insufficient. The study aimed to investigate the mechanisms, by which glycyrrhizic acid (18ß-GA) in ameliorates CIRI. Our results showed that 18ß-GA significantly decreased the infarct volume, neurological deficit scores, and pathological changes in the brain tissue of rats after middle cerebral artery occlusion. Western blotting showed that 18ß-GA inhibited the expression levels of phosphorylated JAK2 and phosphorylated STAT3. Meanwhile, 18ß-GA increased LC3-II protein levels in a reperfusion duration-dependent manner, which was accompanied by an increase in the Bcl-2/Bax ratio. Inhibition of 18ß-GA-induced autophagy by 3-methyladenine (3-MA) enhanced apoptotic cell death. In addition, 18ß-GA inhibited the JAK2/STAT3 pathway, which was largely activated in response to oxygen-glucose deprivation/reoxygenation. However, the JAK2/STAT3 activator colivelin TFA abolished the inhibitory effect of 18ß-GA, suppressed autophagy, and significantly decreased the Bcl-2/Bax ratio. Taken together, these findings suggested that 18ß-GA pretreatment ameliorated CIRI partly by triggering a protective autophagy via the JAK2/STAT3 pathway. Therefore might be a potential drug candidate for treating ischemic stroke.


Subject(s)
Autophagy , Infarction, Middle Cerebral Artery , Janus Kinase 2 , Neuroprotective Agents , Rats, Sprague-Dawley , Reperfusion Injury , STAT3 Transcription Factor , Signal Transduction , Animals , Janus Kinase 2/metabolism , Janus Kinase 2/antagonists & inhibitors , STAT3 Transcription Factor/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Autophagy/drug effects , Autophagy/physiology , Male , Signal Transduction/drug effects , Signal Transduction/physiology , Neuroprotective Agents/pharmacology , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Brain Ischemia/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/pathology , Glycyrrhizic Acid/pharmacology , Rats , Apoptosis/drug effects , Brain/drug effects , Brain/metabolism , Brain/pathology
13.
Oral Dis ; 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38852165

ABSTRACT

OBJECTIVES: Periodontitis seriously affects oral-related quality of life and overall health. Long intergenic non-coding RNA 01126 (LINC01126) is aberrantly expressed in periodontitis tissues. This study aimed to explore the possible pathogenesis of LINC01126 in periodontitis. METHODS: Inflammatory model of human gingival fibroblasts (HGFs) was established. Cell Counting Kit-8 (CCK-8), wound healing assay, and flow cytometry were utilized to detect biological roles of LINC01126. Binding site of miR-655-3p to LINC01126 and IL-6 was predicted. Then, subcellular localization of LINC01126 and the binding ability of miR-655-3p to LINC01126 and IL-6 in HGFs were verified. Hematoxylin-Eosin (H&E) staining and immunohistochemistry (IHC) staining were utilized to detect tissue morphology and proteins expression of clinical samples. RESULTS: LINC01126 silencing can alleviate cell inflammation induced by lipopolysaccharide derived from Porphyromonas gingivalis, reduce cell apoptosis, and promote cell migration. As a "sponge" for miR-655-3p, LINC01126 inhibits its binding to mRNA of IL-6, thereby promoting inflammation progression and JAK2/STAT3 pathway activation. Quantitative real-time PCR, Western Blot, and IHC results of clinical tissue samples further confirmed that miR-655-3p expression was down-regulated and IL-6/JAK2/STAT3 was abnormally activated in periodontitis tissues. CONCLUSIONS: In summary, serving as an endogenous competitive RNA of miR-655-3p, LINC01126 promotes IL-6/JAK2/STAT3 pathway activation, thereby promoting periodontitis pathogenesis.

14.
Cancer Lett ; 598: 217067, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-38942137

ABSTRACT

Aberrant expression of G protein-coupled receptor class C group 5 member A (GPRC5A) has been reported in multiple cancers and is closely related to patient prognosis. However, the mechanistic role of GPRC5A in gallbladder cancer (GBC) remains unclear. Here, we determined tumor expression levels of GPRC5A and the molecular mechanisms by which GPRC5A regulates gallbladder cancer metastasis. We found that GPRC5A was significantly upregulated in GBC, correlating with poorer patient survival. Knocking down GPRC5A inhibited GBC cell metastasis both in vitro and in vivo. GRPRC5A knockdown resulted in downregulation of TNS4 expression through the JAK2-STAT3 axis. Clinically, GPRC5A expression positively correlated with TNS4. Finally, STAT3 bound to TNS4's promoter region, inducing its expression. Overall, GPRC5A showed high expression in GBC tissues, associated with poor patient prognosis. Our findings first demonstrate that the GPRC5A-JAK2-STAT3-TNS4 pathway promotes GBC cell metastasis, suggesting potential therapy targets.


Subject(s)
Gallbladder Neoplasms , Gene Expression Regulation, Neoplastic , Janus Kinase 2 , Receptors, G-Protein-Coupled , STAT3 Transcription Factor , Signal Transduction , Up-Regulation , Animals , Female , Humans , Male , Mice , Middle Aged , Cell Line, Tumor , Cell Movement , Gallbladder Neoplasms/pathology , Gallbladder Neoplasms/genetics , Gallbladder Neoplasms/metabolism , Janus Kinase 2/metabolism , Janus Kinase 2/genetics , Mice, Inbred BALB C , Mice, Nude , Neoplasm Metastasis , Prognosis , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics
15.
J Neuroimmunol ; 391: 578345, 2024 06 15.
Article in English | MEDLINE | ID: mdl-38759519

ABSTRACT

OBJECTIVE: V-set and immunoglobulin domain containing 4 (VSIG4) inhibits neurological dysfunction, microglial M1 polarization, and inflammation to participate in the progression of neurological disorders, but evidence regarding Parkinson's disease (PD) is scarce. The present study intended to investigate the engagement of VSIG4 in PD progression, and the potential mechanism. METHODS: BV-2 cells were treated with 1-Methyl-4-phenylpyridinium (MPP+) to establish PD model. MPP+ treated BV-2 cells were infected with VSIG4 overexpression adenovirus-associated virus (AAV) (oeVSIG4) and negative control AAV (oeNC), and AZD1480 (JAK2 inhibitor) was added to these cells. RESULTS: MPP+ reduced VSIG4 mRNA (P < 0.05) and protein (P < 0.05) in BV-2 cells. Interestingly, VSIG4 reduced malondialdehyde (P < 0.01), reactive oxygen species (P < 0.01), NOD-like receptor family pyrin domain containing 3 (P < 0.05), cleaved-caspase1 (P < 0.05), tumor necrosis factor-α (P < 0.05), and interleukin-1ß (P < 0.05), but increased glutathione (P < 0.05), mitochondrial membrane potential (P < 0.05), phosphorylation (p)-JAK2 (P < 0.05), and p-STAT3 (P < 0.01) in MPP+ treated BV-2 cells, which indicated that VSIG4 inhibited oxidative stress, mitochondrial dysfunction, and inflammation, as well as activated the JAK2/STAT3 pathway in PD model. Moreover, AZD1480 inhibited the JAK2/STAT3 pathway and aggravated oxidative stress, mitochondrial dysfunction, and inflammation in PD model (all P < 0.05). Importantly, AZD1480 attenuated the influence of VSIG4 on oxidative stress, mitochondrial dysfunction, inflammation, and the JAK2/STAT3 pathway in PD model (all P < 0.05). CONCLUSION: VSIG4 suppresses oxidative stress, mitochondrial dysfunction, and inflammation by activating the JAK2/STAT3 pathway, which may be helpful in attenuating PD progression.


Subject(s)
Disease Progression , Janus Kinase 2 , Oxidative Stress , STAT3 Transcription Factor , Signal Transduction , Animals , Mice , Cell Line , Inflammation/metabolism , Janus Kinase 2/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects , Oxidative Stress/physiology , Parkinson Disease/metabolism , Parkinson Disease/drug therapy , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Signal Transduction/drug effects , Signal Transduction/physiology , STAT3 Transcription Factor/metabolism
16.
Heliyon ; 10(9): e30445, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38737261

ABSTRACT

Objective: To investigate the involvement of the homeobox gene B5 (HOXB5) in the progression and metastasis of osteosarcoma. Methods: The expression of HOXB5 in human osteosarcoma tissues and its correlation with clinical indicators were investigated using bioinformatics analysis and immunohistochemical labelling. Human osteosarcoma cells (HOS, MG63, U2OS, and Saos-2) and normal human osteoblasts (hFOB1.19) were cultivated. The expression of HOXB5 in these cells was detected using western blotting (WB) and RT‒PCR. Two cell lines exhibiting elevated HOXB5 expression were chosen and divided into three groups: the blank group (mock), control group (control) and transfection group (shHOXB5). The transfection group was infected with lentivirus expressing shRNAs targeting HOXB5. The transfection efficiency was detected by WB. Cell proliferation suppression was measured by CCK-8 and 5-ethynyl-2'-deoxyuridine (EdU) assays; the percentage of apoptotic cells was determined by flow cytometry; and cell migration and invasion were detected via the Transwell chamber test. WB was utilized to determine the protein expression of genes linked to metastasis (MMP2, MMP9), apoptosis (Bax, Bcl-2), and the JAK2/STAT3 pathway (JAK2, p-JAK2, STAT3, p-STAT3). Results: In osteosarcoma tissues, HOXB5 expression was elevated and strongly correlated with distant metastasis. Silencing HOXB5 reduced the proliferation, migration and invasion of osteosarcoma cells; prevented the progression and metastasis of tumours in tumour-bearing nude mice; and reduced the activation of key proteins in the JAK2/STAT3 signalling pathway. Conclusion: Through the JAK2/STAT3 signalling pathway, HOXB5 plays a crucial role in the malignant progression of osteosarcoma and is a promising target for osteosarcoma treatment.

17.
Viruses ; 16(4)2024 04 22.
Article in English | MEDLINE | ID: mdl-38675986

ABSTRACT

Porcine circovirus type 2 (PCV2) infection can cause immunosuppressive diseases in pigs. Vascular endothelial cells (VECs), as the target cells for PCV2, play an important role in the immune response and inflammatory regulation. Endothelial IL-8, which is produced by porcine hip artery endothelial cells (PIECs) infected with PCV2, can inhibit the maturation of monocyte-derived dendritic cells (MoDCs). Here, we established a co-culture system of MoDCs and different groups of PIECs to further investigate the PCV2-induced endothelial IL-8 signaling pathway that drives the inhibition of MoDC maturation. The differentially expressed genes related to MoDC maturation were mainly enriched in the NF-κB and JAK2-STAT3 signaling pathways. Both the NF-κB related factor RELA and JAK2-STAT3 signaling pathway related factors (IL2RA, JAK, STAT2, STAT5, IL23A, IL7, etc.) decreased significantly in the IL-8 up-regulated group, and increased significantly in the down-regulated group. The expression of NF-κB p65 in the IL-8 up-regulated group was reduced significantly, and the expression of IκBα was increased significantly. Nuclear translocation of NF-κB p65 was inhibited, while the nuclear translocation of p-STAT3 was increased in MoDCs in the PCV2-induced endothelial IL-8 group. The results of treatment with NF-κB signaling pathway inhibitors showed that the maturation of MoDCs was inhibited and the expression of IL-12 and GM-CSF at mRNA level were lower. Inhibition of the JAK2-STAT3 signaling pathway had no significant effect on maturation, and the expression of IL-12 and GM-CSF at mRNA level produced no significant change. In summary, the NF-κB signaling pathway is the main signaling pathway of MoDC maturation, and is inhibited by the PCV2-induced up-regulation of endothelial-derived IL-8.


Subject(s)
Circovirus , Interleukin-8 , Signal Transduction , Swine Diseases , Animals , Cell Differentiation , Cells, Cultured , Circoviridae Infections/virology , Circoviridae Infections/immunology , Circoviridae Infections/veterinary , Circovirus/physiology , Circovirus/immunology , Coculture Techniques , Dendritic Cells/immunology , Dendritic Cells/metabolism , Endothelial Cells/virology , Endothelial Cells/metabolism , Interleukin-8/metabolism , Interleukin-8/genetics , NF-kappa B/metabolism , Swine , Swine Diseases/virology , Swine Diseases/immunology , Swine Diseases/metabolism
18.
Naunyn Schmiedebergs Arch Pharmacol ; 397(9): 6889-6901, 2024 09.
Article in English | MEDLINE | ID: mdl-38573552

ABSTRACT

Extra spindle-polar body like 1 (ESPL1) is associated with the development of a variety of cancers, including bladder cancer, and is closely related to chemoresistance. In this study, we aimed to reveal the role of ESPL1 in bladder cancer progression and cisplatin (DDP) resistance. First, ESPL1 was found to be highly expressed in tumor tissues and cells of bladder cancer, and more highly expressed in cisplatin resistant tumor tissues or cells. The binding of PAX2 in ESPL1 promoter region was predicted by Jaspar database and verified by Ch-IP analysis and the luciferase reporter gene assay. Next, cisplatin-resistant T24 cells (T24/DDP) were established and transfected with ESPL1 siRNA (si-ESPL1) or overexpression vector (pcDNA-ESPL1) or co-transfected with PAX2 siRNA (si-PAX2) or overexpression vector (pcDNA-PAX2), and then treated with DDP or AG490, an inhibitor of JAK2. The results showed that silencing ESPL1 significantly reduced T24/DDP cell viability, colony formation and invasion, enhanced sensitivity to DDP, and induced cell apoptosis. Silencing PAX2 decreased ESPL1 expression, enhanced sensitivity to DDP, and induced apoptosis of T24/DDP cells, and inhibited activation of JAK2/STAT3 pathway. Overexpressing ESPL1 reversed the effect of PAX2 silencing on T24/DDP cells, while AG490 counteracted the reversal effect of overexpressing ESPL1. Finally, a xenograft tumor model was established and found that silencing ESPL1 or DDP treatment inhibited tumor growth, while silencing ESPL1 combined with DDP treatment had the best effect. In summary, this study suggested that PAX2-mediated ESPL1 transcriptional activation enhanced cisplatin resistance in bladder cancer by activating JAK2/STAT3 pathway.


Subject(s)
Antineoplastic Agents , Cisplatin , Drug Resistance, Neoplasm , Janus Kinase 2 , Mice, Nude , PAX2 Transcription Factor , STAT3 Transcription Factor , Signal Transduction , Up-Regulation , Urinary Bladder Neoplasms , Janus Kinase 2/metabolism , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , PAX2 Transcription Factor/genetics , PAX2 Transcription Factor/metabolism , Humans , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Cisplatin/pharmacology , Animals , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Mice, Inbred BALB C , Male , Mice , Female , Gene Expression Regulation, Neoplastic , Xenograft Model Antitumor Assays , Cell Proliferation/drug effects
19.
Nutr Metab (Lond) ; 21(1): 22, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658956

ABSTRACT

BACKGROUND: Spexin, a 14 amino acid peptide, has been reported to regulate obesity and its associated complications. However, little is known about the underlying molecular mechanism. Therefore, this study aimed to investigate the effects of spexin on obesity and explore the detailed molecular mechanisms in vivo and in vitro. METHODS: Male C57BL/6J mice were fed a high-fat diet (HFD) for 12 weeks to induce obesity, and mice fed a standard fat diet were used as controls. Then, these mice were treated with SPX or Vehicle by intraperitoneal injection for an additional 12 weeks, respectively. The metabolic profile, fat-browning specific markers and mitochondrial contents were detected. In vitro, 3T3-L1 cells were used to investigate the molecular mechanisms. RESULTS: After 12 weeks of treatment, SPX significantly decreased body weight, serum lipid levels, and improved insulin sensitivity in HFD-induced obese mice. Moreover, SPX was found to promote oxygen consumption in HFD mice, and it increased mitochondrial content as well as the expression of brown-specific markers in white adipose tissue (WAT) of HFD mice. These results were consistent with the increase in mitochondrial content and the expression of brown-specific markers in 3T3-L1 mature adipocytes. Of note, the spexin-mediated beneficial pro-browning actions were abolished by the JAK2/STAT3 pathway antagonists in mature 3T3-L1 cells. CONCLUSIONS: These data indicate that spexin ameliorates obesity-induced metabolic disorders by improving WAT browning via activation of the JAK2/STAT3 signaling pathway. Therefore, SPX may serve as a new therapeutic candidate for treating obesity.

20.
Int J Mol Sci ; 25(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474305

ABSTRACT

Patients with inflammatory bowel disease (IBD) who experience long-term chronic inflammation of the colon are at an increased risk of developing colorectal cancer (CRC). Mitotic spindle positioning (MISP), an actin-binding protein, plays a role in mitosis and spindle positioning. MISP is found on the apical membrane of the intestinal mucosa and helps stabilize and elongate microvilli, offering protection against colitis. This study explored the role of MISP in colorectal tumorigenesis using a database, human CRC cells, and a mouse model for colitis-induced colorectal tumors triggered by azoxymethane (AOM)/dextran sodium sulfate (DSS) treatment. We found that MISP was highly expressed in colon cancer patient tissues and that reduced MISP expression inhibited cell proliferation. Notably, MISP-deficient mice showed reduced colon tumor formation in the AOM/DSS-induced colitis model. Furthermore, MISP was found to form a complex with Opa interacting protein 5 (OIP5) in the cytoplasm, influencing the expression of OIP5 in a unidirectional manner. We also observed that MISP increased the levels of phosphorylated STAT3 in the JAK2-STAT3 signaling pathway, which is linked to tumorigenesis. These findings indicate that MISP could be a risk factor for CRC, and targeting MISP might provide insights into the mechanisms of colitis-induced colorectal tumorigenesis.


Subject(s)
Colitis , Colorectal Neoplasms , Animals , Humans , Mice , Azoxymethane/adverse effects , Carcinogenesis , Cell Transformation, Neoplastic , Colitis/pathology , Colorectal Neoplasms/pathology , Dextran Sulfate/adverse effects , Disease Models, Animal , Janus Kinase 2/metabolism , Mice, Inbred C57BL , Signal Transduction , Spindle Apparatus/metabolism , STAT3 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL