Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 897
Filter
1.
Neuroscience ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964451

ABSTRACT

Cerebral ischemia/reperfusion injury (CIRI) is a common feature of ischemic stroke leading to a poor prognosis. Effective treatments targeting I/R injury are still insufficient. The study aimed to investigate the mechanisms, by which glycyrrhizic acid (18ß-GA) in ameliorates CIRI. Our results showed that 18ß-GA significantly decreased the infarct volume, neurological deficit scores, and pathological changes in the brain tissue of rats after middle cerebral artery occlusion. Western blotting showed that 18ß-GA inhibited the expression levels of phosphorylated JAK2 and phosphorylated STAT3. Meanwhile, 18ß-GA increased LC3-II protein levels in a reperfusion duration-dependent manner, which was accompanied by an increase in the Bcl-2/Bax ratio. Inhibition of 18ß-GA-induced autophagy by 3-methyladenine (3-MA) enhanced apoptotic cell death. In addition, 18ß-GA inhibited the JAK2/STAT3 pathway, which was largely activated in response to oxygen-glucose deprivation/reoxygenation. However, the JAK2/STAT3 activator colivelin TFA abolished the inhibitory effect of 18ß-GA, suppressed autophagy, and significantly decreased the Bcl-2/Bax ratio. Taken together, these findings suggested that 18ß-GA pretreatment ameliorated CIRI partly by triggering a protective autophagy via the JAK2/STAT3 pathway. Therefore might be a potential drug candidate for treating ischemic stroke.

2.
Clin Exp Med ; 24(1): 140, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951255

ABSTRACT

Although renal cell carcinoma (RCC) is a prevalent type of cancer, the most common pathological subtype, clear cell renal cell carcinoma (ccRCC), still has poorly understood molecular mechanisms of progression. Moreover, interferon-stimulated gene 15 (ISG15) is associated with various types of cancer; however, its biological role in ccRCC remains unclear.This study aimed to explore the role of ISG15 in ccRCC progression.ISG15 expression was upregulated in ccRCC and associated with poor prognosis. RNA sequence analysis and subsequent experiments indicated that ISG15 modulated IL6/JAK2/STAT3 signaling to promote ccRCC proliferation, migration, and invasion. Additionally, our animal experiments confirmed that sustained ISG15 knockdown reduced tumor growth rate in nude mice and promoted cell apoptosis. ISG15 modulates the IL6/JAK2/STAT3 pathway, making it a potential therapeutic target and prognostic biomarker for ccRCC.


Subject(s)
Carcinoma, Renal Cell , Cell Proliferation , Cytokines , Interleukin-6 , Janus Kinase 2 , Kidney Neoplasms , Mice, Nude , STAT3 Transcription Factor , Signal Transduction , Ubiquitins , Humans , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/genetics , Animals , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Janus Kinase 2/metabolism , Interleukin-6/metabolism , Interleukin-6/genetics , Cytokines/metabolism , Ubiquitins/metabolism , Ubiquitins/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Kidney Neoplasms/genetics , Mice , Cell Line, Tumor , Male , Cell Movement , Female , Apoptosis , Gene Expression Regulation, Neoplastic , Prognosis , Disease Progression
3.
Sci Rep ; 14(1): 15564, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971897

ABSTRACT

Aortic dissection (AD) is a life-threatening condition with a high mortality rate and without effective pharmacological therapies. Our previous study illustrated that leukocyte immunoglobulin-like receptor B4 (LILRB4) knockdown promoted the contractile phenotypic switch and apoptosis of AD cells. This study aimed to further investigate the role of LILRB4 in animal models of AD and elucidate its underlying molecular mechanisms. Animal models of AD were established using 0.1% beta-aminopropionitrile and angiotensin II and an in vitro model was developed using platelet-derived growth factor BB (PDGF-BB). The effects of LILRB4 knockdown on histopathological changes, pyroptosis, phenotype transition, extracellular matrix (ECM), and Janus kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3) pathways were assessed using a series of in vivo and in vitro assays. The effects of the JAK2 inhibitor AG490 on AD cell function, phenotypic transition, and ECM were explored. LILRB4 was highly expressed in AD and its knockdown increased survival rate, reduced AD incidence, and alleviated histopathological changes in the AD mouse model. Furthermore, LILRB4 knockdown promoted contractile phenotype switch, stabilized the ECM, and inhibited pyroptosis. Mechanistically, LILRB4 knockdown inhibited the JAK2/STAT3 signaling pathway. JAK2 inhibitor AG490 inhibited cell viability and migration, enhanced apoptosis, induced G0/G1 cell cycle arrest, and suppressed S-phase progression in PDGF-BB-stimulated human aortic smooth muscle cells. LILRB4 knockdown suppresses AD development by inhibiting pyroptosis and the JAK2/STAT3 signaling pathway.


Subject(s)
Aortic Dissection , Disease Models, Animal , Janus Kinase 2 , Pyroptosis , STAT3 Transcription Factor , Signal Transduction , Animals , Humans , Male , Mice , Aortic Dissection/metabolism , Aortic Dissection/pathology , Aortic Dissection/genetics , Gene Knockdown Techniques , Janus Kinase 2/metabolism , Janus Kinase 2/genetics , Mice, Inbred C57BL , Pyroptosis/genetics , STAT3 Transcription Factor/metabolism , Tyrphostins/pharmacology
4.
J Orthop Surg Res ; 19(1): 407, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014435

ABSTRACT

PURPOSE: Oncostatin M (OSM) is involved in the regulation of osteogenic differentiation and has a major role in the development of heterotopic ossification. The role of OSM in osteogenic differentiation of tendon-derived stem cells (TDSCs) and its mechanism have not been reported. This study aim to investigate the role of OSM in osteogenic differentiation of TDSCs and study the mechanism. METHODS: TDSCs were differentiated in osteogenic differentiation medium for 7 days. Recombinant OSM was added to the osteogenic differentiation medium for 7 and 14 days. The effect of Janus kinase 2 (JAK2) inhibitor AZD1480 and signal transducer and activator of transcription 3 (STAT3) inhibitor stattic in the presence of recombinant OSM on osteogenic differentiation of TDSCs was examined after differentiation for 7 and 14 days. Alkaline phosphatase and alizarin red staining were used to assess the effects on early and mid-stage osteogenic differentiation, respectively. Western blotting and qPCR were used to assess the expression of receptor and signalling pathway-related proteins and osteogenic marker genes, respectively. RESULTS: TDSCs were successfully induced to differentiate into osteoblasts. Recombinant OSM promoted osteogenic differentiation of TDSCs to early and mid-stages. After addition of AZD1480 or stattic, decreased alkaline phosphatase and alizarin red staining were observed in the early and mid-stages of osteogenic differentiation. Additionally, decreased expression of receptor and pathway-related proteins, and osteogenic genes was found by western blotting and qPCR, respectively. CONCLUSION: OSM promotes osteogenic differentiation of TDSCs and the JAK2/STAT3 signalling pathway plays an important role.


Subject(s)
Cell Differentiation , Janus Kinase 2 , Oncostatin M , Osteogenesis , STAT3 Transcription Factor , Signal Transduction , Stem Cells , Tendons , Oncostatin M/pharmacology , STAT3 Transcription Factor/metabolism , Janus Kinase 2/metabolism , Osteogenesis/drug effects , Osteogenesis/physiology , Cell Differentiation/drug effects , Cell Differentiation/physiology , Signal Transduction/drug effects , Signal Transduction/physiology , Tendons/cytology , Stem Cells/drug effects , Humans , Cells, Cultured , Animals
5.
J Ethnopharmacol ; : 118509, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971346

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Alpha 7 nicotinic acetylcholine receptor (α7nAChR)-mediated astrocytic activation is closely related to central sensitization of chronic migraine (CM). Xiongzhi Dilong decoction (XZDL), originated from Xiongzhi Shigao decoction of Yi-zong-jin-jian, has been confirmed to relieve CM in experiment and clinic. However, its underlying mechanism for treating CM has not been elucidated. AIM OF THE STUDY: To reveal the underlying mechanisms of XZDL to alleviate CM in vivo focusing mainly on α7nAChR-mediated astrocytic activation and central sensitization in TNC. MATERIALS AND METHODS: CM rat model was established by subcutaneous injection of nitroglycerin (NTG) recurrently, and treated with XZDL simultaneously. Migraine-like behaviors of rats (ear redness, head scratching, and cage climbing) and pain-related reactions (mechanical hind-paw withdrawal threshold) of rats were evaluated before and after NTG injection and XZDL administration at different points in time for nine days. The immunofluorescence single and double staining were applied to detect the levels of CGRP, c-Fos, GFAP and α7nAChR in NTG-induced CM rats. ELISA kits were employed to quantify levels of TNF-α, IL-1ß, and IL-6 in medulla oblongata of CM rats. The expression levels of target proteins were examined using western blotting. Finally, methyllycaconitine citrate (MLA, a specific antagonist of α7nAChR) was applied to further validate the mechanisms of XZDL in vivo. RESULTS: XZDL significantly attenuated the pain-related behaviors of the NTG-induced CM rats, manifesting as constraints of aberrant migraine-like behaviors including elongated latency of ear redness and decreased numbers of head scratching and cage climbing, and increment of mechanical withdrawal threshold. Moreover, XZDL markedly lowered levels of CGRP and c-Fos, as well as inflammatory cytokines (IL-1ß, IL-6 and TNF-α) in CM rats. Furthermore, XZDL significantly enhanced α7nAChR expression and its co-localization with GFAP, while markedly inhibited the expression of GFAP and the activation of JAK2/STAT3/NF-κB pathway in the TNC of CM rats. Finally, blocking α7nAChR with MLA reversed the effects of XZDL on astrocytic activation, central sensitization, and the pain-related behaviors in vivo. CONCLUSION: XZDL inhibited astrocytic activation and central sensitization in NTG-induced CM rats by facilitating α7nAChR expression and suppressing JAK2/STAT3/NF-κB pathway, implying that the regulation of α7nAChR-mediated astrocytic activation represents a novel mechanism of XZDL for relieving CM.

6.
Neurourol Urodyn ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979835

ABSTRACT

AIMS: This study aimed to determine the preventive effects of emodin on cyclophosphamide (CYP)-induced cystitis and to explore the molecular mechanism. METHODS: In vivo, mice were modeled by CYP. Before a half hour of CYP treatment, Jumonji domain-containing protein-3 (JMJD3) inhibitors (GSK-J4) and emodin were used to treat CYP model mice. Bladder samples were stained for hematoxylin-eosin and toluidine blue. Next, JMJD3 was quantified by immunofluorescence staining, RT-PCR, and Western blot. CXCR3 was quantified by Western blot and ELISA. In vitro, before stimulated by lipopolysaccharide (LPS), human bladder smooth muscle cells (hBSMCs) were transfected with pcDNA3.1-JMJD3 plasmids, shRNA-JMJD3 plasmids or pretreated with emodin. Collected cells to detect JMJD3 and CXCR3 ligands again; collected supernatant of culture for Transwell assay. Finally, as the JAK2 inhibitor, AG490 was used to pretreat LPS-induced hBSMCs. Western blot was performed to quantify proteins. RESULTS: Emodin inhibited mast cell migration and suppressed the expression of JMJD3, CXCR3, and CXCR3 ligands, not only in vivo but also in vitro. The pharmacological effects of emodin were similar to GSK-J4 or JMJD3 inhibition. In addition, emodin significantly downregulated the phosphorylation of JAK2 and STAT3, and inhibited JMJD3/CXCR3 axis transduction like AG490. CONCLUSION: Emodin has a preventive effect on cystitis by inhibiting mast cell migration through inhibition of the JAK2/STAT3/JMJD3/CXCR3 signaling pathway.

7.
Front Oncol ; 14: 1283428, 2024.
Article in English | MEDLINE | ID: mdl-38974233

ABSTRACT

Radiotherapy (RT) and immune checkpoint inhibitor (ICI) are important treatments for esophageal cancer. Some studies have confirmed the safety and effectiveness of using RT in combination with ICI, while serious side effects have been exhibited by some patients. We report a patient with metastatic esophageal cancer who received RT combined with ICI. The patient experienced severe thrombocytopenia, and treatment with thrombopoietin and corticosteroids were ineffective. Finally, the patient developed abscopal hyperprogression outside the radiation field. Interestingly, next-generation sequencing revealed increased JAK2 gene copies in the surgical slices. The JAK2/STAT3 pathway is involved in the regulation of megakaryocyte development. Recurrent thrombocytopenia may activate the JAK2/STAT3 pathway, leading to megakaryocyte differentiation and platelet biogenesis. However, persistent activation of the JAK2/STAT3 pathway has been associated with immune ICI resistance and tumor progression. This case indicates that thrombocytopenia and increased JAK2 gene copies may be risk factors for poor prognosis after ICI and RT treatment.

8.
Toxicol Appl Pharmacol ; 489: 117017, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38925513

ABSTRACT

Liver fibrosis, a progressive process of fibrous scarring, results from the accumulation of extracellular matrix proteins (ECM). If left untreated, it often progresses to diseases such as cirrhosis and hepatocellular carcinoma. Lycorine, a natural alkaloid derived from medicinal plants, has shown diverse bioactivities by targeting JAK2/STAT3 signaling, but its pharmacological effects and potential molecular mechanisms in liver fibrosis remains largely unexplored. The purpose of this study is to elucidate the pharmacological activity and molecular mechanism of lycorine in anti-hepatic fibrosis. Findings indicate that lycorine significantly inhibited hepatic stellate cells (HSCs) activation by reducing the expression of α-SMA and collagen-1. In vivo, lycorine treatment alleviated carbon tetrachloride (CCl4) -induced mice liver fibrosis, improving liver function, decreasing ECM deposition, and inhibiting fibrosis-related markers' expression. Mechanistically, it was found that lycorine exerts protective activity through the JAK2/STAT3 and PI3K/AKT signaling pathways, as evidenced by transcriptome sequencing technology and small molecule inhibitors. These results underscore lycorine's potential as a therapeutic drug for liver fibrosis.


Subject(s)
Amaryllidaceae Alkaloids , Carbon Tetrachloride , Hepatic Stellate Cells , Janus Kinase 2 , Liver Cirrhosis , Phenanthridines , Proto-Oncogene Proteins c-akt , STAT3 Transcription Factor , Signal Transduction , Animals , Janus Kinase 2/metabolism , STAT3 Transcription Factor/metabolism , Amaryllidaceae Alkaloids/pharmacology , Carbon Tetrachloride/toxicity , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Mice , Male , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/chemically induced , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Phenanthridines/pharmacology , Phenanthridines/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Mice, Inbred C57BL , Cell Line
9.
Inflammation ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886294

ABSTRACT

Abstract-Obesity-related asthma is primarily characterized by nonallergic inflammation, with pathogenesis involving oxidative stress, metabolic imbalance, and immunoinflammatory mechanisms. M1 macrophages, which predominantly secrete pro-inflammatory factors, mediate insulin resistance and systemic metabolic inflammation in obese individuals. Concurrently, adenosine monophosphate-activated protein kinase (AMPK) serves as a critical regulator of intracellular energy metabolism and is closely associated with macrophage activation. However, their specific roles and associated mechanisms in obesity-related asthma remain to be explored. In this study, we investigated the macrophage polarization status and potential interventional mechanisms through obesity-related asthmatic models and lipopolysaccharide (LPS) -treated RAW264.7 cell with a comprehensive series of evaluations, including HE, PAS and Masson staining of lung histopathology, immunohistochemical staining, immunofluorescence technology, qRT-PCR, Western Blot, and ELISA inflammatory factor analysis. The results revealed M1 macrophage polarization in obesity-related asthmatic lung tissue alongside downregulation of AMPK expression. Under LPS stimulation, exogenous AMPK activation attenuated M1 macrophage polarization via the Janus kinase 2/ signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway. Additionally, in obesity-related asthmatic mice, AMPK activation was found to alleviate airway inflammation by regulating M1 macrophage polarization, the mechanism closely associated with the JAK2/STAT3 pathway. These findings not only advance our understanding of macrophage polarization in obesity-related asthma, but also provide new therapeutic targets for its treatment.

10.
Cancer Lett ; : 217067, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38942137

ABSTRACT

Aberrant expression of G protein-coupled receptor class C group 5 member A (GPRC5A) has been reported in multiple cancers and is closely related to patient prognosis. However, the mechanistic role of GPRC5A in gallbladder cancer (GBC) remains unclear. Here, we determined tumor expression levels of GPRC5A and the molecular mechanisms by which GPRC5A regulates gallbladder cancer metastasis. We found that GPRC5A was significantly upregulated in GBC, correlating with poorer patient survival. Knocking down GPRC5A inhibited GBC cell metastasis both in vitro and in vivo. GRPRC5A knockdown resulted in downregulation of TNS4 expression through the JAK2-STAT3 axis. Clinically, GPRC5A expression positively correlated with TNS4. Finally, STAT3 bound to TNS4's promoter region, inducing its expression. Overall, GPRC5A showed high expression in GBC tissues, associated with poor patient prognosis. Our findings first demonstrate that the GPRC5A-JAK2-STAT3-TNS4 pathway promotes GBC cell metastasis, suggesting potential therapy targets.

11.
Mol Med ; 30(1): 98, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943069

ABSTRACT

BACKGROUND: L-theanine is a unique non-protein amino acid in tea that is widely used as a safe food additive. We investigated the cardioprotective effects and mechanisms of L-theanine in myocardial ischemia-reperfusion injury (MIRI). METHODS: The cardioprotective effects and mechanisms of L-theanine and the role of Janus Kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling were investigated in MIRI mice using measures of cardiac function, oxidative stress, and apoptosis. RESULTS: Administration of L-theanine (10 mg/kg, once daily) suppressed the MIRI-induced increase in infarct size and serum creatine kinase and lactate dehydrogenase levels, as well as MIRI-induced cardiac apoptosis, as evidenced by an increase in Bcl-2 expression and a decrease in Bax/caspase-3 expression. Administration of L-theanine also decreased the levels of parameters reflecting oxidative stress, such as dihydroethidium, malondialdehyde, and nitric oxide, and increased the levels of parameters reflecting anti-oxidation, such as total antioxidant capacity (T-AOC), glutathione (GSH), and superoxide dismutase (SOD) in ischemic heart tissue. Further analysis showed that L-theanine administration suppressed the MIRI-induced decrease of phospho-JAK2 and phospho-STAT3 in ischemic heart tissue. Inhibition of JAK2 by AG490 (5 mg/kg, once daily) abolished the cardioprotective effect of L-theanine, suggesting that the JAK2/STAT3 signaling pathway may play an essential role in mediating the anti-I/R effect of L-theanine. CONCLUSIONS: L-theanine administration suppresses cellular apoptosis and oxidative stress in part via the JAK2/STAT3 signaling pathway, thereby attenuating MIRI-induced cardiac injury. L-theanine could be developed as a potential drug to alleviate cardiac damage in MIRI.


Subject(s)
Apoptosis , Glutamates , Janus Kinase 2 , Myocardial Reperfusion Injury , Oxidative Stress , STAT3 Transcription Factor , Signal Transduction , Animals , Janus Kinase 2/metabolism , STAT3 Transcription Factor/metabolism , Oxidative Stress/drug effects , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/etiology , Apoptosis/drug effects , Glutamates/pharmacology , Signal Transduction/drug effects , Male , Mice , Cardiotonic Agents/pharmacology , Cardiotonic Agents/therapeutic use
12.
Neuroscience ; 552: 65-75, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38885894

ABSTRACT

Multiple sclerosis (MS) is an autoimmune inflammatory condition affecting the central nervous system, and experimental autoimmune encephalomyelitis (EAE) animal models have been extensively used to study it. T-helper 17 cells, which produce interleukin-17(IL-17), play crucial roles in MS pathogenesis, and the JAK2/STAT3 pathway has an essential function in their differentiation from naive CD4 + T cells. This study investigated the effects of the JAK2/STAT3 pathway inhibitor AG490 on EAE in vivo and in vitro, as well as the underlying mechanisms. AG490 ameliorated EAE severity and attenuated its typical symptoms by downregulating proteins associated with the JAK2/STAT3 pathway. Furthermore, it decreased T-helper 17 cell differentiation from naive CD4 + T cells by inactivating STAT3. In addition, it conferred protective effects against EAE by restoring autophagy. These findings indicate the potential of AG490 as a candidate anti-MS therapeutic.

13.
Tissue Cell ; 89: 102454, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38905876

ABSTRACT

BACKGROUND: Paraquat (PQ), is an extensively used herbicide and is a well-established powerful neurotoxin. However, the mechanism underlying its neurotoxicity still needs further investigation. AIM OF WORK: The study investigated the pathogenesis of PQ-induced neuroinflammation of the substantia nigra pars compacta (SNPC) and cerebellum and evaluated the potential effect of selenium nanoparticles (SeN) against such neurotoxicity. METHODS: Thirty-six mice were randomly divided into three groups; Control group, PQ group: mice received PQ 10 mg/kg (i.p), and PQ + SeN group; mice received PQ in addition to oral SeN 0.1 mg/kg. All regimens were administered for 14 days. The mice's brains were processed for biochemical, molecular, histological, and immune-histochemical assessment. RESULTS: SeN increased the SNPC and cerebellum antioxidants (reduced glutathione, glutathione peroxidase, and superoxide dismutase 1) while decreasing malondialdehyde concentration. Also, SeN increased the anti-inflammatory interleukin (IL)-10 and decreased the pro-inflammatory IL-1ß and -6 along with improving the angiogenic nitric oxide and reducing caspase-1. Further, western blots of phosphorylated Janus kinase (JAK2)/signal transducer and activator of transcription3 (STAT3) proteins showed a significant decline. Those improving effects of SeN on SNPC, and cerebellum were supported by the significantly preserved dopaminergic and Purkinje neurons, the enhanced myelin fibers on Luxol fast blue staining, and the marked increase in Olig-2, Platelet-derived growth factor-alpha, and tyrosine hydroxylase immunoreactivity. CONCLUSION: SeN could mitigate PQ-induced neurotoxicity via its antioxidant, anti-inflammatory, and antiapoptotic properties.

14.
Immun Inflamm Dis ; 12(6): e1300, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38896093

ABSTRACT

OBJECTIVE: The sequelae of pelvic inflammatory disease (SPID) are major causes of secondary infertility. Modified Hongteng Baijiang decoction (MHTBD) has produced positive results in the treatment of patients with chronic pelvic inflammatory disease; however, its role in SPID remains elusive. Therefore, this study clarified the role of MHTBD in SPID pathogenesis. METHODS: The main components in MHTBD were analyzed by using liquid chromatography‒mass spectrometry (LC/MS). An SPID rat model was established, and the rats were treated with different doses of MHTBD (0.504 g of raw drug/kg, 1.008 g of raw drug/kg, and 2.016 g of raw drug/kg). Endometrial pinopodes were observed via scanning electron microscopy, endometrial thickness and inflammatory cell infiltration were assessed via HE staining, and the expression of estrogen receptor (ER), progesterone receptor (PR), integrin ß3 (ITGB3), and CD31 in the endometrium was detected by using immunohistochemistry. Western blot analysis was used to detect the protein expression of LIF, JAK2, p-JAK2, STAT3, and p-STAT3 in the endometrium. Moreover, the changes in the gut microbiota were analyzed via 16S rRNA sequencing. RESULTS: MHTBD improved endometrial receptivity, attenuated endometrial pathologic damage, reduced inflammatory cell infiltration, decreased ER and PR expression in the endometrium, and promoted the expression of LIF, p-JAK2, and p-STAT3 in the endometrium (p < .05) in SPID rats. Additionally, MHTBD treatment affected the composition of the gut microbiota in SPID rats. Furthermore, MHTBD attenuated endometrial receptivity and pathological damage in SPID rats by promoting the LIF/JAK2/STAT3 pathway. CONCLUSION: MHTBD attenuates SPID in rats by promoting the LIF/JAK2/STAT3 pathway and improving the composition of the gut microbiota. MHTBD may be a valuable drug for SPID therapy.


Subject(s)
Drugs, Chinese Herbal , Gastrointestinal Microbiome , Janus Kinase 2 , Pelvic Inflammatory Disease , STAT3 Transcription Factor , Signal Transduction , Animals , Female , Rats , Disease Models, Animal , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Endometrium/pathology , Endometrium/metabolism , Endometrium/drug effects , Endometrium/microbiology , Gastrointestinal Microbiome/drug effects , Janus Kinase 2/metabolism , Pelvic Inflammatory Disease/drug therapy , Pelvic Inflammatory Disease/microbiology , Rats, Sprague-Dawley , Signal Transduction/drug effects , STAT3 Transcription Factor/metabolism , Male
15.
Life Sci ; 351: 122838, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38897347

ABSTRACT

AIMS: Neuroinflammation plays a pivotal role in amyloid ß (Aß) plaques formation which is among the hallmarks of Alzheimer's disease (AD). The present study investigated the potential therapeutic effects of baricitinib (BAR), a selective JAK2/ STAT3 inhibitor, in ovariectomized/ D-galactose (OVX/D-gal) treated rats as a model for AD. MAIN METHODS: To induce AD, adult female rats (130-180 g) underwent bilateral ovariectomy and were injected daily with 150 mg/kg, i.p. D-gal for 8 consecutive weeks. BAR (10 and 50 mg/kg/day) was then given orally for 14 days. KEY FINDINGS: BAR in a dose-dependent effect mitigated OVX/D-gal-induced aberrant activation of JAK2/STAT3 signaling pathway resulting in significant decreases in the expression of p-JAK 2, and p-STAT3 levels, along with deactivating AKT/PI3K/mTOR signaling as evidenced by deceased protein expression of p-AKT, p-PI3K, and p-mTOR. As a result, neuroinflammation was diminished as evidenced by decreased NF-κß, TNF-α, and IL-6 levels. Moreover, oxidative stress biomarkers levels as iNOS, and MDA were reduced, whereas GSH was increased by BAR. BAR administration also succeeded in reverting histopathological alterations caused by OVX/D-gal, increased the number of intact neurons (detected by Nissl stain), and diminished astrocyte hyperactivity assessed as GFAP immunoreactivity. Finally, treatment with BAR diminished the levels of Aß. These changes culminated in enhancing spatial learning and memory in Morris water maze, and novel object recognition test. SIGNIFICANCE: BAR could be an effective therapy against neuroinflammation, astrogliosis and cognitive impairment induced by OVX/ D-gal where inhibiting JAK2/STAT3- AKT/PI3K/mTOR seems to play a crucial role in its beneficial effect.


Subject(s)
Galactose , Janus Kinase 2 , Memory Disorders , Ovariectomy , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Purines , Pyrazoles , STAT3 Transcription Factor , Signal Transduction , Sulfonamides , TOR Serine-Threonine Kinases , Animals , Female , STAT3 Transcription Factor/metabolism , Rats , Janus Kinase 2/metabolism , TOR Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Sulfonamides/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Pyrazoles/pharmacology , Memory Disorders/drug therapy , Memory Disorders/metabolism , Purines/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Rats, Sprague-Dawley , Azetidines
16.
Exp Cell Res ; 440(1): 114103, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38848951

ABSTRACT

Elevated homocysteine (Hcy) levels have been recognized as significant risk factor for cardiovascular and cerebrovascular diseases, closely related to endothelial injury. While expression of Ciliary Neurotrophic Factor (CNTF) significantly increases during Hcy-induced vascular endothelial cell injury, the precise molecular pathways through which CNTF operates remain to be clarified. To induce vascular endothelial cell injury, human umbilical vein endothelial cells (HUVECs) were treated with Hcy. Cell viability and apoptosis in HUVECs were assessed using the CCK-8 assay and flow cytometry. Western blot analysis determined the expression levels of the JAK2-STAT3 pathway, inflammation-related factors (IL-1ß, NLRP3, ICAM-1, VCAM-1), and apoptosis-related factors (cleaved Caspase-3 and Bax). Immunofluorescence staining and western blotting were employed to examine CD31 and α-SMA expression. Knockdown of CNTF was achieved using lentiviral interference, and its effects on inflammation and cell injury were evaluated. Chromatin immunoprecipitation (ChIP) and dual luciferase reporter analysis were conducted to investigate the interaction between the MAFK and CNTF promoters. Our results indicated that Hcy induced high expression of CNTF and activated the JAK2-STAT3 signaling pathway, thereby upregulating factors associated with inflammation and cell apoptosis. Inhibiting CNTF alleviated Hcy-induced inflammation and cell injury. MAFK was identified as a transcription factor promoting CNTF transcription, and its overexpression exacerbated inflammation and cell injury in Hcy-treated HUVECs through the CNTF-JAK2-STAT3 axis, which could be reversed by knocking down CNTF. Activation of MAFK leads to CNTF upregulation, which activates the JAK2-STAT3 signaling pathway, regulating inflammation and inducing injury in Hcy-exposed vascular endothelial cells. Targeting CNTF or its upstream regulator MAFK may represent potential therapeutic strategies for mitigating endothelial dysfunction associated with hyperhomocysteinemia and cardiovascular diseases.


Subject(s)
Apoptosis , Ciliary Neurotrophic Factor , Homocysteine , Human Umbilical Vein Endothelial Cells , Inflammation , Janus Kinase 2 , STAT3 Transcription Factor , Signal Transduction , Janus Kinase 2/metabolism , Humans , STAT3 Transcription Factor/metabolism , Homocysteine/pharmacology , Homocysteine/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Inflammation/metabolism , Inflammation/pathology , Ciliary Neurotrophic Factor/metabolism , Ciliary Neurotrophic Factor/genetics , Apoptosis/drug effects , Cells, Cultured , Cell Survival/drug effects
17.
Sci Rep ; 14(1): 13430, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862696

ABSTRACT

Previous studies have shown that scutellarin inhibits the excessive activation of microglia, reduces neuronal apoptosis, and exerts neuroprotective effects. However, whether scutellarin regulates activated microglia-mediated neuronal apoptosis and its mechanisms remains unclear. This study aimed to investigate whether scutellarin can attenuate PC12 cell apoptosis induced by activated microglia via the JAK2/STAT3 signalling pathway. Microglia were cultured in oxygen-glucose deprivation (OGD) medium, which acted as a conditioning medium (CM) to activate PC12 cells, to investigate the expression of apoptosis and JAK2/STAT3 signalling-related proteins. We observed that PC12 cells apoptosis in CM was significantly increased, the expression and fluorescence intensity of the pro-apoptotic protein Bax and apoptosis-related protein cleaved caspase-3 were increased, and expression of the anti-apoptotic protein B-cell lymphoma-2 (Bcl-2) was decreased. Phosphorylation levels and fluorescence intensity of the JAK2/STAT3 signalling pathway-related proteins JAK2 and STAT3 decreased. After treatment with scutellarin, PC12 cells apoptosis as well as cleaved caspase-3 and Bax protein expression and fluorescence intensity decreased. The expression and fluorescence intensity of Bcl-2, phosphorylated JAK2, and STAT3 increased. AG490, a specific inhibitor of the JAK2/STAT3 signalling pathway, was used. Our findings suggest that AG490 attenuates the effects of scutellarin. Our study revealed that scutellarin inhibited OGD-activated microglia-mediated PC12 cells apoptosis which was regulated via the JAK2/STAT3 signalling pathway.


Subject(s)
Apigenin , Apoptosis , Glucuronates , Janus Kinase 2 , Microglia , STAT3 Transcription Factor , Signal Transduction , Animals , Apigenin/pharmacology , STAT3 Transcription Factor/metabolism , Janus Kinase 2/metabolism , Glucuronates/pharmacology , PC12 Cells , Apoptosis/drug effects , Microglia/drug effects , Microglia/metabolism , Signal Transduction/drug effects , Rats , Mice , Caspase 3/metabolism , Glucose/metabolism , Neuroprotective Agents/pharmacology , Phosphorylation/drug effects , bcl-2-Associated X Protein/metabolism , Tyrphostins/pharmacology
18.
J Ethnopharmacol ; 333: 118442, 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-38852640

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Jinmaitong (JMT) is a prescription of Traditional Chinese Medicine that is composed of 12 crude drugs. It has been used in the treatment of diabetic neuropathic pain (DNP) for more than 30 years. AIM OF STUDY: Microglia are thought to play an important role in neuropathic pain. This study aimed to evaluate the protective effect of JMT against DNP and to investigate the underlying mechanisms in which the microglia and JAK2/STAT3 signaling pathway were mainly involved. MATERIALS AND METHODS: The chemical composition of JMT was analyzed using liquid chromatography tandem mass spectrometry. The diabetes model was constructed using 11 to 12-week-old male Zucker diabetic fatty (ZDF) rat (fa/fa). The model rats were divided into 5 groups and were given JMT at three dosages (11.6, 23.2, and 46.4 g/kg, respectively, calculated as the crude drug materials), JAK inhibitor AG490 (positive drug, 10 µg/day), and placebo (deionized water), respectively, for eight weeks (n = 6). Meanwhile, Zucker lean controls (fa/+) were given a placebo (n = 6). Body weight was tested weekly and blood glucose was monitored every 2 weeks. The mechanical allodynia and heat hyperalgesia were assessed using mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) tests. After treatment, the microglia activation marker Iba-1, CD11B, CD68, neuroinflammatory mediators, and mediators of the JAK2/STAT3 signaling pathway were compared between different groups. The mRNA and protein levels of target genes were assessed by quantitative real-time PCR and Western Blot, respectively. RESULTS: We found that JMT significantly inhibited the overactivation of microglia in spinal cords, and suppressed neuroinflammation of DNP model rats, thereby ameliorating neurological dysfunction and injuries. Furthermore, these effects of JMT could be attributed to the inhibition of the JAK2/STAT3 signaling pathway. CONCLUSIONS: Our findings suggested that JMT effectively ameliorated DNP by modulating microglia activation via inhibition of the JAK2/STAT3 signaling pathway. The present study provided a basis for further research on the therapeutic strategies of DNP.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Neuropathies , Drugs, Chinese Herbal , Janus Kinase 2 , Microglia , STAT3 Transcription Factor , Signal Transduction , Animals , Male , Rats , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Janus Kinase 2/metabolism , Microglia/drug effects , Microglia/metabolism , Neuralgia/drug therapy , Neuralgia/metabolism , Rats, Zucker , Signal Transduction/drug effects , STAT3 Transcription Factor/metabolism
19.
Oral Dis ; 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38852165

ABSTRACT

OBJECTIVES: Periodontitis seriously affects oral-related quality of life and overall health. Long intergenic non-coding RNA 01126 (LINC01126) is aberrantly expressed in periodontitis tissues. This study aimed to explore the possible pathogenesis of LINC01126 in periodontitis. METHODS: Inflammatory model of human gingival fibroblasts (HGFs) was established. Cell Counting Kit-8 (CCK-8), wound healing assay, and flow cytometry were utilized to detect biological roles of LINC01126. Binding site of miR-655-3p to LINC01126 and IL-6 was predicted. Then, subcellular localization of LINC01126 and the binding ability of miR-655-3p to LINC01126 and IL-6 in HGFs were verified. Hematoxylin-Eosin (H&E) staining and immunohistochemistry (IHC) staining were utilized to detect tissue morphology and proteins expression of clinical samples. RESULTS: LINC01126 silencing can alleviate cell inflammation induced by lipopolysaccharide derived from Porphyromonas gingivalis, reduce cell apoptosis, and promote cell migration. As a "sponge" for miR-655-3p, LINC01126 inhibits its binding to mRNA of IL-6, thereby promoting inflammation progression and JAK2/STAT3 pathway activation. Quantitative real-time PCR, Western Blot, and IHC results of clinical tissue samples further confirmed that miR-655-3p expression was down-regulated and IL-6/JAK2/STAT3 was abnormally activated in periodontitis tissues. CONCLUSIONS: In summary, serving as an endogenous competitive RNA of miR-655-3p, LINC01126 promotes IL-6/JAK2/STAT3 pathway activation, thereby promoting periodontitis pathogenesis.

20.
Front Oncol ; 14: 1340050, 2024.
Article in English | MEDLINE | ID: mdl-38784043

ABSTRACT

Introduction: Although LncRNA JPX has been linked to a number of malignancies, it is yet unknown how it relates to endometrial carcinoma (EC). Investigating the expression, functional activities, and underlying molecular processes of lncRNA JPX in EC was the goal of this work. Methods: RT-qPCR was used to examine the differences in lncRNA/microRNA (miRNA, miR)/mRNA expression between normal cervical and EC tissues or cells. Cell Counting Kit-8, flow cytometry, and transwell were used to evaluate the association between lncRNA JPX/miR-140-3p/phosphoinositide-3-kinase catalytic subunit α (PIK3CA) in Ishikawa and JEC cell lines. The impact of JPX on the downstream janus kinase (JAK)2/signal transducer and activator of transcription (STAT)3 signaling pathway was investigated using Western blot analysis. Results: When comparing EC tissues to nearby normal tissues, JPX expression is markedly increased in EC tissues, with greater expression in advanced-stage EC. Furthermore, compared to normal epithelial cells, EC cell lines have higher levels of JPX expression. In Ishikawa and JEC endometrial cancer cell lines, we used siRNA-mediated suppression of JPX to find lower cell viability, increased apoptosis, cell cycle arrest, and reduced migration and invasion. We next verified that miR-140-3p binds to downstream target cells to impede the transcription and translation of PIK3CA, which in turn prevents the growth of Ishikawa and JEC cells. JPX functions as a ceRNA to adsorb miR-140-3p. This procedure required controlling JAK2/STAT3, a downstream signal. Conclusion: JPX enhances the development of Ishikawa and JEC cells and activates downstream JAK2/STAT3 signal transduction via the miR-140-3p/PIK3CA axis, offering a possible therapeutic target for the treatment of EC.

SELECTION OF CITATIONS
SEARCH DETAIL
...