Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Metabol Open ; 22: 100277, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39011164

ABSTRACT

Adipose tissue is a crucial metabolic organ in the human body. It stores and exerts distinct physiological functions in different body regions. Fat not only serves as a cushion and insulator but also stores energy and conveys endocrine signals within the body. There is a growing recognition that adipose tissue is an organ that is misunderstood and underestimated in contribution to human health and disease progression by regulating its size and functionality. In mammals, the adipose tissue reservoir consists of three functionally distinct types of fat: white adipose tissue (WAT), brown adipose tissue (BAT), and beige or inducible brown adipose tissue (iWAT), which exhibits thermogenic capabilities intermediate between the other two. Fat in different depots exhibits considerable differences in origin, characteristics, and functions. They vary not only in adipocyte lineage, properties, thermogenesis, and endocrine functions but also in their immunological functions. In a recent study published in Nature Metabolism, Zhang et al. investigated the role of JunB in the thermogenic capacity of adipocytes and its significance in obesity and metabolic disorders. The study revealed that JunB expression in BAT coexists with both low and high thermogenic adipocytes, indicating a fundamental feature of heterogeneity and plasticity within BAT. In summary, this article demonstrates that research targeting JunB holds promise for improving diet-induced obesity and insulin resistance, offering new avenues for treating metabolic disorders.

2.
Front Microbiol ; 15: 1342444, 2024.
Article in English | MEDLINE | ID: mdl-38835488

ABSTRACT

HIV-1 relies extensively on host cell machinery for replication. Identification and characterization of these host-virus interactions is vital to our understanding of viral replication and the consequences of infection in cells. Several prior screens have identified host factors important for HIV replication but with limited replication of findings, likely due to differences in experimental design and conditions. Thus, unidentified factors likely exist. To identify novel host factors required for HIV-1 infection, we performed a genome-wide CRISPR/Cas9 screen using HIV-induced cell death as a partitioning method. We created a gene knockout library in TZM-GFP reporter cells using GeCKOv2, which targets 19,050 genes, and infected the library with a lethal dose of HIV-1NL4-3. We hypothesized that cells with a knockout of a gene critical for HIV infection would survive while cells with a knockout of a non-consequential gene would undergo HIV-induced death and be lost from the population. Surviving cells were analyzed by high throughput sequencing of the integrated CRISPR/Cas9 cassette to identify the gene knockout. Of the gene targets, an overwhelming majority of the surviving cells harbored the guide sequence for the AP-1 transcription factor family protein, JunB. Upon the generation of a clonal JunB knockout cell line, we found that HIV-1NL4-3 infection was blocked in the absence of JunB. The phenotype resulted from downregulation of CXCR4, as infection levels were recovered by reintroduction of CXCR4 in JunB KO cells. Thus, JunB downmodulates CXCR4 expression in TZM-GFP cells, reducing CXCR4-tropic HIV infection.

3.
Cells ; 13(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38727318

ABSTRACT

CXCR4, JUNB and PD-L1 are implicated in cancer progression and metastasis. The current study investigated these biomarkers in CTCs isolated from metastatic prostate cancer (mPCa) patients at the RNA and protein levels. CTCs were isolated from 48 mPCa patients using the Ficoll density gradient and ISET system (17 out of 48). The (CK/PD-L1/CD45) and (CK/CXCR4/JUNB) phenotypes were identified using two triple immunofluorescence stainings followed by VyCAP platform analysis. Molecular analysis was conducted with an EpCAM-dependent method for 25/48 patients. CK-8, CK-18, CK-19, JUNB, CXCR4, PD-L1, and B2M (reference gene) were analyzed with RT-qPCR. The (CK+/PD-L1+/CD45-) and the (CK+/CXCR4+/JUNB+) were the most frequent phenotypes (61.1% and 62.5%, respectively). Furthermore, the (CK+/CXCR4+/JUNB-) phenotype was correlated with poorer progression-free survival [(PFS), HR: 2.5, p = 0.049], while the (CK+/PD-L1+/CD45-) phenotype was linked to decreased overall survival [(OS), HR: 262.7, p = 0.007]. Molecular analysis revealed that 76.0% of the samples were positive for CK-8,18, and 19, while 28.0% were positive for JUNB, 44.0% for CXCR4, and 48.0% for PD-L1. Conclusively, CXCR4, JUNB, and PD-L1 were highly expressed in CTCs from mPCa patients. The CXCR4 protein expression was associated with poorer PFS, while PD-L1 was correlated with decreased OS, providing new biomarkers with potential clinical relevance.


Subject(s)
B7-H1 Antigen , Neoplastic Cells, Circulating , Prostatic Neoplasms , Receptors, CXCR4 , Aged , Humans , Male , Middle Aged , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins c-jun/metabolism , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics
4.
Curr Mol Pharmacol ; 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38676510

ABSTRACT

BACKGROUND: Amplification of inosine monophosphate dehydrogenase II, EC 1,1,1,205 (IMPDH2) has been reported in various cancers, which results in transformation and tumorigenicity. In our current work, we have explored the oncogenic properties and the underlying pathophysiology of IMPDH2 in hepatoblastoma (HB). METHODS: To investigate IMPDH2 expression in HB tissues and prognostic significance in HB patients, gene expression profiling interactive analysis (GEPIA) has been adopted. Immunohistochemistry has also helped to validate the protein expression of IMPDH2 in HB tissues. The effect of IMPDH2 overexpression or depletion on the proliferation of Hepatoblastoma cells in vitro has been evaluated by CCK8 assays and colony formation assays. Xenograft tumor growth of mice has been detected. Luciferase reporter assays have been conducted to determine the interaction of IMPDH2 and JunB, which was further asserted by pharmacological inhibition of JunB. RESULTS: IMPDH2 was highly expressed in HB tissues. Experimentally, the proliferation and colony formation of HuH6 cells were increased by IMPDH2 overexpression. Conversely, genetic inactivation of IMPDH2 impaired the proliferative efficiency and colony-forming rate of HepG2 cells. Besides, the luciferase reporter assay validated IMPDH2 overexpression to be associated with enhanced JunB transcriptional activity, while its activity was diminished in the case of IMPDH2 depletion. JunB inhibitor neutralized the IMPDH2-mediated increased phosphorylation of JunB. CONCLUSION: Our findings, thus, suggest that IMPDH2 exhibits its oncogenic role in HB partially via JunB-dependent proliferation.

5.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167194, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38663490

ABSTRACT

Preeclampsia (PE) is a complex disorder affecting pregnant women, leading to significant maternal and fetal morbidity and mortality. Understanding the cellular dynamics and molecular mechanisms underlying PE is crucial for developing effective therapeutic strategies. This study utilized single-cell RNA sequencing (scRNA-seq) to delineate the cellular landscape of the placenta in PE, identifying 11 distinct cell subpopulations, with macrophages playing a pivotal role in mediating cell-cell communication. Specifically, the transcription factor JUNB was found to be a key gene in macrophages from PE samples, influencing the interaction between macrophages and both epithelial and endothelial cells. Functional experiments indicated that interference with JUNB expression promoted macrophage polarization towards an M2 phenotype, which facilitated trophoblast invasion, migration, and angiogenesis. Mechanistically, JUNB regulated the MIIP/PI3K/AKT pathway, as evidenced by gene expression analysis following JUNB knockdown. The study further demonstrated that targeting JUNB could activate the PI3K/AKT pathway by transcriptionally activating MIIP, thus promoting M2 polarization and potentially delaying the onset of PE. These findings present new insights into the pathogenesis of PE and suggest a novel therapeutic approach by modulating macrophage polarization.


Subject(s)
Macrophages , Phosphatidylinositol 3-Kinases , Pre-Eclampsia , Pre-Eclampsia/metabolism , Pre-Eclampsia/pathology , Pre-Eclampsia/genetics , Pregnancy , Female , Humans , Macrophages/metabolism , Macrophages/pathology , Macrophages/immunology , Phosphatidylinositol 3-Kinases/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Placenta/metabolism , Placenta/pathology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Macrophage Activation/genetics , Cell Movement/genetics
6.
Sci Rep ; 14(1): 3679, 2024 02 14.
Article in English | MEDLINE | ID: mdl-38355764

ABSTRACT

In animal species that have the capability of regenerating tissues and limbs, cell proliferation is enhanced after wound healing and is essential for the reconstruction of injured tissue. Although the ability to induce cell proliferation is a common feature of such species, the molecular mechanisms that regulate the transition from wound healing to regenerative cell proliferation remain unclear. Here, we show that upon injury, InhibinßA and JunB cooperatively function for this transition during Xenopus tadpole tail regeneration. We found that the expression of inhibin subunit beta A (inhba) and junB proto-oncogene (junb) is induced by injury-activated TGF-ß/Smad and MEK/ERK signaling in regenerating tails. Similarly to junb knockout (KO) tadpoles, inhba KO tadpoles show a delay in tail regeneration, and inhba/junb double KO (DKO) tadpoles exhibit severe impairment of tail regeneration compared with either inhba KO or junb KO tadpoles. Importantly, this impairment is associated with a significant reduction of cell proliferation in regenerating tissue. Moreover, JunB regulates tail regeneration via FGF signaling, while InhibinßA likely acts through different mechanisms. These results demonstrate that the cooperation of injury-induced InhibinßA and JunB is critical for regenerative cell proliferation, which is necessary for re-outgrowth of regenerating Xenopus tadpole tails.


Subject(s)
Regeneration , Signal Transduction , Animals , Xenopus laevis/metabolism , Larva/genetics , Regeneration/genetics , Cell Proliferation , Tail/physiology
7.
Brain Behav Immun ; 115: 80-88, 2024 01.
Article in English | MEDLINE | ID: mdl-37797778

ABSTRACT

Affective reactivity to stress is a person-level measurement of how well an individual copes with daily stressors. A common method of measuring affective reactivity entails the estimation of within-person differences of either positive or negative affect on days with and without stressors present. Individuals more reactive to common stressors, as evidenced by affective reactivity measurements, have been shown to have increased levels of circulating pro-inflammatory markers. While affective reactivity has previously been associated with inflammatory markers, the upstream mechanistic links underlying these associations are unknown. Using data from the Midlife in the United States (MIDUS) Refresher study (N = 195; 52% female; 84% white), we quantified daily stress processes over 10 days and determined individuals' positive and negative affective reactivities to stressors. We then examined affective reactivity association with peripheral blood mononuclear cell (PBMC) gene expression of the immune-related conserved transcriptional response to adversity. Results indicated that individuals with a greater decrease in positive affect to daily stressors exhibited heightened PBMC JUNB expression after Bonferroni corrections (p-adjusted < 0.05). JUNB encodes a protein that acts as a transcription factor which regulates many aspects of the immune response, including inflammation and cell proliferation. Due to its critical role in the activation of macrophages and maintenance of CD4+ T-cells during inflammation, JUNB may serve as a potential upstream mechanistic target for future studies of the connection between affective reactivity and inflammatory processes. Overall, our findings provide evidence that affective reactivity to stress is associated with levels of immune cell gene expression.


Subject(s)
Leukocytes, Mononuclear , Stress, Psychological , Humans , Female , United States , Male , Stress, Psychological/genetics , Stress, Psychological/psychology , Inflammation/genetics , Individuality , Gene Expression/genetics , Affect/physiology
8.
J Mol Cell Biol ; 15(12)2024 04 10.
Article in English | MEDLINE | ID: mdl-38140943

ABSTRACT

Endothelial damage is the initial and crucial factor in the occurrence and development of vascular complications in diabetic patients, contributing to morbidity and mortality. Although hyperglycemia has been identified as a damaging effector, the detailed mechanisms remain elusive. In this study, identified by ATAC-seq and RNA-seq, JunB reverses the inhibition of proliferation and the promotion of apoptosis in human umbilical vein endothelial cells treated with high glucose, mainly through the cell cycle and p53 signaling pathways. Furthermore, JunB undergoes phase separation in the nucleus and in vitro, mediated by its intrinsic disordered region and DNA-binding domain. Nuclear localization and condensation behaviors are required for JunB-mediated proliferation and apoptosis. Thus, our study uncovers the roles of JunB and its coacervation in repairing vascular endothelial damage caused by high glucose, elucidating the involvement of phase separation in diabetes and diabetic endothelial dysfunction.


Subject(s)
Endothelium, Vascular , Glucose , Human Umbilical Vein Endothelial Cells , Hyperglycemia , Transcription Factors , Humans , Apoptosis , Cell Cycle , Cell Nucleus/metabolism , Cell Proliferation , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Glucose/metabolism , Glucose/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Hyperglycemia/metabolism , Hyperglycemia/pathology , Hyperglycemia/complications , Signal Transduction , Transcription Factors/metabolism , Transcription Factors/genetics , Tumor Suppressor Protein p53/metabolism
9.
JHEP Rep ; 5(11): 100856, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37791375

ABSTRACT

Background & Aims: Circadian rhythms play significant roles in immune responses, and many inflammatory processes in liver diseases are associated with malfunctioning molecular clocks. However, the significance of the circadian clock in autoimmune hepatitis (AIH), which is characterised by immune-mediated hepatocyte destruction and extensive inflammatory cytokine production, remains unclear. Methods: We tested the difference in susceptibility to the immune-mediated liver injury induced by concanavalin A (ConA) at various time points throughout a day in mice and analysed the effects of global, hepatocyte, or myeloid cell deletion of the core clock gene, Bmal1 (basic helix-loop-helix ARNT-like 1), on liver injury and inflammatory responses. Multiple molecular biology techniques and mice with macrophage-specific knockdown of Junb, a Bmal1 target gene, were used to investigate the involvement of Junb in the circadian control of ConA-induced hepatitis. Results: The susceptibility to ConA-induced liver injury is highly dependent on the timing of ConA injection. The treatment at Zeitgeber time 0 (lights on) triggers the highest mortality as well as the severest liver injury and inflammatory responses. Further study revealed that this timing effect was driven by macrophage, but not hepatocyte, Bmal1. Mechanistically, Bmal1 controls the diurnal variation of ConA-induced hepatitis by directly regulating the circadian transcription of Junb and promoting M1 macrophage activation. Inhibition of Junb in macrophages blunts the administration time-dependent effect of ConA and attenuates liver injury. Moreover, we demonstrated that Junb promotes macrophage inflammation by regulating AKT and extracellular signal-regulated kinase (ERK) signalling pathways. Conclusions: Our findings uncover a critical role of the Bmal1-Junb-AKT/ERK axis in the circadian control of ConA-induced hepatitis and provide new insights into the prevention and treatment of AIH. Impact and Implications: This study unveils a critical role of the Bmal1-Junb-AKT/ERK axis in the circadian control of ConA-induced liver injury, providing new insights into the prevention and treatment of immune-mediated hepatitis, including autoimmune hepatitis (AIH). The findings have scientific implications as they enhance our understanding of the circadian regulation of immune responses in liver diseases. Furthermore, clinically, this research offers opportunities for optimising treatment strategies in immune-mediated hepatitis by considering the timing of therapeutic interventions.

10.
Cancers (Basel) ; 15(19)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37835506

ABSTRACT

MicroRNA (miR)-199a-5p has been shown to function as a tumor suppressor in some malignancies but its role in esophageal cancer is poorly understood. To further explore its role in esophageal cancer, we sought to investigate the interaction between miR-199a-5p and Jun-B, an important component of the AP1 transcription factor, which contains a potential binding site for miR-199a-5p in its mRNA. We found that levels of miR-199a-5p are reduced in both human esophageal cancer specimens and in multiple esophageal cancer cell lines compared to esophageal epithelial cells. Jun-B expression is correspondingly elevated in these tumor specimens and in several cell lines compared to esophageal epithelial cells. Jun-B mRNA expression and stability, as well as protein expression, are markedly decreased following miR-199a-5p overexpression. A direct interaction between miR-199a-5p and Jun-B mRNA was confirmed by a biotinylated RNA-pull down assay and luciferase reporter constructs. Either forced expression of miR-199a-5p or Jun-B silencing led to a significant decrease in cellular proliferation as well as in AP-1 promoter activity. Our results provide evidence that miR-199a-5p functions as a tumor suppressor in esophageal cancer cells by regulating cellular proliferation, partially through repression of Jun B.

11.
Cancers (Basel) ; 15(20)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37894348

ABSTRACT

Reciprocal signaling between melanoma brain metastatic (MBM) cells and microglia reprograms the phenotype of both interaction partners, including upregulation of the transcription factor JunB in microglia. Here, we aimed to elucidate the impact of microglial JunB upregulation on MBM progression. For molecular profiling, we employed RNA-seq and reverse-phase protein array (RPPA). To test microglial JunB functions, we generated microglia variants stably overexpressing JunB (JunBhi) or with downregulated levels of JunB (JunBlo). Melanoma-derived factors, namely leukemia inhibitory factor (LIF), controlled JunB upregulation through Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signaling. The expression levels of JunB in melanoma-associated microglia were heterogeneous. Flow cytometry analysis revealed the existence of basal-level JunB-expressing microglia alongside microglia highly expressing JunB. Proteomic profiling revealed a differential protein expression in JunBhi and JunBlo cells, namely the expression of microglia activation markers Iba-1 and CD150, and the immunosuppressive molecules SOCS3 and PD-L1. Functionally, JunBhi microglia displayed decreased migratory capacity and phagocytic activity. JunBlo microglia reduced melanoma proliferation and migration, while JunBhi microglia preserved the ability of melanoma cells to proliferate in three-dimensional co-cultures, that was abrogated by targeting leukemia inhibitory factor receptor (LIFR) in control microglia-melanoma spheroids. Altogether, these data highlight a melanoma-mediated heterogenous effect on microglial JunB expression, dictating the nature of their functional involvement in MBM progression. Targeting microglia highly expressing JunB may potentially be utilized for MBM theranostics.

12.
Chem Biol Interact ; 384: 110687, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37657595

ABSTRACT

The activating protein-1 (AP-1) transcription factors (TFs) have been associated with many different cancer types and are promising therapeutic targets in logical malignancies. However, the mechanisms of their role in multiple myeloma (MM) remain elusive. The present study determined and compared the mRNA and protein expression levels of the AP-1 family member JunB in CD138+ mononuclear cells from MM patients and healthy donors. Herein, we investigated the effect of T-5224, an inhibitor of JUN/AP-1, on MM. We found that the cytotoxicity of T-5224 toward myeloma is due to its ability to induce cell apoptosis, inhibit proliferation, and induce cell cycle arrest by increasing the levels of cleaved caspase3/7 and concomitantly inhibiting the IRF4/MYC axis. We also noticed that siJunB-mediated deletion of JunB/AP-1 enhanced MM cell apoptosis and affected cell proliferation. The software PROMO was used in the present study to predict the AP-1 TF that may bind the promoter region of IRF4. We confirmed the correlation between JunB/AP-1 and IRF4. Given that bortezomib (BTZ) facilitates IRF4 degradation in MM cells, we applied combination treatment of BTZ with T-5224. T-5224 and BTZ exerted synergistic effects, and T-5224 reversed the effect of BTZ on CD138+ primary resistance in MM cells, in part due to suppression of the IRF4/MYC axis. Our results suggest that targeting AP-1 TFs is a promising therapeutic strategy for MM. Additionally, targeting both AP-1 and IRF4 with T-5224 may be a synergistic therapeutic strategy for this clinically challenging subset of MM.


Subject(s)
Antineoplastic Agents , Multiple Myeloma , Humans , Bortezomib/pharmacology , Bortezomib/therapeutic use , Transcription Factor AP-1 , Benzophenones , Isoxazoles , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Cell Line, Tumor , Apoptosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
13.
Front Cell Infect Microbiol ; 13: 1222265, 2023.
Article in English | MEDLINE | ID: mdl-37731821

ABSTRACT

Jun B proto-oncogene (JunB) is a crucial member of dimeric activator protein-1 (AP-1) complex, which plays a significant role in various physiological processes, such as placental formation, cardiovascular development, myelopoiesis, angiogenesis, endochondral ossification and epidermis tissue homeostasis. Additionally, it has been reported that JunB has great regulatory functions in innate and adaptive immune responses by regulating the differentiation and cytokine secretion of immune cells including T cells, dendritic cells and macrophages, while also facilitating the effector of neutrophils and natural killer cells. Furthermore, a growing body of studies have shown that JunB is involved in tumorigenesis through regulating cell proliferation, differentiation, senescence and metastasis, particularly affecting the tumor microenvironment through transcriptional promotion or suppression of oncogenes in tumor cells or immune cells. This review summarizes the physiological function of JunB, its immune regulatory function, and its contribution to tumorigenesis, especially focusing on its regulatory mechanisms within tumor-associated immune processes.


Subject(s)
Neoplasms , Placenta , Female , Pregnancy , Humans , Carcinogenesis , Cell Transformation, Neoplastic , Immunity , Tumor Microenvironment , Transcription Factors
14.
Kobe J Med Sci ; 69(3): E86-E95, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37661632

ABSTRACT

We previously reported that hepatitis C virus (HCV) infection activates the reactive oxygen species (ROS)/c-Jun N-terminal kinase (JNK) signaling pathway. Activation of JNK contributes to the development of liver diseases, including metabolic disorders, steatosis, liver cirrhosis and hepatocellular carcinoma. JNK is known to have numerous target genes, including JunB, a member of activator protein-1 transcription factor family. However, the roles of JunB in the HCV life cycle and HCV-associated pathogenesis remain unclear. To clarify a physiological role of JunB in HCV infection, we investigated the phosphorylation of JunB in HCV J6/JFH1-infected Huh-7.5 cells. Immunoblot analysis revealed that HCV-induced ROS/JNK activation promoted phosphorylation of JunB. The small interfering RNA (siRNA) knockdown of JunB significantly increased the amount of intracellular HCV RNA as well as the intracellular and extracellular HCV infectivity titers. Conversely, overexpression of JunB significantly reduced the amount of intracellular HCV RNA and the intracellular and extracellular HCV infectivity titers. These results suggest that JunB plays a role in inhibiting HCV propagation. Additionally, HCV-mediated JunB activation promoted hepcidin promoter activity and hepcidin mRNA levels, a key factor in modulating iron homeostasis, suggesting that JunB is involved in HCV-induced transcriptional upregulation of hepcidin. Taken together, we propose that the HCV-induced ROS/JNK/JunB signaling pathway plays roles in inhibiting HCV replication and contributing to HCV-mediated iron metabolism disorder.


Subject(s)
Hepatitis C , Liver Neoplasms , Humans , Hepacivirus , Hepcidins , Reactive Oxygen Species , Transcription Factors , RNA , Virus Replication
15.
Acta Biochim Biophys Sin (Shanghai) ; 55(11): 1784-1796, 2023 11 25.
Article in English | MEDLINE | ID: mdl-37337631

ABSTRACT

Currently, platinum-containing regimens are the most commonly used regimens for advanced gastric cancer patients, and chemotherapy resistance is one of the main reasons for treatment failure. Thus, it is important to reveal the mechanism of oxaliplatin resistance and to seek effective intervention strategies to improve chemotherapy sensitivity, thereby improving the survival and prognosis of gastric cancer patients. To understand the molecular mechanisms of oxaliplatin resistance, we generate an oxaliplatin-resistant gastric cancer cell line and conduct assay for transposase-accessible chromatin sequencing (ATAC-seq) and RNA sequencing (RNA-seq) for both parental and oxaliplatin-resistant AGS cells. A total of 3232 genomic regions are identified to have higher accessibility in oxaliplatin-resistant cells, and DNA-binding motif analysis identifies JUNB as the core transcription factor in the regulatory network. JUNB is overexpressed in oxaliplatin-resistant gastric cancer cells, and its upregulation is associated with poor prognosis in gastric cancer patients, which is validated by our tissue microarray data. Moreover, chromatin immunoprecipitation sequencing (ChIP-seq) analysis reveals that JUNB binds to the transcriptional start site of key genes involved in the MAPK signaling pathway. Knockdown of JUNB inhibits the MAPK signaling pathway and restores sensitivity to oxaliplatin. Combined treatment with the ERK inhibitor piperlongumine or MEK inhibitor trametinib effectively overcomes oxaliplatin resistance. This study provides evidence that JUNB mediates oxaliplatin resistance in gastric cancer by activating the MAPK pathway. The combination of MAPK inhibitors with oxaliplatin overcomes resistance to oxaliplatin, providing a promising treatment opportunity for oxaliplatin-resistant gastric cancer patients.


Subject(s)
Stomach Neoplasms , Humans , Oxaliplatin/pharmacology , Oxaliplatin/therapeutic use , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Chromatin/genetics , Transcriptome , Signal Transduction
17.
Biochem Biophys Res Commun ; 663: 32-40, 2023 06 30.
Article in English | MEDLINE | ID: mdl-37119763

ABSTRACT

Cadherins are transmembrane proteins that mediate cell-to-cell adhesion and various cellular processes. In Sertoli cells of the testis, Cdh2 contributes to the development of the testis and the formation of the blood-testis barrier, being essential for germ cells' protection. Analyses of chromatin accessibility and epigenetic marks in adult mouse testis have shown that the region from -800 to +900 bp respective to Cdh2 transcription start site (TSS) is likely the active regulatory region of this gene. In addition, the JASPAR 2022 matrix has predicted an AP-1 binding element at about -600 bp. Transcription factors of the activator protein 1 (AP-1) family have been implicated in the regulation of the expression of genes encoding cell-to-cell interaction proteins such as Gja1, Nectin2 and Cdh3. To test the potential regulation of Cdh2 by members of the AP-1 family, siRNAs were transfected into TM4 Sertoli cells. The knockdown of Junb led to a decrease in Cdh2 expression. ChIP-qPCR and luciferase reporter assays with site-directed mutagenesis confirmed the recruitment of Junb to several AP-1 regulatory elements in the proximal region of the Cdh2 promoter in TM4 cells. Further investigation with luciferase reporter assays showed that other AP-1 members can also activate the Cdh2 promoter albeit to a lesser extent than Junb. Taken together, these data suggest that in TM4 Sertoli cells, Junb is responsible for the regulation of Cdh2 expression which requires its recruitment to the proximal region of the Cdh2 promoter.


Subject(s)
Sertoli Cells , Transcription Factor AP-1 , Mice , Male , Animals , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Sertoli Cells/metabolism , Testis/metabolism , Cadherins/genetics , Cadherins/metabolism , Luciferases/metabolism , Transcription Factors/metabolism
18.
ESMO Open ; 8(1): 100751, 2023 02.
Article in English | MEDLINE | ID: mdl-36652782

ABSTRACT

Developing better treatments that work for the majority of patients with brain metastasis (BM) is highly necessary. Complementarily, avoiding those therapeutic procedures that will not benefit a specific patient is also very relevant. In general, existing therapies for patients with BM could be improved in terms of molecular stratification and therapeutic efficacy. By questioning the benefit of whole brain radiotherapy as provided nowadays and the lack of biomarkers detecting radioresistance, we identified S100A9 and receptor for advanced glycation end-products (RAGE) as a liquid biopsy biomarker and a potential target for a radiosensitizer, respectively. Both of them are being clinically tested as part of the first comprehensive molecular strategy to personalized radiotherapy in BM.


Subject(s)
Calgranulin B , Neoplasms , Humans , Receptor for Advanced Glycation End Products/metabolism , Biomarkers
19.
Cancers (Basel) ; 15(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36672507

ABSTRACT

Epithelial-mesenchymal transition (EMT) fosters cancer cell invasion and metastasis, the main cause of cancer-related mortality. Growing evidence that SNAIL and ZEB transcription factors, typically portrayed as master regulators of EMT, may be dispensable for this process, led us to re-investigate its mechanistic underpinnings. For this, we used an unbiased computational approach that integrated time-resolved analyses of chromatin structure and differential gene expression, to predict transcriptional regulators of TGFß1-inducible EMT in the MCF10A mammary epithelial cell line model. Bioinformatic analyses indicated comparatively minor contributions of SNAIL proteins and ZEB1 to TGFß1-induced EMT, whereas the AP-1 subunit JUNB was anticipated to have a much larger impact. CRISPR/Cas9-mediated loss-of-function studies confirmed that TGFß1-induced EMT proceeded independently of SNAIL proteins and ZEB1. In contrast, JUNB was necessary and sufficient for EMT in MCF10A cells, but not in A549 lung cancer cells, indicating cell-type-specificity of JUNB EMT-regulatory capacity. Nonetheless, the JUNB-dependence of EMT-associated transcriptional reprogramming in MCF10A cells allowed to define a gene expression signature which was regulated by TGFß1 in diverse cellular backgrounds, showed positively correlated expression with TGFß signaling in multiple cancer transcriptomes, and was predictive of patient survival in several cancer types. Altogether, our findings provide novel mechanistic insights into the context-dependent control of TGFß1-driven EMT and thereby may lead to improved diagnostic and therapeutic options.

20.
Mol Reprod Dev ; 90(1): 27-41, 2023 01.
Article in English | MEDLINE | ID: mdl-36468795

ABSTRACT

In Sertoli cells of the testis, cadherins (Cdh) are important cell-to-cell interaction proteins and contribute to the formation of the blood-testis barrier being essential for germ cells' protection. P-cadherin or Cdh3 is only expressed in Sertoli cells from embryonic to prepubertal development. Interestingly, the expression profile of Cdh3 correlates with that of activating protein-1 (AP-1) transcription factors during Sertoli cells development. To assess their potential implications in the regulation of Cdh3, different AP-1 transcription factors were overexpressed in 15P-1 Sertoli cells. We found that the overexpressions of Junb and Fosl2 activated Cdh3 promoter. ChIP-qPCR assay and luciferase reporter assay with 5' promoter deletions and site-directed mutagenesis confirmed the recruitment of Junb and Fosl2 to an AP-1 regulatory element at -47 bp in the proximal region of Cdh3 promoter in 15P-1 cells. These findings were further supported by histone modification markers and chromatin accessibility surrounding Cdh3 promoter in mouse testis. Moreover, the knockdowns of Junb and/or Fosl2 by siRNA decreased Cdh3 protein levels. Taken together, these data suggest that in 15P-1 Sertoli cells, the AP-1 family members Junb and Fosl2 are responsible for the regulation of Cdh3 expression, which requires the recruitment of both factors to the proximal region of the Cdh3 promoter.


Subject(s)
Sertoli Cells , Transcription Factor AP-1 , Animals , Male , Mice , Cadherins/genetics , Cadherins/metabolism , Promoter Regions, Genetic , Sertoli Cells/metabolism , Testis/metabolism , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...