Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Antiviral Res ; 229: 105952, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945484

ABSTRACT

Argentine hemorrhagic fever, caused by Junín virus (JUNV), is the most common of the South American arenaviral hemorrhagic fevers. The disease has a case fatality rate of 15-30% in untreated patients. Although early intervention with immune plasma is effective, diminishing stocks and limited availability outside of Argentina underscores the need for new therapeutics. Ideally, these would be broadly active agents effective against all the pathogenic arenaviruses. The fusion inhibitor LHF-535 and the nucleoside analog favipiravir have shown promise in animal models of Lassa fever, a disease endemic in parts of Africa and the most prominent of the arenaviral hemorrhagic fevers. Against JUNV, a high dose of favipiravir is required to achieve protection in the gold-standard guinea pig infection model. Here, we demonstrate a synergistic effect by the coadministration of LHF-535 with a sub-optimal dose of favipiravir in guinea pigs challenged with JUNV. Administered individually, LHF-535 and sub-optimal favipiravir only delayed the onset of severe disease. However, combined dosing of the drugs afforded complete protection against lethal JUNV infection in guinea pigs. The benefits of the drug combination were also evident by the absence of viremia and infectious virus in tissues compared to guinea pigs treated with only the placebos. Thus, combined targeting of JUNV-endosomal membrane fusion and the viral polymerase with pan-arenaviral LHF-535 and favipiravir may expand their indication beyond Lassa fever, providing a significant barrier to drug resistance.

2.
J Virol ; 98(4): e0011224, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38506509

ABSTRACT

Live-attenuated virus vaccines provide long-lived protection against viral disease but carry inherent risks of residual pathogenicity and genetic reversion. The live-attenuated Candid#1 vaccine was developed to protect Argentines against lethal infection by the Argentine hemorrhagic fever arenavirus, Junín virus. Despite its safety and efficacy in Phase III clinical study, the vaccine is not licensed in the US, in part due to concerns regarding the genetic stability of attenuation. Previous studies had identified a single F427I mutation in the transmembrane domain of the Candid#1 envelope glycoprotein GPC as the key determinant of attenuation, as well as the propensity of this mutation to revert upon passage in cell culture and neonatal mice. To ascertain the consequences of this reversion event, we introduced the I427F mutation into recombinant Candid#1 (I427F rCan) and investigated the effects in two validated small-animal models: in mice expressing the essential virus receptor (human transferrin receptor 1; huTfR1) and in the conventional guinea pig model. We report that I427F rCan displays only modest virulence in huTfR1 mice and appears attenuated in guinea pigs. Reversion at another attenuating locus in Candid#1 GPC (T168A) was also examined, and a similar pattern was observed. By contrast, virus bearing both revertant mutations (A168T+I427F rCan) approached the lethal virulence of the pathogenic Romero strain in huTfR1 mice. Virulence was less extreme in guinea pigs. Our findings suggest that genetic stabilization at both positions is required to minimize the likelihood of reversion to virulence in a second-generation Candid#1 vaccine.IMPORTANCELive-attenuated virus vaccines, such as measles/mumps/rubella and oral poliovirus, provide robust protection against disease but carry with them the risk of genetic reversion to the virulent form. Here, we analyze the genetics of reversion in the live-attenuated Candid#1 vaccine that is used to protect against Argentine hemorrhagic fever, an often-lethal disease caused by the Junín arenavirus. In two validated small-animal models, we find that restoration of virulence in recombinant Candid#1 viruses requires back-mutation at two positions specific to the Candid#1 envelope glycoprotein GPC, at positions 168 and 427. Viruses bearing only a single change showed only modest virulence. We discuss strategies to genetically harden Candid#1 GPC against these two reversion events in order to develop a safer second-generation Candid#1 vaccine virus.


Subject(s)
Hemorrhagic Fever, American , Junin virus , Viral Vaccines , Animals , Guinea Pigs , Humans , Mice , Glycoproteins/genetics , Hemorrhagic Fever, American/prevention & control , Junin virus/physiology , South American People , Vaccines, Attenuated/genetics , Viral Vaccines/genetics , Virulence
3.
J Virol ; 98(2): e0197523, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38294249

ABSTRACT

The highly pathogenic arenavirus, Junín virus (JUNV), expresses three truncated alternative isoforms of its nucleoprotein (NP), i.e., NP53kD, NP47kD, and NP40kD. While both NP47kD and NP40kD have been previously shown to be products of caspase cleavage, here, we show that expression of the third isoform NP53kD is due to alternative in-frame translation from M80. Based on this information, we were able to generate recombinant JUNVs lacking each of these isoforms. Infection with these mutants revealed that, while all three isoforms contribute to the efficient control of caspase activation, NP40kD plays the predominant role. In contrast to full-length NP (i.e., NP65kD), which is localized to inclusion bodies, where viral RNA synthesis takes place, the loss of portions of the N-terminal coiled-coil region in these isoforms leads to a diffuse cytoplasmic distribution and a loss of function in viral RNA synthesis. Nonetheless, NP53kD, NP47kD, and NP40kD all retain robust interferon antagonistic and 3'-5' exonuclease activities. We suggest that the altered localization of these NP isoforms allows them to be more efficiently targeted by activated caspases for cleavage as decoy substrates, and to be better positioned to degrade viral double-stranded (ds)RNA species that accumulate in the cytoplasm during virus infection and/or interact with cytosolic RNA sensors, thereby limiting dsRNA-mediated innate immune responses. Taken together, this work provides insight into the mechanism by which JUNV leverages apoptosis during infection to generate biologically distinct pools of NP and contributes to our understanding of the expression and biological relevance of alternative protein isoforms during virus infection.IMPORTANCEA limited coding capacity means that RNA viruses need strategies to diversify their proteome. The nucleoprotein (NP) of the highly pathogenic arenavirus Junín virus (JUNV) produces three N-terminally truncated isoforms: two (NP47kD and NP40kD) are known to be produced by caspase cleavage, while, here, we show that NP53kD is produced by alternative translation initiation. Recombinant JUNVs lacking individual NP isoforms revealed that all three isoforms contribute to inhibiting caspase activation during infection, but cleavage to generate NP40kD makes the biggest contribution. Importantly, all three isoforms retain their ability to digest double-stranded (ds)RNA and inhibit interferon promoter activation but have a diffuse cytoplasmic distribution. Given the cytoplasmic localization of both aberrant viral dsRNAs, as well as dsRNA sensors and many other cellular components of innate immune activation pathways, we suggest that the generation of NP isoforms not only contributes to evasion of apoptosis but also robust control of the antiviral response.


Subject(s)
Caspases , Cytoplasm , Hemorrhagic Fever, American , Host-Pathogen Interactions , Immunity, Innate , Junin virus , Nucleoproteins , Protein Biosynthesis , Humans , Apoptosis , Caspase Inhibitors/metabolism , Caspases/metabolism , Cytoplasm/metabolism , Cytoplasm/virology , Enzyme Activation , Hemorrhagic Fever, American/immunology , Hemorrhagic Fever, American/virology , Interferons/genetics , Interferons/immunology , Junin virus/genetics , Junin virus/metabolism , Junin virus/pathogenicity , Nucleoproteins/biosynthesis , Nucleoproteins/genetics , Nucleoproteins/metabolism , Protein Isoforms/biosynthesis , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , RNA, Viral/biosynthesis , RNA, Viral/genetics , Virus Replication
5.
Viruses ; 15(9)2023 08 26.
Article in English | MEDLINE | ID: mdl-37766225

ABSTRACT

The mammarenavirus Junín (JUNV) is the causative agent of Argentine hemorrhagic fever, a severe disease of public health concern. The most abundant viral protein is the nucleoprotein (NP), a multifunctional, two-domain protein with the primary role as structural component of the viral nucleocapsids, used as template for viral polymerase RNA synthesis activities. Here, we report that the C-terminal domain (CTD) of the attenuated Candid#1 strain of the JUNV NP can be purified as a stable soluble form with a secondary structure in line with known NP structures from other mammarenaviruses. We show that the JUNV NP CTD interacts with the viral matrix protein Z in vitro, and that the full-length NP and Z interact with each other in cellulo, suggesting that the NP CTD is responsible for this interaction. This domain comprises an arrangement of four acidic residues and a histidine residue conserved in the active site of exoribonucleases belonging to the DEDDh family. We show that the JUNV NP CTD displays metal-ion-dependent nuclease activity against DNA and single- and double-stranded RNA, and that this activity is impaired by the mutation of a catalytic residue within the DEDDh motif. These results further support this activity, not previously observed in the JUNV NP, which could impact the mechanism of the cellular immune response modulation of this important pathogen.


Subject(s)
Arenaviridae , Junin virus , Junin virus/genetics , Nucleoproteins/genetics , Catalysis , Exoribonucleases
6.
Viruses ; 15(8)2023 08 15.
Article in English | MEDLINE | ID: mdl-37632083

ABSTRACT

There is no specific chemotherapy approved for the treatment of pathogenic arenaviruses that cause severe hemorrhagic fever (HF) in the population of endemic regions in America and Africa. The present study reports the effects of the natural flavonoid quercetin (QUER) on the infection of A549 and Vero cells with Junín virus (JUNV), agent of the Argentine HF. By infectivity assays, a very effective dose-dependent reduction of JUNV multiplication was shown by cell pretreatment at 2-6 h prior to the infection at non-cytotoxic concentrations, with 50% effective concentration values in the range of 6.1-7.5 µg/mL. QUER was also active by post-infection treatment but with minor efficacy. Mechanistic studies indicated that QUER mainly affected the early steps of virus adsorption and internalization in the multiplication cycle of JUNV. Treatment with QUER blocked the phosphorylation of Akt without changes in the total protein expression, detected by Western blot, and the consequent perturbation of the PI3K/Akt pathway was also associated with the fluorescence redistribution from membrane to cytoplasm of TfR1, the cell receptor recognized by JUNV. Then, it appears that the cellular antiviral state, induced by QUER treatment, leads to the prevention of JUNV entry into the cell.


Subject(s)
Arenaviridae Infections , Arenavirus , Chlorocebus aethiops , Animals , Quercetin/pharmacology , Flavonoids , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Vero Cells
7.
Virulence ; 14(1): 2231392, 2023 12.
Article in English | MEDLINE | ID: mdl-37394841

ABSTRACT

Mammarenaviruses, a genus of the family Arenaviridae, are capable of infecting mammals and are primarily found in rodent reservoirs worldwide. Mammarenaviruses can be transmitted to humans through contact with infected rodents, and though infection is often asymptomatic, some members of this genus can cause viral haemorrhagic fever which has mortality rates ranging from 1% to 50%. These viruses are typically restricted geographically, based on the geographical range of their host reservoirs. Lymphocytic choriomeningitis virus (LCMV) was previously thought to be the only mammarenavirus found across the globe. However, recent discoveries of two novel human mammarenaviruses, Wenzhou Virus (WENV) and Plateau Pika Virus (PPV), in Asia and Southeast Asia show that mammarenaviruses are more widespread than previously thought. This editorial article aims to raise awareness about these emerging viruses, their genetic and ecological diversities, and clinical significance, and to encourage further study of these emerging viruses.


Subject(s)
Arenaviridae , Animals , Humans , Arenaviridae/genetics , Lymphocytic choriomeningitis virus , Asia, Southeastern/epidemiology , Asia , Mammals
8.
Front Immunol ; 14: 1172792, 2023.
Article in English | MEDLINE | ID: mdl-37334351

ABSTRACT

Junin virus (JUNV) is a member of the Arenaviridae family of viruses and is the pathogen responsible for causing Argentine hemorrhagic fever, a potentially lethal disease endemic to Argentina. A live attenuated vaccine for human use, called Candid#1, is approved only in Argentina. Candid#1 vaccine strain of Junin virus was obtained through serial passage in mouse brain tissues followed by passage in Fetal Rhesus macaque lung fibroblast (FRhL) cells. Previously, the mutations responsible for attenuation of this virus in Guinea pigs were mapped in the gene encoding for glycoprotein precursor (GPC) protein. The resulting Candid#1 glycoprotein complex has been shown to cause endoplasmic reticulum (ER) stress in vitro resulting in the degradation of the GPC. To evaluate the attenuating properties of specific mutations within GPC, we created recombinant viruses expressing GPC mutations specific to key Candid#1 passages and evaluated their pathogenicity in our outbred Hartley guinea pig model of Argentine hemorrhagic fever. Here, we provide evidence that early mutations in GPC obtained through serial passaging attenuate the visceral disease and increase immunogenicity in guinea pigs. Specific mutations acquired prior to the 13th mouse brain passage (XJ13) are responsible for attenuation of the visceral disease while having no impact on the neurovirulence of Junin virus. Additionally, our findings demonstrate that the mutation within an N-linked glycosylation motif, acquired prior to the 44th mouse brain passage (XJ44), is unstable but necessary for complete attenuation and enhanced immunogenicity of Candid#1 vaccine strain. The highly conserved N-linked glycosylation profiles of arenavirus glycoproteins could therefore be viable targets for designing attenuating viruses for vaccine development against other arenavirus-associated illnesses.


Subject(s)
Hemorrhagic Fever, American , Junin virus , Humans , Animals , Guinea Pigs , Mice , Junin virus/genetics , Macaca mulatta/metabolism , Glycoproteins/metabolism , Mutation
9.
Emerg Microbes Infect ; 12(2): 2223732, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37306620

ABSTRACT

N6-methyladenosine (m6A) is one of the most abundant modifications of cellular RNA, where it serves various functions. m6A methylation of many viral RNA species has also been described; however, little is known about the m6A epitranscriptome of haemorrhagic fever-causing viruses like Ebola virus (EBOV). Here, we analysed the importance of the methyltransferase METTL3 for the life cycle of this virus. We found that METTL3 interacts with the EBOV nucleoprotein and the transcriptional activator VP30 to support viral RNA synthesis, and that METTL3 is recruited into EBOV inclusions bodies, where viral RNA synthesis occurs. Analysis of the m6A methylation pattern of EBOV mRNAs showed that they are methylated by METTL3. Further studies revealed that METTL3 interaction with the viral nucleoprotein, as well as its importance for RNA synthesis and protein expression, is also observed for other haemorrhagic fever viruses such as Junín virus (JUNV) and Crimean-Congo haemorrhagic fever virus (CCHFV). The negative effects on viral RNA synthesis due to loss of m6A methylation are independent of innate immune sensing, as METTL3 knockout did not affect type I interferon induction in response to viral RNA synthesis or infection. Our results suggest a novel function for m6A that is conserved among diverse haemorrhagic fever-causing viruses (i.e. EBOV, JUNV and CCHFV), making METTL3 a promising target for broadly-acting antivirals.


Subject(s)
Dengue Virus , Ebolavirus , Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Ebola , Humans , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Ebolavirus/genetics , RNA, Viral/genetics , RNA, Viral/metabolism , Dengue Virus/genetics , Nucleoproteins , Methyltransferases/genetics
11.
Vaccines (Basel) ; 11(3)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36992218

ABSTRACT

The viral family Arenaviridae contains several members that cause severe, and often lethal, diseases in humans. Several highly pathogenic arenaviruses are classified as Risk Group 4 agents and must be handled in the highest biological containment facility, biosafety level-4 (BSL-4). Vaccines and treatments are very limited for these pathogens. The development of vaccines is crucial for the establishment of countermeasures against highly pathogenic arenavirus infections. While several vaccine candidates have been investigated, there are currently no approved vaccines for arenavirus infection except for Candid#1, a live-attenuated Junin virus vaccine only licensed in Argentina. Current platforms under investigation for use include live-attenuated vaccines, recombinant virus-based vaccines, and recombinant proteins. We summarize here the recent updates of vaccine candidates against arenavirus infections.

12.
Viruses ; 15(2)2023 01 28.
Article in English | MEDLINE | ID: mdl-36851583

ABSTRACT

Junín virus (JUNV), a member of the family Arenaviridae, is the etiological agent of the Argentine hemorrhagic fever, an endemic disease in the rural region of Argentina lacking a specific chemotherapy. Aryl hydrocarbon receptor (AHR) is expressed in several mammalian tissues and has been indicated as a sensor of ligands from variable sources and a modulator of the cell immune response. Interestingly, recent studies have suggested that the activation or depression of the AHR signaling pathway may play a role in the outcome of diverse human viral infections. In the present report, the effect of the pharmacological modulation of AHR on JUNV in vitro infection was analyzed. An initial microarray screening showed that the AHR pathway was overexpressed in JUNV-infected hepatic cells. Concomitantly, the infection of Vero and Huh-7 cells with the JUNV strains IV4454 and Candid#1 was significantly inhibited in a dose-dependent manner by treatment with CH223191, a specific AHR antagonist, as detected by infectivity assays, real-time RT-PCR and immunofluorescence detection of viral proteins. Furthermore, the pro-viral role of AHR in JUNV infection appears to be independent of the IFN-I pathway. Our findings support the promising perspectives of the pharmacological modulation of AHR as a potential target for the control of AHF.


Subject(s)
Arenaviridae , Junin virus , Animals , Humans , Argentina , Mammals , Receptors, Aryl Hydrocarbon/genetics , Signal Transduction , Virus Replication
13.
Rev Med Virol ; 33(2): e2419, 2023 03.
Article in English | MEDLINE | ID: mdl-36635519

ABSTRACT

Junin virus consists of ribonucleic acid as the genome and is responsible for a rapidly changing tendency of the virus. The virus is accountable for ailments in the human body and causes Argentine Haemorrhagic Fever (AHF). The infection is may be transmitted through contact between an infected animal/host and a person, and later between person to person. Prevention of outbreaks of AHF in humans can be a tough practice, as their occurrence is infrequent and unpredictable. In this review, recent information from the past 5 years available on the Junin virus including the risk of its emergence, infectious agents, its pathogenesis in humans, available diagnostic and therapeutic approaches, and disease management has been summarised. Altogether, this article would be highly significant in understanding the mechanistic basis behind virus interaction and other processes during the life cycle. Currently, no specific therapeutic options are available to treat the Junin virus infection. The information covered in this review could be important for finding possible treatment options for Junin virus infections.


Subject(s)
Hemorrhagic Fever, American , Junin virus , Animals , Humans , Junin virus/genetics , Hemorrhagic Fever, American/diagnosis , Hemorrhagic Fever, American/pathology
14.
J Mol Biol ; 435(16): 167976, 2023 08 15.
Article in English | MEDLINE | ID: mdl-36702393

ABSTRACT

The cellular defense against viruses involves the assembly of oligomers, granules and membraneless organelles (MLOs) that govern the activation of several arms of the innate immune response. Upon interaction with specific pathogen-derived ligands, a number of pattern recognition receptors (PRRs) undergo phase-separation thus triggering downstream signaling pathways. Among other relevant condensates, inflammasomes, apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) specks, cyclic GMP-AMP synthase (cGAS) foci, protein kinase R (PKR) clusters, ribonuclease L-induced bodies (RLBs), stress granules (SGs), processing bodies (PBs) and promyelocytic leukemia protein nuclear bodies (PML NBs) play different roles in the immune response. In turn, viruses have evolved diverse strategies to evade the host defense. Viral DNA or RNA, as well as viral proteases or proteins carrying intrinsically disordered regions may interfere with condensate formation and function in multiple ways. In this review we discuss current and hypothetical mechanisms of viral escape that involve the disassembly, repurposing, or inactivation of membraneless condensates that govern innate immunity. We summarize emerging interconnections between these diverse condensates that ultimately determine the cellular outcome.


Subject(s)
Biomolecular Condensates , Immune Evasion , Immunity, Innate , Viruses , Biomolecular Condensates/immunology , Biomolecular Condensates/virology , Signal Transduction , Viruses/immunology
15.
mSphere ; 8(1): e0056822, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36719225

ABSTRACT

Having varied approaches to the design and manufacture of vaccines is critical in being able to respond to worldwide needs and newly emerging pathogens. Virus-like particles (VLPs) form the basis of two of the most successful licensed vaccines (against hepatitis B virus [HBV] and human papillomavirus). They are produced by recombinant expression of viral structural proteins, which assemble into immunogenic nanoparticles. VLPs can be modified to present unrelated antigens, and here we describe a universal "bolt-on" platform (termed VelcroVax) where the capturing VLP and the target antigen are produced separately. We utilize a modified HBV core (HBcAg) VLP with surface expression of a high-affinity binding sequence (Affimer) directed against a SUMO tag and use this to capture SUMO-tagged gp1 glycoprotein from the arenavirus Junín virus (JUNV). Using this model system, we have solved the first high-resolution structures of VelcroVax VLPs and shown that the VelcroVax-JUNV gp1 complex induces superior humoral immune responses compared to the noncomplexed viral protein. We propose that this system could be modified to present a range of antigens and therefore form the foundation of future rapid-response vaccination strategies. IMPORTANCE The hepatitis B core protein (HBc) forms noninfectious virus-like particles, which can be modified to present a capturing molecule, allowing suitably tagged antigens to be bound on their surface. This system can be adapted and provides the foundation for a universal "bolt-on" vaccine platform (termed VelcroVax) that can be easily and rapidly modified to generate nanoparticle vaccine candidates.


Subject(s)
Vaccines , Humans , Hepatitis B Core Antigens/genetics , Hepatitis B virus , Glycoproteins , Vaccination
16.
Bioinformation ; 18(2): 119-126, 2022.
Article in English | MEDLINE | ID: mdl-36420432

ABSTRACT

Arenaviruses, Junin and Machupo are pathogenic viruses in regions of South America including Argentina and Bolivia causing haemorrhagic fever among humans. They have been transmitted to humans through mouse causing chronic illness with high mortality. Therefore, it is of interest to acquittance the molecular docking analysis data of FDA approved drugs with the glycoprotein from Junin and Machupo viruses for consideration in drug discovery. Thus, we report the optimal binding features of MK-3207 and Dihydro ergotamine with the protein target for further validation and consideration.

17.
Antiviral Res ; 208: 105444, 2022 12.
Article in English | MEDLINE | ID: mdl-36243175

ABSTRACT

Infections by pathogenic New World mammarenaviruses (NWM)s, including Junín virus (JUNV), can result in a severe life-threatening viral hemorrhagic fever syndrome. In the absence of FDA-licensed vaccines or antivirals, these viruses are considered high priority pathogens. The mammarenavirus envelope glycoprotein complex (GPC) mediates pH-dependent fusion between viral and cellular membranes, which is essential to viral entry and may be vulnerable to small-molecule inhibitors that disrupt this process. ARN-75039 is a potent fusion inhibitor of a broad spectrum of pseudotyped and native mammarenaviruses in cell culture and Tacaribe virus infection in mice. In the present study, we evaluated ARN-75039 against pathogenic JUNV in the rigorous guinea pig infection model. The compound was well-tolerated and had favorable pharmacokinetics supporting once-per-day oral dosing in guinea pigs. Importantly, significant protection against JUNV challenge was observed even when ARN-75039 was withheld until 6 days after the viral challenge when clinical signs of disease are starting to develop. We also show that ARN-75039 combination treatment with favipiravir, a viral polymerase inhibitor, results in synergistic activity in vitro and improves survival outcomes in JUNV-challenged guinea pigs. Our findings support the continued development of ARN-75039 as an attractive therapeutic candidate for treating mammarenaviral hemorrhagic fevers, including those associated with NWM infection.


Subject(s)
Arenaviridae , Hemorrhagic Fever, American , Hemorrhagic Fevers, Viral , Junin virus , Guinea Pigs , Mice , Animals , Hemorrhagic Fever, American/drug therapy , Pyrazines/pharmacology , Pyrazines/therapeutic use , Amides/pharmacology , Amides/therapeutic use , Anti-Retroviral Agents/pharmacology
18.
Virology ; 576: 83-95, 2022 11.
Article in English | MEDLINE | ID: mdl-36183499

ABSTRACT

The mammarenavirus Lassa virus (LASV) causes a life-threatening acute febrile disease, Lassa fever (LF). To date, no US Food and Drug Administration (FDA)-licensed medical countermeasures against LASV are available. This underscores the need for the development of novel anti-LASV drugs. Here, we screen an FDA-approved drug library to identify novel anti-LASV drug candidates using an infectious-free cell line expressing a functional LASV ribonucleoprotein (vRNP), where levels of vRNP-directed reporter gene expression serve as a surrogate for vRNP activity. Our screen identified the pan-ErbB tyrosine kinase inhibitor afatinib as a potent inhibitor of LASV vRNP activity. Afatinib inhibited multiplication of lymphocytic choriomeningitis virus (LCMV) a mammarenavirus closely related to LASV. Cell-based assays revealed that afatinib inhibited multiple steps of the LASV and LCMV life cycles. Afatinib also inhibited multiplication of Junín virus vaccine strain Candid#1, indicating that afatinib can have antiviral activity against a broad range of human pathogenic mammarenaviruses.


Subject(s)
Arenaviridae , Lassa Fever , Vaccines , Chlorocebus aethiops , Animals , Humans , Afatinib , Vero Cells , Lassa virus/genetics , Lymphocytic choriomeningitis virus , Antiviral Agents/pharmacology , Ribonucleoproteins/metabolism , Protein Kinase Inhibitors/pharmacology , Life Cycle Stages
19.
J Herb Med ; 36: 100601, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36188629

ABSTRACT

Introduction: Different classes of disease-causing viruses are widely distributed universally. Plant-based medicines are anticipated to be effective cures for viral diseases including the COVID-19, instigated by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). This study displays the phylogenetic perspective of Artemisia and proposes some candidate taxa against different viral diseases, including SARS-CoV-2. Methods: Data of Artemisia with antiviral activity were obtained from different published sources and electronic searches. A phylogenetic analysis of the nrDNA ITS sequences of reported antiviral Artemisia species, along with the reference species retrieved from the NCBI GenBank database, was performed using the maximum likelihood (ML) approach. Results: In total, 23 Artemisia species have been documented so far with antiviral activity for 17 different types of viral diseases. 17 out of 23 antiviral Artemisia species were included in the ITS phylogeny, which presented the distribution of these antiviral Artemisia species in clades corresponding to different subgenera of the genus Artemisia. In the resultant ML tree, 10 antiviral Artemisia species appeared within the subgenus Artemisia clade, 2 species appeared within the subgenus Absinthium clade, 3 species appeared within the subgenus Dracunculus clade, and 2 species appeared within the subgenus Seriphidium clade. Discussion: Artemisia species from different subgenera with antiviral activity are prevalent in the genus, with most antiviral species belonging to the subgenus Artemisia. A detailed analysis of taxa from all subgenera, particularly the subgenus Artemisia, is therefore proposed in order to discover compounds with potential anti-SARS-CoV-2 activity.

20.
J Virol ; 96(18): e0090022, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36040180

ABSTRACT

Many negative-sense RNA viruses, including the highly pathogenic Ebola virus (EBOV), use cytoplasmic inclusion bodies (IBs) for viral RNA synthesis. However, it remains unclear how viral mRNAs are exported from these IBs for subsequent translation. We recently demonstrated that the nuclear RNA export factor 1 (NXF1) is involved in a late step in viral protein expression, i.e., downstream of viral mRNA transcription, and proposed it to be involved in this mRNA export process. We now provide further evidence for this function by showing that NXF1 is not required for translation of viral mRNAs, thus pinpointing its function to a step between mRNA transcription and translation. We further show that RNA binding of both NXF1 and EBOV NP is necessary for export of NXF1 from IBs, supporting a model in which NP hands viral mRNA over to NXF1 for export. Mapping of NP-NXF1 interactions allowed refinement of this model, revealing two separate interaction sites, one of them directly involving the RNA binding cleft of NP, even though these interactions are RNA-independent. Immunofluorescence analyses demonstrated that individual NXF1 domains are sufficient for its recruitment into IBs, and complementation assays helped to define NXF1 domains important for its function in the EBOV life cycle. Finally, we show that NXF1 is also required for protein expression of other viruses that replicate in cytoplasmic IBs, including Lloviu and Junín virus. These data suggest a role for NXF1 in viral mRNA export from IBs for various viruses, making it a potential target for broadly active antivirals. IMPORTANCE Filoviruses such as the Ebola virus (EBOV) cause severe hemorrhagic fevers with high case fatality rates and limited treatment options. The identification of virus-host cell interactions shared among several viruses would represent promising targets for the development of broadly active antivirals. In this study, we reveal the mechanistic details of how EBOV usurps the nuclear RNA export factor 1 (NXF1) to export viral mRNAs from viral inclusion bodies (IBs). We further show that NXF1 is not only required for the EBOV life cycle but also necessary for other viruses known to replicate in cytoplasmic IBs, including the filovirus Lloviu virus and the highly pathogenic arenavirus Junín virus. This suggests NXF1 as a promising target for the development of broadly active antivirals.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Nucleocytoplasmic Transport Proteins , RNA, Viral , RNA-Binding Proteins , Antiviral Agents , Ebolavirus/genetics , Ebolavirus/metabolism , Humans , Inclusion Bodies, Viral/metabolism , Inclusion Bodies, Viral/virology , Nucleocytoplasmic Transport Proteins/genetics , Nucleocytoplasmic Transport Proteins/metabolism , RNA, Messenger/metabolism , RNA, Viral/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...