Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters











Publication year range
1.
Anim Microbiome ; 4(1): 24, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35303964

ABSTRACT

BACKGROUND: Bats are important long-distance dispersers of many tropical plants, yet, by consuming fruits, they may disperse not only the plant's seeds, but also the mycobiota within those fruits. We characterized the culture-dependent and independent fungal communities in fruits of Ficus colubrinae and feces of Ectophylla alba to determine if passage through the digestive tract of bats affected the total mycobiota. RESULTS: Using presence/absence and normalized abundance data from fruits and feces, we demonstrate that the fungal communities were significantly different, even though there was an overlap of ca. 38% of Amplicon Sequence Variants (ASVs). We show that some of the fungi from fruits were also present and grew from fecal samples. Fecal fungal communities were dominated by Agaricomycetes, followed by Dothideomycetes, Sordariomycetes, Eurotiomycetes, and Malasseziomycetes, while fruit samples were dominated by Dothideomycetes, followed by Sordariomycetes, Agaricomycetes, Eurotiomycetes, and Laboulbeniomycetes. Linear discriminant analyses (LDA) show that, for bat feces, the indicator taxa include Basidiomycota (i.e., Agaricomycetes: Polyporales and Agaricales), and the ascomycetous class Eurotiomycetes (i.e., Eurotiales, Aspergillaceae). For fruits, indicator taxa are in the Ascomycota (i.e., Dothideomycetes: Botryosphaeriales; Laboulbeniomycetes: Pyxidiophorales; and Sordariomycetes: Glomerellales). In our study, the differences in fungal species composition between the two communities (fruits vs. feces) reflected on the changes in the functional diversity. For example, the core community in bat feces is constituted by saprobes and animal commensals, while that of fruits is composed mostly of phytopathogens and arthropod-associated fungi. CONCLUSIONS: Our study provides the groundwork to continue disentangling the direct and indirect symbiotic relationships in an ecological network that has not received enough attention: fungi-plants-bats. Findings also suggest that the role of frugivores in plant-animal mutualistic networks may extend beyond seed dispersal: they may also promote the dispersal of potentially beneficial microbial symbionts while, for example, hindering those that can cause plant disease.

2.
Front Plant Sci ; 12: 621064, 2021.
Article in English | MEDLINE | ID: mdl-33868327

ABSTRACT

Ecosystem services of Amazonian forests are disproportionally produced by a limited set of hyperdominant tree species. Yet the spatial variation in the delivery of ecosystem services by individual hyperdominant species across their distribution ranges and corresponding environmental gradients is poorly understood. Here, we use the concept of habitat quality to unravel the effect of environmental gradients on seed production and aboveground biomass (AGB) of the Brazil nut, one of Amazonia's largest and most long-lived hyperdominants. We find that a range of climate and soil gradients create trade-offs between density and fitness of Brazil nut trees. Density responses to environmental gradients were in line with predictions under the Janzen-Connell and Herms-Mattson hypotheses, whereas tree fitness responses were in line with resource requirements of trees over their life cycle. These trade-offs resulted in divergent responses in area-based seed production and AGB. While seed production and AGB of individual trees (i.e., fitness) responded similarly to most environmental gradients, they showed opposite tendencies to tree density for almost half of the gradients. However, for gradients creating opposite fitness-density responses, area-based seed production was invariable, while trends in area-based AGB tended to mirror the response of tree density. We conclude that while the relation between environmental gradients and tree density is generally indicative of the response of AGB accumulation in a given area of forest, this is not necessarily the case for fruit production.

3.
Ecology ; 101(2): e02926, 2020 02.
Article in English | MEDLINE | ID: mdl-31729025

ABSTRACT

Patterns of seed dispersal and seed mortality influence the spatial structure of plant communities and the local coexistence of competing species. Most seeds are dispersed in proximity to the parent tree, where mortality is also expected to be the highest, because of competition with siblings or the attraction of natural enemies. Whereas distance-dependent mortality in the seed-to-seedling transition was often observed in tropical forests, few studies have attempted to estimate the shape of the survival-distance curves, which determines whether the peak of seedling establishment occurs away from the parent tree (Janzen-Connell pattern) or if the peak attenuates but remains at the parent location (Hubbell pattern). In this study, we inferred the probability density of seed dispersal and two stages of seedling establishment (new recruits, and seedlings 20 cm or taller) with distance for 24 tree species present in the 50-ha Forest Dynamics Plot of Barro Colorado Island, Panama. Using data from seed traps, seedling survey quadrats, and tree-census records spanning the 1988-2014 period, we fit hierarchical Bayesian models including parameters for tree fecundity, the shape of the dispersal kernel, and overdispersion of seed or seedling counts. We combined predictions from multiple dispersal kernels to obtain more robust inferences. We find that Hubbell patterns are the most common and Janzen-Connell patterns are very rare among those species; that distance-dependent mortality may be stronger in the seed stage, in the early recruit stage, or comparable in both; and that species with larger seeds experience less overall mortality and less distance-dependent mortality. Finally, we describe how this modeling approach could be extended at a community scale to include less abundant species.


Subject(s)
Forests , Seedlings , Bayes Theorem , Colorado , Panama , Seeds , Tropical Climate
4.
Ecol Lett ; 22(10): 1638-1649, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31359570

ABSTRACT

The top-down and indirect effects of insects on plant communities depend on patterns of host use, which are often poorly documented, particularly in species-rich tropical forests. At Barro Colorado Island, Panama, we compiled the first food web quantifying trophic interactions between the majority of co-occurring woody plant species and their internally feeding insect seed predators. Our study is based on more than 200 000 fruits representing 478 plant species, associated with 369 insect species. Insect host-specificity was remarkably high: only 20% of seed predator species were associated with more than one plant species, while each tree species experienced seed predation from a median of two insect species. Phylogeny, but not plant traits, explained patterns of seed predator attack. These data suggest that seed predators are unlikely to mediate indirect interactions such as apparent competition between plant species, but are consistent with their proposed contribution to maintaining plant diversity via the Janzen-Connell mechanism.


Subject(s)
Food Chain , Forests , Insecta , Tropical Climate , Animals , Biodiversity , Panama , Phylogeny , Seeds
5.
Proc Natl Acad Sci U S A ; 115(44): 11268-11273, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30322925

ABSTRACT

The Janzen-Connell hypothesis is a well-known explanation for why tropical forests have large numbers of tree species. A fundamental prediction of the hypothesis is that the probability of adult recruitment is less in regions of high conspecific adult density, a pattern mediated by density-dependent mortality in juvenile life stages. Although there is strong evidence in many tree species that seeds, seedlings, and saplings suffer conspecific density-dependent mortality, no study has shown that adult tree recruitment is negatively density dependent. Density-dependent adult recruitment is necessary for the Janzen-Connell mechanism to regulate tree populations. Here, we report density-dependent adult recruitment in the population of Handroanthus guayacan, a wind-dispersed Neotropical canopy tree species. We use data from high-resolution remote sensing to track individual trees with proven capacity to flower in a lowland moist forest landscape in Panama and analyze these data in a Bayesian framework similar to capture-recapture analysis. We independently quantify probabilities of adult tree recruitment and detection and show that adult recruitment is negatively density dependent. The annualized probability of adult recruitment was 3.03% ⋅ year-1 Despite the detection of negative density dependence in adult recruitment, it was insufficient to stabilize the adult population of H. guayacan, which increased significantly in size over the decade of observation.


Subject(s)
Tabebuia/growth & development , Bayes Theorem , Ecosystem , Forests , Panama , Population Density , Population Dynamics , Seedlings/growth & development , Seeds/growth & development , Tropical Climate
6.
Ecology ; 99(11): 2583-2591, 2018 11.
Article in English | MEDLINE | ID: mdl-30182375

ABSTRACT

One of the hypothesized benefits of seed dispersal is to escape density- and distance-responsive, host-specific, natural enemies near maternal plants where conspecific seed and seedling densities are high. Such high conspecific neighbor densities typically result in lower offspring growth and survival (i.e., negative density-dependent effects), yet many dispersal modes result in clumped seed distributions. New World leaf-nosed bats transport fruits to their feeding roosts and deposit seeds, thereby creating high-density seed/seedling patches beneath feeding roosts in heterospecific trees away from maternal trees, which seemingly nullifies a key benefit of seed dispersal. Such dispersal may still be adaptive if negative density-dependent effects are reduced under feeding roosts or if the benefit of being dispersed away from maternal trees outweighs negative effects of conspecific seed/seedling density below roosts. We mapped the entire post-germination population of a bat-dispersed tree species Calophyllum longifolium (Calophyllaceae) in a 50-ha plot on Barro Colorado Island, Panama in each of three successive years. We tested two hypotheses: (1) distance-dependent effects are stronger than density-dependent effects on seedling performance because seedlings far from conspecific adults are more likely to escape natural enemies even when at high densities and (2) negative density-dependent effects will be reduced far from vs. near conspecific adults. Density and distance were naturally decoupled, as expected. However, in contrast to our expectation, we found positive density effects on seedling survival and density-dependent effects did not differ with distance from conspecific adults. Both density and distance had positive effects on seedling survival when considered together, while only year had a significant effect on seedling growth. Thus, both being dispersed under bat feeding roosts and escaping the vicinity of conspecific adults were beneficial for C. longifolium seedling survival, supporting the directed dispersal and escape hypotheses, respectively. Despite resulting in high densities of conspecific seedlings, favorable habitat under bat feeding roosts and lack of negative density-dependent effects appear to provide evolutionary advantages in C. longifolium.


Subject(s)
Chiroptera , Seed Dispersal , Animals , Colorado , Panama , Seedlings , Seeds , Trees
7.
Ecol Lett ; 21(10): 1541-1551, 2018 10.
Article in English | MEDLINE | ID: mdl-30129216

ABSTRACT

Conspecific negative density dependence (CNDD) is thought to promote plant species diversity. Theoretical studies showing the importance of CNDD often assumed that all species are equally susceptible to CNDD; however, recent empirical studies have shown species can differ greatly in their susceptibility to CNDD. Using a theoretical model, we show that interspecific variation in CNDD can dramatically alter its impact on diversity. First, if the most common species are the least regulated by CNDD, then the stabilising benefit of CNDD is reduced. Second, when seed dispersal is limited, seedlings that are susceptible to CNDD are at a competitive disadvantage. When parameterised with estimates of CNDD from a tropical tree community in Panama, our model suggests that the competitive inequalities caused by interspecific variation in CNDD may undermine many species' ability to persist. Thus, our model suggests that variable CNDD may make communities less stable, rather than more stable.


Subject(s)
Seed Dispersal , Tropical Climate , Panama , Seedlings , Trees
8.
Ecol Lett ; 20(11): 1469-1478, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28980377

ABSTRACT

Negative distance dependence (NDisD), or reduced recruitment near adult conspecifics, is thought to explain the astounding diversity of tropical forests. While many studies show greater mortality at near vs. far distances from adults, these studies do not seek to track changes in the peak seedling curve over time, thus limiting our ability to link NDisD to coexistence. Using census data collected over 12 years from central Panama in conjunction with spatial mark-connection functions, we show evidence for NDisD for many species, and find that the peak seedling curve shifts away from conspecific adults over time. We find wide variation in the strength of NDisD, which was correlated with seed size and canopy position, but other life-history traits showed no relationship with variation in NDisD mortality. Our results document shifts in peak seedling densities over time, thus providing evidence for the hypothesized spacing mechanism necessary for diversity maintenance in tropical forests.


Subject(s)
Biodiversity , Forests , Seedlings/physiology , Trees/physiology , Models, Biological , Panama , Population Density , Population Dynamics , Seedlings/growth & development , Tropical Climate
9.
Ann Bot ; 120(1): 147-158, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28549080

ABSTRACT

Background and Aims: Natural enemies are known to be important in regulating plant populations and contributing to species coexistence (Janzen-Connell effects). The strength of Janzen-Connell effects (both distance- and density-effects) varies across species, but the life history traits that may mediate such a variation are not well understood. This study examined Janzen-Connell effects across the life stages (seed through adult stages) of two sympatric palm species with distinct phenologies and shade tolerances, two traits that may mediate the strength and timing of Janzen-Connell effects. Methods: Populations of two common palm species, Attalea phalerata and Astrocaryum murumuru , were studied in Manu National Park, Peru. Seed predation experiments were conducted to assess Janzen-Connell effects at the seed stage. In the post-seed stages, spatial point pattern analyses of the distributions of individuals and biomass were used to infer the strength of distance- and density-effects. Key Results: Seed predation was both negative distance- and density-dependent consistent with the Janzen-Connell effects. However, only seedling recruitment for asynchronously fruiting Attalea phalerata was depressed near adults while recruitment remained high for synchronously fruiting Astrocaryum murumuru , consistent with weak distance-effects. Negative density-effects were strong in the early stages for shade-intolerant Attalea phalerata but weak or absent in shade-tolerant Astrocaryum murumuru. Conclusions: Distance- and density-effects varied among the life stages of the two palm species in a manner that corresponded to their contrasting phenology and shade tolerance. Generalizing such connections across many species would provide a route to understanding how trait-mediated Janzen-Connell effects scale up to whole communities of species.


Subject(s)
Arecaceae/physiology , Life History Traits , Biomass , Peru , Plant Dispersal , Population Density , Seedlings/physiology , Sympatry , Trees/physiology
10.
Ecology ; 98(3): 712-720, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27984646

ABSTRACT

Negative population feedbacks mediated by natural enemies can promote species coexistence at the community scale through disproportionate mortality of numerically dominant (common) tree species. Simultaneously, associations with arbuscular mycorrhizal fungi (AMF) can result in positive effects on tree populations. Coupling data on seedling foliar damage from herbivores and pathogens and DNA sequencing of soil AMF diversity, we assessed the effects of these factors on tree seedling mortality at local (1 m2 ) and community (16 ha plot) scales in a tropical rainforest in Puerto Rico. At the local scale, AMF diversity in soil counteracted negative effects from foliar damage on seedling mortality. At the community scale, mortality of seedlings of common tree species increased with foliar damage while rare tree species benefited from soil AMF diversity. Together, the effects of foliar damage and soil AMF diversity on seedling mortality might foster tree species coexistence in this forest.


Subject(s)
Forests , Mycorrhizae/classification , Seedlings/microbiology , Soil Microbiology , Trees/microbiology , Biodiversity , Mycorrhizae/physiology , Puerto Rico
11.
Oecologia ; 179(3): 853-61, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26227367

ABSTRACT

Although one of the most widely studied hypotheses for high tree diversity in the tropics, the Janzen-Connell hypothesis (JC), and the community compensatory trend upon which it is based, have conflicting support from prior studies. Some of this variation could arise from temporal variation in seedling survival of common and rare species. Using 10 years of data from La Selva Biological Station in Costa Rica, we analyzed annual seedling survival and found that negative density-dependence (negative DD) was significantly stronger for rare species than for common species in 2 years and was significantly stronger for common species than for rare species in 4 years. This temporal variation in survival was correlated with climatic variables: in warmer and wetter years, common species had higher negative DD than rare species. The relationship between climate and variation in JC effects on seedling survival of common and rare species could have important consequences for the maintenance of tree species diversity in Central America, which is predicted to experience warmer and wetter years as global change proceeds.


Subject(s)
Trees/physiology , Biodiversity , Costa Rica , Forests , Population Density , Seedlings/growth & development , Seedlings/physiology , Species Specificity , Tropical Climate
12.
Ecol Lett ; 18(8): 752-760, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25939379

ABSTRACT

The coexistence of numerous tree species in tropical forests is commonly explained by negative dependence of recruitment on the conspecific seed and tree density due to specialist natural enemies that attack seeds and seedlings ('Janzen-Connell' effects). Less known is whether guilds of shared seed predators can induce a negative dependence of recruitment on the density of different species of the same plant functional group. We studied 54 plots in tropical forest on Barro Colorado Island, Panama, with contrasting mature tree densities of three coexisting large seeded tree species with shared seed predators. Levels of seed predation were far better explained by incorporating seed densities of all three focal species than by conspecific seed density alone. Both positive and negative density dependencies were observed for different species combinations. Thus, indirect interactions via shared seed predators can either promote or reduce the coexistence of different plant functional groups in tropical forest.


Subject(s)
Ecosystem , Rodentia , Seeds , Trees/physiology , Animals , Herbivory , Logistic Models , Panama , Tropical Climate
13.
Ecol Lett ; 17(9): 1111-20, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25039608

ABSTRACT

Negative density dependence (NDD) of recruitment is pervasive in tropical tree species. We tested the hypotheses that seed dispersal is NDD, due to intraspecific competition for dispersers, and that this contributes to NDD of recruitment. We compared dispersal in the palm Attalea butyracea across a wide range of population density on Barro Colorado Island in Panama and assessed its consequences for seed distributions. We found that frugivore visitation, seed removal and dispersal distance all declined with population density of A. butyracea, demonstrating NDD of seed dispersal due to competition for dispersers. Furthermore, as population density increased, the distances of seeds from the nearest adult decreased, conspecific seed crowding increased and seedling recruitment success decreased, all patterns expected under poorer dispersal. Unexpectedly, however, our analyses showed that NDD of dispersal did not contribute substantially to these changes in the quality of the seed distribution; patterns with population density were dominated by effects due solely to increasing adult and seed density.


Subject(s)
Arecaceae/physiology , Models, Biological , Seed Dispersal/physiology , Seedlings/physiology , Panama , Population Density , Tropical Climate
14.
Ecol Lett ; 16(8): 1031-6, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23786453

ABSTRACT

Seed ingestion by frugivorous vertebrates commonly benefits plants by moving seeds to locations with fewer predators and pathogens than under the parent. For plants with high local population densities, however, movement from the parent plant is unlikely to result in 'escape' from predators and pathogens. Changes to seed condition caused by gut passage may also provide benefits, yet are rarely evaluated as an alternative. Here, we use a common bird-dispersed chilli pepper (Capsicum chacoense) to conduct the first experimental comparison of escape-related benefits to condition-related benefits of animal-mediated seed dispersal. Within chilli populations, seeds dispersed far from parent plants gained no advantage from escape alone, but seed consumption by birds increased seed survival by 370% - regardless of dispersal distance - due to removal during gut passage of fungal pathogens and chemical attractants to granivores. These results call into question the pre-eminence of escape as the primary advantage of dispersal within populations and document two overlooked mechanisms by which frugivores can benefit fruiting plants.


Subject(s)
Birds/physiology , Capsicum/chemistry , Capsicum/physiology , Food Chain , Fusarium/physiology , Seed Dispersal , Animals , Bolivia , Capsicum/growth & development , Capsicum/microbiology , Feeding Behavior , Seeds/chemistry , Seeds/growth & development , Seeds/microbiology , Seeds/physiology
15.
Ecol Lett ; 16(8): 995-1003, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23773378

ABSTRACT

The Janzen-Connell hypothesis proposes that plant interactions with host-specific antagonists can impair the fitness of locally abundant species and thereby facilitate coexistence. However, insects and pathogens that associate with multiple hosts may mediate exclusion rather than coexistence. We employ a simulation model to examine the effect of enemy host breadth on plant species richness and defence community structure, and to assess expected diversity maintenance in example systems. Only models in which plant enemy similarity declines rapidly with defence similarity support greater species richness than models of neutral drift. In contrast, a wide range of enemy host breadths result in spatial dispersion of defence traits, at both landscape and local scales, indicating that enemy-mediated competition may increase defence-trait diversity without enhancing species richness. Nevertheless, insect and pathogen host associations in Panama and Papua New Guinea demonstrate a potential to enhance plant species richness and defence-trait diversity comparable to strictly specialised enemies.


Subject(s)
Biota , Coleoptera/physiology , Fungi/physiology , Lepidoptera/physiology , Plant Physiological Phenomena , Plants/microbiology , Animals , Food Chain , Larva/growth & development , Larva/physiology , Lepidoptera/growth & development , Models, Biological , Panama , Papua New Guinea , Stochastic Processes
16.
Rev. biol. trop ; Rev. biol. trop;60(4): 1503-1512, Dec. 2012. graf, tab
Article in English | LILACS | ID: lil-662224

ABSTRACT

Many models have been proposed to explain the possible role of pests in the coexistence of a high diversity of plant species in tropical forests. Prominent among them is the Janzen-Connell model. This model suggests that specialized herbivores and pathogens limit tree recruitment as a function of their density or proximity to conspecifics. A large number of studies have tested the predictions of this model with respect to patterns of recruitment and mortality at different life stages, yet only a few have directly linked those density or distance-dependent effects to pest attack. If pest-attack is an important factor in density or distance-dependent mortality, there should be spatial heterogeneity in pest pressure. I studied the spatial distribution of leaf damage in saplings of six common Inga species (Fabaceae: Mimosoideae) in the 50ha forest dynamic plot of Barro Colorado Island, Panama. The percent leaf damage of Inga saplings was not heterogeneous in space, and the density of conspecific, congener or confamilial neighbors was uncorrelated with the observed damage levels in focal plants. One of the focal species did suffer density-dependent mortality, suggesting that spatial variation in plant performance in these species is not directly driven by leaf damaging agents. While multiple studies suggest that density-dependent effects on performance are common in tropical plant communities, our understanding of the mechanisms that drive those effects is still incomplete and the underlying assumption that these patterns result from differential herbivore attack deserves more scrutiny.


Se han propuesto muchos modelos para explicar la coexistencia de una alta diversidad de especies de árboles en bosques tropicales. Prominente, entre estos modelos es el de Janzen-Connell, que sugiere que los herbívoros especialistas limitan la colonización de árboles en función de la densidad o proximidad de con-específicos. Si este efecto es en realidad el resultado de ataque por herbívoros, debiera haber heterogeneidad espacial en la herbivoría. Aquí se evalúa esta hipótesis estudiando la distribución espacial de la herbivoría en juveniles de seis especies comunes de Inga (Fabaceae: Mimosoideae) en la parcela de 50ha de la Isla de Barro Colorado, en Panamá. Análisis de autocorrelación espacial no mostraron heterogeneidad en la herbivoría de estas especies, y la densidad local de con-específicos, congéneres o confamiliares no se correlacionó con la herbivoría de las plantas estudiadas. Solo una de las especies de estudio sufrió mortalidad densidad-dependiente en 20 años de censos. Aunque muchos estudios han demostrado que los efectos densidad-dependientes en la mortalidad de las plantas son comunes en bosques tropicales, nuestro entendimiento de los mecanismos que causan esos efectos es aún limitado, y la suposición de que estos resultan de heterogeneidad espacial en el ataque de herbívoros merece más escrutinio.


Subject(s)
Animals , Fabaceae/classification , Herbivory , Plant Leaves , Trees/growth & development , Models, Biological , Panama , Population Density , Tropical Climate
17.
Rev. biol. trop ; Rev. biol. trop;59(4): 1795-1803, Dec. 2011. graf, tab
Article in English | LILACS | ID: lil-646552

ABSTRACT

Most studies on seed dispersal in time have focused on seed dormancy and the physiological triggers for germination. However, seed dispersed by animals with low metabolic and moving rates, and long gutpassage times such as terrestrial turtles, could be considered another type of dispersal in time. This study tests the hypothesis that seeds dispersed in time may lower predation rates. We predicted that seeds deposited below parent trees after fruiting fall has finished is advantageous to minimize seed predators and should show higher survival rates. Four Amazonian plant species, Dicranostyles ampla, Oenocarpus bataua, Guatteria atabapensis and Ocotea floribunda, were tested for seed survival probabilities in two periods: during fruiting and 10-21 days after fruiting. Experiments were carried out in two biological stations located in the Colombian Amazon (Caparú and Zafire Biological Stations). Seed predation was high and mainly caused by non-vertebrates. Out of the four plant species tested, only Guatteria atabapensis supported the time escape hypothesis. For this species, seed predation by vertebrates after the fruiting period increased (from 4.1% to 9.2%) while seed predation by nonvertebrates decreased (from 54.0% to 40.2%). In contrast, seed predation by vertebrates and by non-vertebrates after the fruiting period in D. ampla increased (from 7.9% to 22.8% and from 40.4% to 50.6%, respectively), suggesting predator satiation. Results suggest that for some species dispersal in time could be advantageous to avoid some type of seed predators. Escape in time could be an additional dimension in which seeds may reach adequate sites for recruitment. Thus, future studies should be address to better understand the survival advantages given by an endozoochory time-dispersal process. Rev. Biol. Trop. 59 (4): 1795-1803. Epub 2011 December 01.


La mayoría de estudios sobre dispersión de semillas en el tiempo tratan sobre la dormancia de las semillas y los procesos fisiológicos que disparan su germinación. Sin embargo, la dispersión de semillas por animales de bajas tasas metabólicas y largos tiempos de retención, como por ejemplo los reptiles, podría ser considerada otro tipo de dispersión en el tiempo. Este estudio prueba la hipótesis que las semillas dispersadas por tortugas pueden evadir a los depredadores en el tiempo. Semillas depositadas bajo árboles parentales luego de que la cosecha haya terminado es ventajoso para escapar de depredadores denso-dependientes y por lo tanto deberían mostrar mayores tasas de supervivencia. La hipótesis se probó en cuatro especies de plantas amazónicas, Dicranostyles ampla, Oenocarpus bataua, Guatteria atabapensis y Ocotea floribuna, durante dos periodos: durante la cosecha y varios días después de la cosecha de frutos. Los experimentos se llevaron en dos estaciones biológicas de la Amazonia colombiana (Caparú y Zafire). Los principales depredadores de semillas fueron los no vertebrados y por lo tanto fueron el factor que más influyó en la supervivencia de las semillas en ambas áreas de estudio. De las cuatro especies probadas, sólo Guatteria atabapensis validó la hipótesis de la ventaja de la dispersión en el tiempo. Para esta especie, la depredación de semillas por vertebrados después del periodo de cosecha incrementó (de 4.1% a 9.2%) mientras que la depredación de semillas por no vertebrados disminuyó (de 54.0% a 40.2%). Por el contrario, la depredación de semillas por vertebrados y por no vertebrados después del período de la cosecha para D. ampla incrementó (de 7.9% a 22.8% y de 40.4% a 50.6% respectivamente), sugiriendo saciación de depredadores. Los resultados sugieren que para algunas especies, el escape en el tiempo podría ser ventajoso para evadir algunos tipos de depredadores. El escape en el tiempo podría ser una dimensión adicional en donde las semillas podrían alcanzar lugares adecuados para su reclutamiento. Futuros estudios deberían realizarse con el fin de entender mejor las ventajas de supervivencia dadas por la dispersión en el tiempo luego de un proceso de endozoocoria.


Subject(s)
Animals , Germination/physiology , Seed Dispersal/physiology , Seeds/physiology , Trees/physiology , Feeding Behavior/physiology , Insecta/physiology , Time Factors , Vertebrates/physiology
18.
Braz. j. biol ; Braz. j. biol;69(3): 763-771, Aug. 2009. graf, mapas, tab
Article in English | LILACS | ID: lil-527144

ABSTRACT

Seed predation by small rodents is an emerging theme in the ecology of modified landscapes. Here we investigate the role played by the small rodent Oryzomys oniscus as a seed predator of large-seeded trees in a large remnant of the Atlantic forest - the Coimbra forest (3,500 ha), Alagoas state, northeastern Brazil. O. oniscus was captured and identified by setting twenty 500 m long transects, each one composed of 25 traps 20 m apart. This procedure resulted in 483 trap-nights set during a 20-mo period. We used 692 seeds (>15 mm length) from ten local large-seeded tree species for the seed predation trials that basically consisted of three treatments: one seed on the ground freely accessed by vertebrates (unprotected seed), one seed totally protected by an exclosure, and one partially-protected seed (exclosure just for medium-sized and large vertebrates). O. oniscus was captured throughout the Coimbra forest including forest edges (76 captures) and interior areas (67), and this small rodent was responsible for all seed predation visually documented inside exclosures. A 24 hours period of seed exposition permitted elevated rates of seed removal and predation. Seeds were much more removed/predated beneath fruiting trees, but rates varied according to the level of seed protection - 26.3 percent of predation among partially-protected versus 19.2 percent among unprotected seeds. Seeds suffered higher levels of seed predation/removal at the forest edge as well (up to 90 percent). In both habitats, most seeds (>84 percent) remained intact beneath trees without fruits, regardless of the level of seed protection. Our results suggest that O. oniscus may operate as an effective large-seed predator in forest fragments, in which adult trees without fruits constitute low resource spots and thereby provide, at least temporarily, safe sites for large seeds.


Predação de sementes por pequenos roedores é um tema emergente na ecologia de paisagens modificadas. Nesse estudo foi investigado o papel desempenhado pelo pequeno roedor Oryzomys oniscus como predador de grandes sementes de árvores em um grande fragmento de floresta Atlântica - mata de Coimbra (3.500 ha), Estado de Alagoas, Nordeste do Brasil. O. oniscus foi capturado e identificado usando-se 20 transectos com 500 m de comprimento, cada um composto por 25 armadilhas espaçadas a cada 20 m. Esse procedimento resultou em um esforço total de captura de 483 armadilhas-noites, durante um período de 20 meses. Foram utilizadas 692 grandes sementes (>15 mm de comprimento), provenientes de dez espécies de árvores para as sessões de predação, as quais consistiram basicamente de três tratamentos: uma semente no solo com acesso livre para vertebrados (semente desprotegida), uma semente totalmente protegida e uma semente parcialmente protegida (exclusão apenas para médios e grandes vertebrados). O. oniscus foi capturado em todo o fragmento de Coimbra, incluindo bordas de floresta (76 capturas) e áreas de interior (67 capturas). Além disso, esse pequeno roedor foi responsável por toda a predação de sementes visualmente documentada dentro das gaiolas de proteção de sementes. Um período de 24 horas de exposição das sementes permitiu elevadas taxas de remoção e predação. Sementes foram muito mais predadas/removidas debaixo de árvores frutificando, mas as taxas variaram de acordo com o nível de proteção das sementes - 26,3 por cento de predação entre as parcialmente protegidas versus 19,2 por cento entre sementes não protegidas. Sementes sofreram altos níveis de predação/remoção nas bordas de florestas (até 90 por cento). Em ambos os hábitats, muitas sementes (>84 por cento) permaneceram intactas debaixo de árvores sem frutos, independente do nível de proteção. Os resultados do estudo sugerem que O. oniscus pode agir como um predador efetivo de grandes ...


Subject(s)
Animals , Ecosystem , Feeding Behavior/physiology , Seeds , Sigmodontinae/physiology , Trees , Brazil
19.
Rev. biol. trop ; Rev. biol. trop;57(1/2): 321-338, March-June 2009. ilus, graf, mapas, tab
Article in English | LILACS | ID: lil-637721

ABSTRACT

Seed production, seed dispersal and recruitment are critical processes in population dynamics, because they are almost never completely successful. We recorded the recruitment dynamics for the population of Dipteryx oleifera in a tropical rainforest in eastern Nicaragua (12°05’ N., 83°55’ W.) from March 2002 to August 2006. Seeds and seedlings had highly clumped distributions, while sapling distributions appeared to be random. Seedling survival increased away from the nearest conspecifc adult tree, where seedling density is lower. Since relative growth rates of seedlings are not correlated with the distance to the nearest conspecific adult, seedling survival appears to be independent of seedling growth. Seedling density is inversely correlated with seedling insect herbivory damage. Seedling survival correlated negatively with the number of saplings per sub-plot (10x10m), suggesting that insect herbivore may also cue in on saplings rather than only on adult D. oleifera trees in order to locate seedlings. Seedling establishment is significantly clumped with respect to the nearest adult tree. Larger clumps of seedlings seems more ephemeral than isolated smaller clumps located away from the nearest D. oleifera tree. These results support current empirical evidence presented earlier for the Janzen-Connell hypothesis for Dipteryx oleifera at seed and seedling stages and, the Recruitment Limitation hypothesis at the sapling stage, because sapling individuals might have recruited after random light-gap formation. Rev. Biol. Trop. 57 (1-2): 321-338. Epub 2009 June 30.


Resumen Estudiamos la dinámica de regeneración de la población de Dipteryx oleifera en un bosque húmedo tropical del este de Nicaragua. Semillas y plántulas se encuentran altamente agregadas, pero la distribución de vástagos podría ser al azar. La supervivencia de plántulas aumenta con la distancia al congéner más cercano, donde la densidad de plántulas es más baja. Como las tasas de crecimiento relativo de plántulas no se correlacionan con la distancia al congénere más cercano, la supervivencia de las plantas pareciera no estar determinada por el crecimiento de plántulas. La densidad de plántulas está inversamente correlacionada con los niveles de daño de herbivoría insectívora. La supervivencia de plántulas se correlaciona negativamente con el número de vástagos, lo cuál sugiere que los insectos herbívoros podrían estar localizando vástagos y árboles y de allí, las plántulas. La supervivencia de plántulas presentó una distribución significativamente agrupada lejos de los congéneres más cercanos. Los parches de plántulas más grandes fueron más efímeros que los parches pequeños y aislados ubicados lejos de los árboles adultos. Los resultados coinciden con la hipótesis de Janzen-Connell sobre estados de semilla y plántula. Además, ofrecen evidencia en favor de la hipótesis de Limitación de Reclutamiento para los vástagos, ya que los vástagos podrían estar estableciéndose en claros de luz pequeños que se forman al azar.


Subject(s)
Dipteryx/physiology , Seedlings/growth & development , Trees , Dipteryx/classification , Dipteryx/growth & development , Germination/physiology , Nicaragua , Population Density , Population Dynamics , Seasons , Tropical Climate
20.
Braz. J. Biol. ; 69(3)2009.
Article in English | VETINDEX | ID: vti-446586

ABSTRACT

Seed predation by small rodents is an emerging theme in the ecology of modified landscapes. Here we investigate the role played by the small rodent Oryzomys oniscus as a seed predator of large-seeded trees in a large remnant of the Atlantic forest - the Coimbra forest (3,500 ha), Alagoas state, northeastern Brazil. O. oniscus was captured and identified by setting twenty 500 m long transects, each one composed of 25 traps 20 m apart. This procedure resulted in 483 trap-nights set during a 20-mo period. We used 692 seeds (>15 mm length) from ten local large-seeded tree species for the seed predation trials that basically consisted of three treatments: one seed on the ground freely accessed by vertebrates (unprotected seed), one seed totally protected by an exclosure, and one partially-protected seed (exclosure just for medium-sized and large vertebrates). O. oniscus was captured throughout the Coimbra forest including forest edges (76 captures) and interior areas (67), and this small rodent was responsible for all seed predation visually documented inside exclosures. A 24 hours period of seed exposition permitted elevated rates of seed removal and predation. Seeds were much more removed/predated beneath fruiting trees, but rates varied according to the level of seed protection - 26.3% of predation among partially-protected versus 19.2% among unprotected seeds. Seeds suffered higher levels of seed predation/removal at the forest edge as well (up to 90%). In both habitats, most seeds (>84%) remained intact beneath trees without fruits, regardless of the level of seed protection. Our results suggest that O. oniscus may operate as an effective large-seed predator in forest fragments, in which adult trees without fruits constitute low resource spots and thereby provide, at least temporarily, safe sites for large seeds.


Predação de sementes por pequenos roedores é um tema emergente na ecologia de paisagens modificadas. Nesse estudo foi investigado o papel desempenhado pelo pequeno roedor Oryzomys oniscus como predador de grandes sementes de árvores em um grande fragmento de floresta Atlântica - mata de Coimbra (3.500 ha), Estado de Alagoas, Nordeste do Brasil. O. oniscus foi capturado e identificado usando-se 20 transectos com 500 m de comprimento, cada um composto por 25 armadilhas espaçadas a cada 20 m. Esse procedimento resultou em um esforço total de captura de 483 armadilhas-noites, durante um período de 20 meses. Foram utilizadas 692 grandes sementes (>15 mm de comprimento), provenientes de dez espécies de árvores para as sessões de predação, as quais consistiram basicamente de três tratamentos: uma semente no solo com acesso livre para vertebrados (semente desprotegida), uma semente totalmente protegida e uma semente parcialmente protegida (exclusão apenas para médios e grandes vertebrados). O. oniscus foi capturado em todo o fragmento de Coimbra, incluindo bordas de floresta (76 capturas) e áreas de interior (67 capturas). Além disso, esse pequeno roedor foi responsável por toda a predação de sementes visualmente documentada dentro das gaiolas de proteção de sementes. Um período de 24 horas de exposição das sementes permitiu elevadas taxas de remoção e predação. Sementes foram muito mais predadas/removidas debaixo de árvores frutificando, mas as taxas variaram de acordo com o nível de proteção das sementes - 26,3% de predação entre as parcialmente protegidas versus 19,2% entre sementes não protegidas. Sementes sofreram altos níveis de predação/remoção nas bordas de florestas (até 90%). Em ambos os hábitats, muitas sementes (>84%) permaneceram intactas debaixo de árvores sem frutos, independente do nível de proteção. Os resultados do estudo sugerem que O. oniscus pode agir como um predador efetivo de grandes sementes em fragmentos de floresta. Árvores adultas, sem a presença de frutos, parecem constituir locais de baixa disponibilidade de recurso e, portanto, podem prover, pelo menos temporariamente, sítios seguros para grandes sementes.

SELECTION OF CITATIONS
SEARCH DETAIL