Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Toxicol Pathol ; 50(2): 218-231, 2022 02.
Article in English | MEDLINE | ID: mdl-34989261

ABSTRACT

Rabbits are sometimes used for intranasal toxicology studies. We investigated the postnatal development of the nasal passage in juvenile Japanese white rabbits from just after birth to 6-week-old to provide information for conducting intranasal toxicological evaluation using juvenile animals. On postnatal day (PND) 1, the nasal passage consisted of the septum with mostly cartilaginous nasal wall and turbinates. The lining squamous, transitional, respiratory, and olfactory epithelia were already distributed similar to adults and were still underdeveloped. The nasal passage gradually expanded with age, as did the nasal wall, including the turbinates formed by endochondral ossification. The maxilloturbinate elongated, during which it branched complexly. The respiratory epithelium takes the form of columnar epithelium together with a reduction in goblet cells. In addition, the olfactory epithelium had clear cytoplasm in the ethmoturbinate, the olfactory nerve bundles thickened, and Bowman's gland acini increased in size and number. Other tissues, including the vomeronasal organ, nasal-associated lymphoid tissue, and nasolacrimal duct, also developed histologically with age. This investigation characterized the postnatal histological development of the nasal passage in Japanese white rabbits, providing basic knowledge regarding the histological examination and rationale for appropriate study design of intranasal toxicology studies in juvenile rabbits.


Subject(s)
Nasal Cavity , Olfactory Mucosa , Rabbits , Animals , Epithelium , Nasal Cavity/pathology , Nasal Mucosa
2.
Toxicol Pathol ; 49(8): 1374-1376, 2021 12.
Article in English | MEDLINE | ID: mdl-34607498

ABSTRACT

Toxicity can result from variable target organ sensitivity and exposure based on postnatal development. Changes in the gastrointestinal tract (GIT) in neonates are driven by initial enteral feedings. These are important for nutrient uptake as well as drug disposition and include motility, expansion of enzyme and transporter function, permeability, intestinal microbiome, and species-specific maturation. Some aspects of GIT function do not mature until driven by increased dietary complexity. As with the GIT, postnatal hepatic maturation in the rat includes a variety of anatomic and functional changes that include refinements in the activities or expression of drug transporters and drug-metabolizing enzymes. These changes may impact rodent pharmacokinetics, nonclinical toxicity profiles, and estimation of safe pediatric doses. Pilot or dose range finding studies can help characterize and mitigate toxicity related to drug disposition, especially in juvenile rodents. Interpretation of developmental toxicity requires knowledge of developing systems in humans and nonclinical models.


Subject(s)
Gastrointestinal Tract , Liver , Animals , Humans , Rats , Species Specificity
3.
Toxicol Pathol ; 49(8): 1377-1388, 2021 12.
Article in English | MEDLINE | ID: mdl-34338059

ABSTRACT

Drug responses are often unpredictable in juvenile animal toxicity studies; hence, optimizing dosages is challenging. Renal functional differences based on age of development will often result in vastly different toxicologic responses. Developmental changes in renal function can alter plasma clearance of compounds with extensive renal elimination. Absorption, distribution, metabolism, and excretion of drugs vary depending on animal age and kidney maturation. Toxicity can result in malformations or renal degeneration. Although renal morphologic development in humans generally occurs in utero, maximal levels of tubular secretion, acid-base equilibrium, concentrating ability, or glomerular filtration rate (GFR) are reached postnatally in humans and animals and subject to drug effects. Maturation of renal metabolism and transporters occurs postnatally and plays a critical role in detoxification and excretion. Maturation times must be considered when designing juvenile toxicity studies and may require cohorts of animals of specific ages to achieve optimal dosing schemes and toxicokinetics. In recent years, critical end points and windows of susceptibility have been established comparatively between species to better model pharmacokinetics and understand pediatric nephrotoxicity. There are examples of agents where toxicity is enhanced in neonates, others where it is diminished, and others where rat nephrotoxicity is expressed as juvenile toxicity, but in humans as gestational toxicity.


Subject(s)
Kidney , Rodentia , Animals , Glomerular Filtration Rate , Humans , Rats
4.
Toxicol Pathol ; 49(3): 419-437, 2021 04.
Article in English | MEDLINE | ID: mdl-32323615

ABSTRACT

Rabbits are frequently used in studies assessing the toxicity of ophthalmic drugs; however, the postnatal histological changes that occur in the rabbit eye have not been fully described. To characterize postnatal ocular development in white rabbits, a histological investigation of the eyes and eyelids was sequentially performed between postnatal days (PNDs) 1 and 42. The eyes opened during PNDs10 to 12. Significant changes prior to eyelid opening included the proliferation of uveal and optic nerve cells, regression of the lenticular vasculature, and thinning of the retina with a decreasing number of retinal cells. After eyelid opening, several significant changes occurred in the anterior segment, including thickening of the cornea and the development of lacrimation-related tissues in the eyelid and conjunctiva. Additionally, the differentiation of retinal layer-derived cells and optic nerve thickening occurred. The lens size continued to increase throughout the postnatal period. The histological structure of the eyes and eyelids was nearly mature by PNDs28 to 42. This study characterizes the postnatal changes in the histological features of the eyes in juvenile white rabbits, providing fundamental knowledge on the appropriate design of histological studies of the eyes in juvenile rabbits, particularly ophthalmic drug evaluations.


Subject(s)
Eye , Retina , Animals , Cornea , Eyelids , Rabbits
5.
J Toxicol Pathol ; 33(1): 39-46, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32051665

ABSTRACT

Pathological evaluation of juvenile toxicity studies requires the understanding of normal tissue development at different ages. Here, we report the morphological features of the neonatal mouse intestine, focusing on crypt fission. Postnatal day (PND) 7 and 14 mice showed fewer crypts and less mature epithelial morphology compared to PND 21 and 28. Crypt fission occurred in three stages: 1) flattening of the crypt base into a skirt shape, 2) penetration of myofibroblasts into the crypt base center, and 3) complete separation of a single crypt into two daughter crypts. The ratio of crypt fission to total number of crypts was the highest at PND 14 and 7 in the jejunum and colon, respectively. Crypt fission, a key phenomenon for balance or imbalance in epithelial cell hierarchy, including stem and differentiated cells, is related to tissue injury repair and tumorigenesis. Therefore, examining crypt fission can provide valuable insights into current conditions of intestine.

6.
Int J Toxicol ; 38(6): 456-475, 2019.
Article in English | MEDLINE | ID: mdl-31662008

ABSTRACT

Central nervous system (CNS)-targeted products are an important category of pediatric pharmaceuticals. In view of the significant postnatal maturation of the CNS, juvenile animal studies (JAS) are performed to support pediatric development of these new medicines. In this project, the design and results of juvenile toxicity studies from 15 drug compounds for the treatment of neurologic or psychiatric conditions were analyzed. Studies were conducted mostly in rats; sometimes in addition in dogs and monkeys. The study design of the pivotal JAS was variable, even for compounds with a similar therapeutic indication. Age of the juvenile animals was not consistently related to the starting age of the intended patient population. Of 15 compounds analyzed, 6 JAS detected more severe toxicities and 6 JAS evidenced novel CNS effects compared to their adult counterparts. The effects of CNS on acoustic startle and learning and memory were observed at high dosages. Reversibility was tested in most cases and revealed some small effects that were retained or only uncovered after termination of treatment. The interpretation of the relevance of these findings was often hampered by the lack of matching end points in the adult studies or inappropriate study designs. Detailed clinical observation and motor activity measures were the most powerful end points to detect juvenile CNS effects. The need for more detailed behavioral examinations in JAS, for example, on learning and memory, should, therefore, be decided upon on a case-by-case basis, based on specific concerns in order to avoid overloading the studies.


Subject(s)
Central Nervous System Agents/toxicity , Central Nervous System/drug effects , Drug Evaluation, Preclinical/methods , Age Factors , Animals , Central Nervous System Agents/administration & dosage , Child , Dose-Response Relationship, Drug , Humans
7.
Environ Toxicol ; 34(1): 83-91, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30291770

ABSTRACT

For the first time, juvenile toxicity of inorganic arsenic (As) was investigated in male rats, focusing on reproductive effects. As is a metalloid naturally occurring in the environment, being the inorganic forms the most toxics. Contaminated drinking water and agricultural products are the main prospectors of intoxication for general population. In the present study, Wistar male rats (21 days old) were distributed into three groups (n = 10/group): control (received vehicle-filtered drinking water), As1 (received AsNaO2 at 0.01 mg L-1 ) and As2 (received AsNaO2 at 10 mg L-1 ). The animals were euthanized on PND 53. Testicular damages increased in As1 and As2 compared to control (ie, presence of vacuolization, acidophilic cells, and epithelium degeneration). Testicular interstitium of As1 and As2 presented fluid's increase and intense inflammatory infiltration. In the epididymis there was reduction of sperm amount in the lumen, besides epithelium areas presenting cribriform aspect in As1 and As2, exfoliation of cells in the light (in As1) and vacuoles (in As2). In epididymis interstitium, inflammatory infiltrates were observed in initial segment of As1 and As2. AsNaO2 changed immunolabeling pattern for androgen receptor in epididymis of As2, although serum testosterone levels was statistically comparable to control. Mass spectrometry revealed higher As concentrations in testis and epididymis of As2 compared to As1 and Control. These results indicate compromise of spermatogenesis and epididymal histophysiology in AsNaO2 -treated animals, possibly impairing sperm quality and fertility in long-term, even at low levels of exposure. Investigations about the reversibility of reproductive damages are necessary to better understand the mechanisms of As reproductive toxicity.


Subject(s)
Arsenites/toxicity , Epididymis/drug effects , Epididymis/pathology , Sexual Maturation/drug effects , Sodium Compounds/toxicity , Spermatogenesis/drug effects , Animals , Arsenic Poisoning/pathology , Arsenic Poisoning/physiopathology , Arsenites/pharmacology , Fertility/drug effects , Male , Organ Size/drug effects , Rats , Rats, Wistar , Reproduction/drug effects , Sodium Compounds/pharmacology , Spermatozoa/drug effects , Testis/drug effects , Toxicity Tests , Water Pollutants, Chemical/toxicity
8.
Toxicol Pathol ; 47(1): 26-34, 2019 01.
Article in English | MEDLINE | ID: mdl-30373479

ABSTRACT

Cationic amphiphilic drugs (CADs) can induce phospholipidosis (PLD) in organs/tissues. Several ophthalmic pharmaceuticals containing CADs are marketed and used in children. To investigate the effect of PLD on the developing cornea, chloroquine and amiodarone, which are representative CADs, were applied topically to the eyes of juvenile rabbits, and the effects in juvenile rabbits were compared with those in young adult rabbits. Diffuse corneal cloudiness was observed in chloroquine- and amiodarone-treated eyes. Histopathologically, vacuolation was observed in the corneal epithelium and keratocytes. On ultrastructural examination, these vacuoles contained multilamellar inclusion bodies, which are a characteristic of PLD. The size of the vacuoles in the corneal epithelium was reduced in juveniles compared with young adults. Cytoplasmic lamellar bodies and exocytosis in the corneal endothelium were observed in young adult rabbits but not in juvenile rabbits. This study revealed that topical application of chloroquine or amiodarone induces corneal PLD in juvenile and young adult rabbits. Corneal endothelial changes occurred only in young adult rabbits, but ophthalmological changes were similar between juveniles and young adults. The results of the study suggest that the effects of corneal PLD were similar among age groups based on risk assessment.


Subject(s)
Aging/metabolism , Amiodarone/toxicity , Chloroquine/toxicity , Cornea/drug effects , Lipidoses/chemically induced , Phospholipids/metabolism , Administration, Ophthalmic , Aging/pathology , Animals , Cornea/metabolism , Cornea/ultrastructure , Disease Models, Animal , Female , Inclusion Bodies/metabolism , Instillation, Drug , Lipidoses/metabolism , Lipidoses/pathology , Male , Rabbits
9.
Biomol Ther (Seoul) ; 26(5): 512-519, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30078309

ABSTRACT

Phthalates widely used in the manufacture of plastics have deeply penetrated into our everyday lives. Recently, a concern over the toxicity of phthalates on thyroid, has been raised but in most of cases, the doses employed were unrealistically high. To investigate the effects of phthalates on thyroid, we investigated the effects of the repeated oral exposure to low to high doses (0.3, 3, 30 and 150 mg/kg) di-2-ethylhexylphthalate (DEHP) from weaning to maturity for 90 days in juvenile rats on the thyroid. The histological examination revealed that DEHP significantly induced hyperplasia in the thyroid from the doses of 30 mg/kg, which was confirmed with Ki67 staining. In line with this finding, increased mRNA expression of thyrotropin releasing hormone (Trh) was observed in the thyroid of female at 0.3 mg/kg and 150 mg/kg as determined by RNAseq analysis. Moreover, significantly increased expression of parathyroid hormone (Pth) in the female at 0.3 mg/kg, and thyroglobulin (Tg) and thyroid hormone responsive (Thrsp) in the male at 0.3 mg/kg were noted in the blood, of which changes were substantially attenuated at 150 m/kg, alluding the meaningful effects of low dose DEHP on the thyroid hormone regulation. Urinary excretion of mono-2-ethylhexyl-phthalate (MEHP), a major metabolite of DEHP was determined to be 4.10 and 12.26 ppb in male, 6.65 and 324 ppb in female at 0.3 and 30 mg/kg DEHP, respectively, which fell within reported human urine levels. Collectively, these results suggest a potential adverse effects of low dose phthalates on the thyroid.

10.
Article in English | WPRIM (Western Pacific) | ID: wpr-717248

ABSTRACT

Phthalates widely used in the manufacture of plastics have deeply penetrated into our everyday lives. Recently, a concern over the toxicity of phthalates on thyroid, has been raised but in most of cases, the doses employed were unrealistically high. To investigate the effects of phthalates on thyroid, we investigated the effects of the repeated oral exposure to low to high doses (0.3, 3, 30 and 150 mg/kg) di-2-ethylhexylphthalate (DEHP) from weaning to maturity for 90 days in juvenile rats on the thyroid. The histological examination revealed that DEHP significantly induced hyperplasia in the thyroid from the doses of 30 mg/kg, which was confirmed with Ki67 staining. In line with this finding, increased mRNA expression of thyrotropin releasing hormone (Trh) was observed in the thyroid of female at 0.3 mg/kg and 150 mg/kg as determined by RNAseq analysis. Moreover, significantly increased expression of parathyroid hormone (Pth) in the female at 0.3 mg/kg, and thyroglobulin (Tg) and thyroid hormone responsive (Thrsp) in the male at 0.3 mg/kg were noted in the blood, of which changes were substantially attenuated at 150 m/kg, alluding the meaningful effects of low dose DEHP on the thyroid hormone regulation. Urinary excretion of mono-2-ethylhexyl-phthalate (MEHP), a major metabolite of DEHP was determined to be 4.10 and 12.26 ppb in male, 6.65 and 324 ppb in female at 0.3 and 30 mg/kg DEHP, respectively, which fell within reported human urine levels. Collectively, these results suggest a potential adverse effects of low dose phthalates on the thyroid.


Subject(s)
Animals , Female , Humans , Male , Rats , Diethylhexyl Phthalate , Hyperplasia , Parathyroid Hormone , Plastics , RNA, Messenger , Thyroglobulin , Thyroid Gland , Thyrotropin-Releasing Hormone , Weaning
11.
Food Chem Toxicol ; 97: 411-423, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27717803

ABSTRACT

Oily fish, a source of long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFAs), may contain persistent organic pollutants (POPs), including α-hexabromocyclododecane (α-HBCD). In experimental studies, marine LC n-3 PUFAs ameliorate fatty liver development while HBCD exposure was found to cause liver fatty acid (FA) changes. The present study investigated interactions of FAs and α-HBCD in juvenile female BALB/c mice using a factorial design. Mice (n = 48) were exposed for 28 days to a low (100 µg*kg body weight (BW)-1*day-1) or high dose (100 mg*kg BW-1*day-1) of α-HBCD in diets with or without LC n-3 PUFAs. High dose α-HBCD affected whole body lipid metabolism leading to changes in body weight and composition, and pathological changes in hepatic histology, which surprisingly were aggravated by dietary LC n-3 PUFAs. Hepatic FA profiling and gene expression analysis indicated that the dietary modulation of the hepatotoxic response to the high dose of α-HBCD was associated with differential effects on FA ß-oxidation. Our results suggest that in a juvenile mouse model, marine FAs accentuate hepatotoxic effects of high dose α-HBCD. This highlights that the background diet is a critical variable in the risk assessment of POPs and warrants further investigation of dietary mediated toxicity of food contaminants.


Subject(s)
Diet/adverse effects , Fatty Acids/toxicity , Hydrocarbons, Brominated/toxicity , Liver/drug effects , Animals , Dose-Response Relationship, Drug , Female , Food Contamination/analysis , Gene Expression Regulation/drug effects , Liver/metabolism , Mice , Mice, Inbred BALB C , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Seafood
12.
Regul Toxicol Pharmacol ; 73(2): 571-7, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26361857

ABSTRACT

Assessment of learning ability in nonhuman primate (NHP) models is sometimes requested by regulatory authorities. The double choice object discrimination task using a Wisconsin General Testing Apparatus (WGTA) approach is typically being applied. In this study, the WGTA approach was performed on 66 juvenile cynomolgus monkeys aged 8-9 months in the predose phase of juvenile toxicity assessment. In addition, reversal learning data of seven control animals/gender were obtained for the weeks 25 and 52 of dosing. Gender differences in the number of days required to pass the habituation, learning or reversal learning phases were statistically comparable, males and females may be combined for statistical analysis. At first instance, the habituation phase was passed on average after 6.4 days, and the learning test on average after 8.6 days with improvement to 2.0-2.6 days for habituation and 6.4-6.7 days for learning in weeks 52. Power analysis (α = 0.05, one-sided t-test) revealed a sample size of 8 and 41 to predict a 50% and 20% difference, respectively. In conclusion, examination for learning ability, but not for memory ability (during repeated testing) is feasible in juvenile NHPs using the WGTA approach.


Subject(s)
Environment , Learning/physiology , Psychological Tests/standards , Age Factors , Animals , Feasibility Studies , Female , Housing, Animal/standards , Learning Disabilities/pathology , Learning Disabilities/psychology , Macaca fascicularis , Male , Time Factors
13.
Regul Toxicol Pharmacol ; 73(3): 960-70, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26382613

ABSTRACT

The purpose of this study was to assess the safety of gadoterate meglumine, a gadolinium-based contrast agent used in magnetic resonance imaging, in neonatal and juvenile rats. Rats received a single intravenous administration on postnatal day (PND) 10 or 6 administrations (from PND 10 to 30), at doses of 0, 0.6, 1.25, and 2.5 mmol/kg/administration, i.e. equivalent to approximately 1, 2 and 4-times the usual human dose. The animals were sacrificed at the end of the treatment period or after a 60-day treatment-free period. No mortality and no significant treatment-related effect on clinical signs, macroscopic and histopathological findings, development, behavior, sexual maturation and hematology parameters were observed. Minor non-adverse changes were observed in clinical biochemistry and urinary parameters. Based on AUC0-t, gadoterate meglumine was more rapidly eliminated at PND 30 vs. PND 10, reflecting maturation of kidney function. At the end of the treatment period, Gd was measurable in all organs sampled after single or repeated dosing and levels were dose-dependent as expected, the highest ones being found in kidneys. The total Gd concentrations were similar in all the organs following a single or repeated dosing. At the end of the treatment-free period, only traces of gadolinium were quantifiable, almost exclusively in kidneys, reflecting the excretory function of this organ. In conclusion, single or repeated administration of gadoterate meglumine to juvenile rats was well tolerated.


Subject(s)
Contrast Media/toxicity , Meglumine/toxicity , Organometallic Compounds/toxicity , Age Factors , Animals , Animals, Newborn , Contrast Media/administration & dosage , Contrast Media/pharmacokinetics , Drug Administration Schedule , Injections, Intravenous , Meglumine/administration & dosage , Meglumine/pharmacokinetics , Organometallic Compounds/administration & dosage , Organometallic Compounds/pharmacokinetics , Rats, Sprague-Dawley , Renal Elimination , Risk Assessment , Time Factors , Tissue Distribution
14.
Reprod Toxicol ; 50: 171-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25462783

ABSTRACT

This study was designed to compare the safety of two gadolinium chelates (GCs), used as contrast agents for magnetic resonance imaging, in juvenile rats. Juvenile rats received five intravenous administrations (between postnatal day [PND] 4 and 18) of gadoteric acid (macrocyclic ionic GC), gadodiamide (linear nonionic GC) or saline, and sacrificed at PND 25. Gadodiamide induced mortality, alopecia and hyperpigmentation of dorsal skin. Two gadodiamide-treated rats presented severe epidermal and dermal lesions. No abnormal signs were detected following administration of gadoteric acid. Higher tissue gadolinium concentrations were found in the gadodiamide group compared to the gadoteric acid group. Dissociation of gadodiamide was observed in skin and liver, with the presence of dissociated and soluble gadolinium. In conclusion, repeated administration of gadoteric acid was well tolerated by juvenile rats. In contrast, gadodiamide induced significant toxicity and more marked tissue gadolinium retention (at least partly in the dissociated and soluble form).


Subject(s)
Contrast Media/toxicity , Gadolinium DTPA/toxicity , Heterocyclic Compounds/toxicity , Organometallic Compounds/toxicity , Animals , Contrast Media/metabolism , Female , Gadolinium DTPA/metabolism , Heterocyclic Compounds/metabolism , Male , Organometallic Compounds/metabolism , Rats , Rats, Sprague-Dawley , Risk , Skin/pathology
15.
Birth Defects Res B Dev Reprod Toxicol ; 101(2): 144-51, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24692426

ABSTRACT

BACKGROUND: Aliskiren is the first orally bioavailable direct renin inhibitor approved for the treatment of hypertension in adults. Juvenile toxicity studies in rats were initiated to support treatment in the pediatric population. METHODS: In Study 1, aliskiren oral administration was initiated on postpartum day (PPD) 14, after nephrogenesis was completed, and continued through PPD 70 at doses of 0, 30, 100, and 300 mg/kg/day. In-life, clinical pathology, anatomic pathology, developmental, behavioral, reproductive, and toxicokinetics evaluations were performed. In Study 2, oral administration was initiated on PPD 8, before completion of nephrogenesis, and continued through PPD 35/36. In-life, clinical pathology, anatomic pathology, developmental, and toxicokinetics evaluations were performed. RESULTS: With dosing initiated on PPD 8, mortality at 100 and 300 mg/kg/day and slightly increased kidney weight at 100 mg/kg/day occurred. Decreased absolute lymphocyte count at 300 mg/kg/day at the end of dosing occurred with dosing initiated on PPD 14. There were clinical signs and transient effects on body weight gains in both studies. There were no changes in other parameters. Systemic exposure was much higher on PPD 8 and 14 compared with adult rats on PPD 64. CONCLUSIONS: All effects produced by aliskiren, including kidney effects, were reversible. Increased exposure in very young animals is considered to be the result of immature drug transporter systems.


Subject(s)
Amides/administration & dosage , Antihypertensive Agents/administration & dosage , Fumarates/administration & dosage , Kidney/drug effects , Administration, Oral , Amides/adverse effects , Animals , Antihypertensive Agents/adverse effects , Behavior, Animal/drug effects , Body Weight/drug effects , Dose-Response Relationship, Drug , Female , Fumarates/adverse effects , Hypertension/drug therapy , Lymphocyte Count , Male , Maternal Exposure , Postpartum Period/drug effects , Rats , Rats, Sprague-Dawley , Reproduction/drug effects , Toxicity Tests , Toxicokinetics
16.
Toxicol Pathol ; 42(5): 913-22, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24129760

ABSTRACT

The development process of myelination varies between region and species. Fully myelinated fibers are required if mammalian neural circuits are to function normally. Histology samples at staggered time points throughout the study were examined at days 4, 5, 7, 8, 10, 14, 17, 24, 37, and 44. We suggest that the development of myelin in the juvenile rodent brain can be conveniently separated into 3 phases. Evaluation of myelin basic protein-stained sections of the areas of brain that contain the elements of the developing limbic system over the sensitive period from postnatal day (PND) 14 to 34 may provide an insight into possible toxicity that may lead to cognition and learning issues in adults. We will hope to develop this notion further in the future. The precise chronology of the development of the blood-brain barrier in rats has yet to be established; thus, there is potential for significant exposure of the juvenile brain to chemicals that do not cross the blood-brain barrier in the adult. Thus, it is suggested that evaluation of myelin development should probably be extended to all new chemical entities intended for pediatric use, and not just those that are intended for central nervous system use.


Subject(s)
Brain/growth & development , Myelin Sheath/metabolism , Animals , Blood-Brain Barrier/metabolism , Female , Male , Myelin Basic Protein/metabolism , Rats , Rats, Sprague-Dawley
17.
Birth Defects Res B Dev Reprod Toxicol ; 98(5): 374-90, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24323897

ABSTRACT

BACKGROUND: The timing and duration of letrozole administration was designed to encompass the majority of postnatal development in the rat with the intent of evaluating the potential for a broad range of effects but with emphasis on expected effects on skeletal maturation. METHODS: Sprague-Dawley rats were administered letrozole via oral gavage at doses of 0.003, 0.03, and 0.3 mg/kg/day beginning on postpartum day (PPD) 7 through 91 followed by a 6-week recovery period. Clinical signs, body weight, food consumption, developmental endpoints, bone, ophthalmology, behavioral assessments, clinical/anatomic pathology, toxicokinetics, and reproductive assessments were conducted. RESULTS: Growth (body weight gain and crown-to-rump length) and food consumption were increased in females at ≥0.03 mg/kg/day and decreased in males at ≥0.003 mg/kg/day. Delayed sexual maturation in both sexes and adverse effects on reproductive function occurred at all doses. Effects on bone growth and maturation were noted in both sexes at all doses. Evidence of recovery was noted for males at 0.003 mg/kg/day and females at 0.003 and 0.03 mg/kg/day upon withdrawal of treatment. Histopathological changes in the pituitary-adrenal-gonadal axis correlated with effects on reproductive function. CONCLUSIONS: The observed effects in juvenile rats were considered predictable and primarily related to the mechanism of action of letrozole upon estrogen synthesis.


Subject(s)
Aromatase Inhibitors/toxicity , Nitriles/toxicity , Triazoles/toxicity , Animals , Behavior, Animal/drug effects , Body Weight/drug effects , Bone Development/drug effects , Dose-Response Relationship, Drug , Eating/drug effects , Female , Letrozole , Male , Motor Activity/drug effects , Rats , Rats, Sprague-Dawley , Reproduction/drug effects , Spermatozoa/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...