Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928414

ABSTRACT

Application of laser-generated electron beams in radiotherapy is a recent development. Accordingly, mechanisms of biological response to radiation damage need to be investigated. In this study, telomere length (TL) as endpoint of genetic damage was analyzed in human blood cells (leukocytes) and K562 leukemic cells irradiated with laser-generated ultrashort electron beam. Metaphases and interphases were analyzed in quantitative fluorescence in situ hybridization (Q-FISH) to assess TL. TLs were shortened compared to non-irradiated controls in both settings (metaphase and interphase) after irradiation with 0.5, 1.5, and 3.0 Gy in blood leukocytes. Radiation also caused a significant TL shortening detectable in the interphase of K562 cells. Overall, a negative correlation between TL and radiation doses was observed in normal and leukemic cells in a dose-dependent manner. K562 cells were more sensitive than normal blood cells to increasing doses of ultrashort electron beam radiation. As telomere shortening leads to genome instability and cell death, the results obtained confirm the suitability of this biomarker for assessing genotoxic effects of accelerated electrons for their further use in radiation therapy. Observed differences in TL shortening between normal and K562 cells provide an opportunity for further development of optimal radiation parameters to reduce side effects in normal cells during radiotherapy.


Subject(s)
Electrons , Leukocytes , Telomere , Humans , K562 Cells , Leukocytes/radiation effects , Leukocytes/metabolism , Telomere/radiation effects , Telomere/genetics , Telomere/metabolism , Leukemia/genetics , Leukemia/pathology , Leukemia/radiotherapy , Telomere Homeostasis/radiation effects , In Situ Hybridization, Fluorescence , Telomere Shortening/radiation effects , DNA Damage/radiation effects , Dose-Response Relationship, Radiation
2.
Saudi Pharm J ; 32(2): 101931, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38298828

ABSTRACT

Background: The use of tyrosine kinase inhibitors (TKIs) as a treatment for chronic myeloid leukemia (CML) has improved the natural history of the disease and increased the duration of survival. Tyrosine kinase inhibitors represent the success of target therapies that work on molecular targets, although some patients still have therapy failure. Vitamin D has antiproliferative, pro-apoptotic, and anti-angiogenic effects on cells, therefore it can be considered as a potential cancer preventative and treatment agent. Inecalcitol (TX-522) is the 14-epi-analogue of Calcitriol (1,25(OH)2-vitamin D3), and inhibits cancer cell proliferation more effectively than Calcitriol. This study was conducted to evaluate the antiproliferative and synergistic effects of the anticancer drugs Imatinib and Dasatinib in combinations with Inecalcitol on human chronic myeloid leukemia K-562 cells. Method: The growth inhibitory activities of Inecalcitol, Imatinib, Dasatinib, and different combinations of one of the two drugs (Imatinib and Dasatinib) with Inecalcitol, were determined in vitro using MTT assay against K-562 cell line. Results: Inecalcitol, Imatinib, and Dasatinib showed potent antiproliferative activities against K-562 cells with GI50 values of 5.6 µM, 0.327 µM, and 0.446 nM, respectively. Combinations of Imatinib or Dasatinib with different concentrations of Inecalcitol increased significantly the antiproliferative activities and potencies of both drugs (****p < 0.0001), with optimal GI50 values of 580 pM (Imatinib) and 0.51 pM (Dasatinib). Furthermore, the combination treatments showed synergistic interaction between the antileukemic drugs and Inecalcitol, with combination indices (CI) < 1. Conclusion: The study demonstrated that the human chronic myeloid leukemia K-562 cells were subjected to a synergistic growth inhibitory impact when antileukemic drugs (Imatinib or Dasatinib) were combined with Inecalcitol, therefore, it is recommended that these combinations be viewed as promising novel antileukemic medications and used in place of individual medications with lower dosages and negligible side effects in the treatment of CML.

3.
Anticancer Agents Med Chem ; 24(3): 203-212, 2024.
Article in English | MEDLINE | ID: mdl-38038011

ABSTRACT

BACKGROUND: It has been established that pyrazine derivatives, which have widespread bioactivities, can effectively treat cancer. OBJECTIVES: In this study, we investigated the effects of 2-methoxy-5-(oxiran-2-ylmethyl) phenyl pyrazine-2- carboxylate (2-mOPP), a new pyrazine derivative, on proliferation, viability, and apoptosis induction in human leukemia K562 cells. METHODS: For this purpose, the K562 cells were treated with various concentrations (20-120 µM) of the 2-mOPP for 24-72 hours. Cell viability was determined by MTT growth inhibition assay. Apoptotic activity of 2-mOPP was investigated morphologically by Hoechst staining, cell surface expression assay of phosphatidylserine by Annexin-V/PI technique, as well as DNA fragmentation assay. The effect of 2-mOPP on the K562 cell cycle was studied by flow cytometry. To determine the impact of 2-mOPP on the expression of intrinsic apoptosis-related genes, Bcl2 (anti-apoptotic), Bax (pro-apoptotic), and Survivin genes expression levels were evaluated before and after treatment with 2-mOPP through Real-Time PCR analysis. RESULTS: The results revealed that 2-mOPP inhibited viability with IC50 of 25µM in 72 h. Morphological changes assessment by fluorescence microscopy, Annexin V/PI double staining by flow cytometry, and DNA ladders formation upon cell treatment with the 2-mOPP showed that this compound induces apoptosis at IC50 value. Cell cycle arrest was observed in the G0/G1 phase, and the sub-G1 cell population (the sign of apoptosis) increased in a time-dependent manner. Low expression levels of Bcl2 and Survivin in K562 cells were observed 24-72 h after treatment. Along with the down-regulation of Survivin and Bcl2, the expression of Bax was increased after treatment with 2-mOPP. CONCLUSION: These findings demonstrate that the new pyrazine derivative plays a crucial role in blocking the proliferation of the leukemic cells by inducing cell cycle arrest and apoptosis.


Subject(s)
Apoptosis , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Survivin , K562 Cells , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Cell Proliferation
4.
Iran J Basic Med Sci ; 26(3): 295-300, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36865039

ABSTRACT

Objectives: Microvesicles (MVs) are small membrane-bound particles that act as a vehicle to transfer their contents, such as proteins, RNAs, and miRNAs, to the target cells, making them undergo several changes. Depending on the origin and the target cell, MVs may cause cell survival or apoptosis. This study investigated the effects of MVs released from the leukemic K562 cell line on the human bone marrow mesenchymal stem cells (hBM-MSCs) to evaluate changes in the survival or apoptosis of the cells in an in vitro system. Materials and Methods: In this experimental study, we added the isolated MVs from the K562 cell line to hBM-MSCs, and after three and then seven days, subsequently cell count, cell viability, transmission electron microscopy, tracing MVs by carboxyfluorescein diacetate, succinimidyl ester (CFSE) solution, flow cytometry analysis for Annexin-V/PI staining and qPCR for the evaluation of BCL-2, KI67, and BAX expression were carried out. On the 10th day of the culture, hBM-MSCs were examined by Oil red O and Alizarin Red staining to evaluate their differentiation into adipocytes and osteoblasts. Results: There was a significant decrease in cell viability and KI67 and BCL-2 expression; however, BAX was significantly upregulated in the hBM-MSCs compared to control groups. Annexin-V/PI staining results also showed the apoptotic effects of K562-MVs on hBM-MSCs. Moreover, the differentiation of hBM-MSCs into adipocytes and osteoblasts was not observed. Conclusion: MVs from the leukemic cell line could affect the viability of normal hBM-MSCs and induce cell apoptosis.

5.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(1): 25-32, 2023 Feb.
Article in Chinese | MEDLINE | ID: mdl-36765472

ABSTRACT

OBJECTIVE: To explore the effect of dichloromethane extraction phase of ethanol extract from stem of Patrinia scabiosaefolia Fisch.(DPSS) on proliferation and differentiation of K562 cells and its related mechanism. METHODS: MTT assay was used to detect the effects of DPSS at 0, 25, 50, 100 and 200 µg/ml on the proliferation of K562 cells at 24, 48 and 72 hours. Flow cytometry was used to analyze the changes of cell cycle and apoptosis at 24 and 48 hours. Wright-Giemsa staining was used to observe the morphological changes of K562 cells. The cell surface antigens CD33 and CD11b were detected by flow cytometry. RESULTS: The proliferation of K562 cells treated with different concentrations of DPSS was inhibited in a time-dose dependent manner (r=-0.96). Cell cycle analysis showed that with the increase of DPSS concentration, cells in G2/M phase increased (r=0.88), and cells were blocked in G2/M phase. Flow cytometry results showed that with the apoptosis rate of K562 cells was the highest when treated with 200 µg/ml DPSS for 48 h. Morphological observation showed that the K562 cell body increased, the amount of cytoplasm increased, the ratio of nucleus to cytoplasm decreased, and the nuclear chromatin was rough after DPSS treatment. Cell differentiation antigen, CD33 and CD11b, were positively expressed after treated with DPSS. CONCLUSION: DPSS can induce apoptosis through cell cycle arrest, inhibit the proliferation of K562 cells, and induce K562 cells to differentiate into monocytes, which has a potential anti-leukemia effect.


Subject(s)
Patrinia , Humans , K562 Cells , Methylene Chloride/pharmacology , Apoptosis , Cell Proliferation , Cell Differentiation
6.
Hematology ; 28(1): 1-9, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36652402

ABSTRACT

OBJECTIVES: Chromosome segregation 1-like (CSE1L) is abundant and strongly expressed in solid tumors. However, the expression and role of CSE1L in chronic myeloid leukemia(CML) remain largely unknown. MATERIALS AND METHODS: The relative expression levels of CSE1L in bone marrow granulocytes from patients with primary CML and non-hematologic controls were measured by flow cytometry. Cell counting kit-8 analysis, DNA Content Quantitation Assay, and Annexin V-PE/7-AAD staining were applied to assess the effects of CSE1L knockdown on cell proliferation, cell cycle progression, and apoptosis. RESULTS: Elevated expression of CSE1L was detected in bone marrow granulocytes of patients with primary CML. In the CML cell line K562 cells, CSE1L knockdown impaired cell proliferation blocked the cell cycle shift from G0/G1 phase to the S phase, and promoted apoptosis. Knockdown of CSE1L reduced Bcl-2 protein expression and increased Bax protein expression. Meanwhile, knockdown of CSE1L enhanced the expression of phospho-AMPK protein and decreased the expression of phospho-mTOR protein. The expression of total AMPK and mTOR proteins was not affected. In addition, CSE1L expression levels were decreased in imatinib-treated K562 cells. CONCLUSIONS: CSE1L plays a pivotal role in K562 cell survival and growth. These functions may be partially dependent on the AMPK/mTOR signaling pathway to achieve. In addition, CSE1L may have had a future impact on the treatment of CML patients.


Subject(s)
AMP-Activated Protein Kinases , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/pharmacology , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Apoptosis , Cell Proliferation , K562 Cells
7.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-971097

ABSTRACT

OBJECTIVE@#To explore the effect of dichloromethane extraction phase of ethanol extract from stem of Patrinia scabiosaefolia Fisch.(DPSS) on proliferation and differentiation of K562 cells and its related mechanism.@*METHODS@#MTT assay was used to detect the effects of DPSS at 0, 25, 50, 100 and 200 μg/ml on the proliferation of K562 cells at 24, 48 and 72 hours. Flow cytometry was used to analyze the changes of cell cycle and apoptosis at 24 and 48 hours. Wright-Giemsa staining was used to observe the morphological changes of K562 cells. The cell surface antigens CD33 and CD11b were detected by flow cytometry.@*RESULTS@#The proliferation of K562 cells treated with different concentrations of DPSS was inhibited in a time-dose dependent manner (r=-0.96). Cell cycle analysis showed that with the increase of DPSS concentration, cells in G2/M phase increased (r=0.88), and cells were blocked in G2/M phase. Flow cytometry results showed that with the apoptosis rate of K562 cells was the highest when treated with 200 μg/ml DPSS for 48 h. Morphological observation showed that the K562 cell body increased, the amount of cytoplasm increased, the ratio of nucleus to cytoplasm decreased, and the nuclear chromatin was rough after DPSS treatment. Cell differentiation antigen, CD33 and CD11b, were positively expressed after treated with DPSS.@*CONCLUSION@#DPSS can induce apoptosis through cell cycle arrest, inhibit the proliferation of K562 cells, and induce K562 cells to differentiate into monocytes, which has a potential anti-leukemia effect.


Subject(s)
Humans , K562 Cells , Patrinia , Methylene Chloride/pharmacology , Apoptosis , Cell Proliferation , Cell Differentiation
8.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(6): 1668-1672, 2022 Dec.
Article in Chinese | MEDLINE | ID: mdl-36476887

ABSTRACT

OBJECTIVE: To explore the effect of UVRAG on mitophagy in leukemia cells K562. METHODS: K562 cells were induced with different concentrations of mitophagy inducer carbonylcyanide-m-chlorophenylhydrazone (CCCP) for 6, 12 and 24 hours, and the cell viability was detected by the CCK-8 assay. K562 cells were divided into NC, UVRAG-siRNA, UVRAG-siRNA+CCCP, and CCCP group, while Western blot was used to detect the expression of UVRAG protein. Flow cytometry was used to detect the changes in reactive oxygen species (ROS) and mitochondrial structural integrity. The expressions of autophagy related proteins P62 and LC3-Ⅱ/LC3-Ⅰ were detected by Western blot. RESULTS: Compared with NC group, the expression of UVRAG protein in UVRAG -siRNA group significantly decreased (P<0.01). Compared with CCCP group, in UVRAG -siRNA+CCCP group ROS, mitochondrial structure damage, and the expression of LC3-Ⅱ/LC3-Ⅰ decreased significantly (P<0.05, P<0.05, P<0.01), while the expression of P62 protein increased (P<0.05). Compared with NC group, the differences in the expressions of P62 and LC3-Ⅱ/LC3-Ⅰ protein, ROS, and mitochondrial structural integrity in UVRAG -siRNA group were not obvious (P>0.05). CONCLUSION: Under the treatment of CCCP, silencing UVRAG can inhibit mitophagy in K562 cells.


Subject(s)
Leukemia , Humans , Tumor Suppressor Proteins
9.
Biofabrication ; 15(1)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36170845

ABSTRACT

Non-adherent cells, such as hematopoietic cells and lymphocytes, are important research subjects in medical and biological fields. Therefore, a system that enables the handling of non-adherent cells in solutions in the same manner as that of adhering cells during medium exchange, exposure to chemicals, washing, and staining in imaging applications would be useful. Here, we report a 'Cell Dome' platform in which non-adherent cells can be enclosed and grown in the cavities of about 1 mm diameter and 270µm height. The domes consist of an alginate-based hydrogel shell of 90µm thickness. Cell Domes were formed on glass plates by horseradish peroxidase-mediated cross-linking. Human leukaemia cell line K562 cells enclosed in Cell Domes were stable for 29 days with every 2-3 days of medium change. The enclosed cells grew in the cavities and were stained and differentiated with reagents supplied from the surrounding medium. Additionally, K562 cells that filled the cavities (a 3D microenvironment) were more hypoxic and highly resistant to mitomycin C than those cultured in 2D. These findings demonstrate that the 'Cell Dome' may be a promising tool for conveniently culturing and evaluating non-adherent cells.


Subject(s)
Hydrogels , Mitomycin , Humans , Alginates/metabolism , Horseradish Peroxidase
10.
J Biochem Mol Toxicol ; 36(11): e23185, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35920412

ABSTRACT

Despite advances in cancer treatment, chronic myeloid leukemia (CML) is still one of the leading causes of death in the world. Due to the role of inflammation in cancer promotion and progression, thus use of anti-inflammatory agents may suppress cancer cell growth. In this study, we used two anti-inflammatory drugs, cilostazol and meloxicam, for the treatment of CML. Cell viability was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and the synergism occurrence was calculated by compusyn software. Annexin V/PI test and Hoechst staining were used to determine the apoptosis rate. To determine the pathway of apoptosis induction, the expression of BCL2 Associated X (Bax) and B-cell lymphoma-2 (Bcl-2) apoptotic genes and caspases activity were evaluated. The cell cycle was analyzed by propidium iodide (PI) staining and flow cytometry. Western blot analysis and immunofluorescence were performed to estimate alterations in Ak strain transforming-1 (AKT-1), phosphprylated AKT-1 (p-AKT-1), adenosine mono-phosphate-kinase (AMPK), and phosphorylated AMPK (p-AMPK) proteins and BCR/ABL and c-Myc distribution, respectively. Results showed that cilostazol, meloxicam, and their combination drug reduced cell viability (p < 0.05). Compared with control, expression of Bax and Bcl-2 decreased in treated cells, respectively (p < 0.05). The caspase-9 activity increased in treated cells compared to control cells (p < 0.001). The applied drugs decreased the protein level of p-AKT-1 while increasing the p-AMPK protein level (p < 0.05). BCR/ABL and c-Myc Protein distribution significantly decreased in treated cells. In conclusion, the combination drug had more cytotoxic effects than cilostazol and meloxicam alone and induced apoptosis by inhibiting AKT-1 activation and c-Myc reduction. Therefore using combination drugs effectively can treat cancers of CML origin.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Proto-Oncogene Proteins c-akt , Humans , K562 Cells , Proto-Oncogene Proteins c-akt/metabolism , Cilostazol/pharmacology , Cilostazol/therapeutic use , Meloxicam/pharmacology , Meloxicam/therapeutic use , AMP-Activated Protein Kinases/metabolism , bcl-2-Associated X Protein , Signal Transduction , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Apoptosis , Proto-Oncogene Proteins c-bcl-2/metabolism , Cell Proliferation
11.
Oncol Lett ; 24(2): 273, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35782903

ABSTRACT

In preliminary experiments, it was found that the expression of early growth response-1 (Egr-1) was upregulated during the committed differentiation of leukemia cells into monocytes/macrophages. The cross-analysis of gene chip detection and database prediction indicated that Egr-1 was associated with upstream microRNA (miR)-let-7c-3p, thus the present study focused on the role of the miR-let-7c-3p/Egr-1 signaling axis in the committed differentiation of leukemia cells into monocytes/macrophages. Phorbol 12-myristate 13-acetate (PMA) was used to induce the directed differentiation of human K562 leukemia cells into monocytes/macrophages and the differentiation of K562 leukemia cells was determined by cell morphology observation and expression of differentiation antigens CD11b and CD14 by flow cytometry. The expression levels of Egr-1 and miR-let-7c-3p were detected by reverse transcription-quantitative PCR and the protein expression of Egr-1 was detected by western blotting. The effect of Egr-1 on the differentiation of K562 cells was detected by short interfering (si)RNA interference assay. A dual-luciferase reporter assay was used to detect target binding of miR-let-7c-3p on the 3'UTR of Egr-1. Cell transfection of miR-let-7c-3p mimics and inhibitors was used to modulate the expression of miR-let-7c-3p, as indicated by RT-qPCR assays. Western blotting was also used to examine the effect of miR-let-7c-3p on Egr-1 expression. The PMA-induced differentiation of K562 cells was transfected with miR-let-7c-3p and the expression of differentiation antigen was detected by flow cytometry. A differentiation model of K562 leukemia cells into monocytes/macrophages was induced by PMA, which was indicated by morphological observations and upregulation of CD11b and CD14 antigens. The gene or protein expression of Egr-1 was significantly higher compared with that of the control group, while the expression of miR-let-7c-3p was significantly lower compared with that of the control group. siRNA interference experiments showed that the expression of cell differentiation antigen CD14 in the 100 µg/ml PMA + si-Egr-1 group was significantly lower compared with that in the 100 µg/ml PMA + si-ctrl group. The dual luciferase reporter gene results showed that the luciferase activity of the co-transfected mimic and Egr-1 WT groups was significantly lower than that of the NC control group, while the luciferase activity of the co-transfected mimic and Egr-1 MUT groups was comparable to that of the NC control group. Therefore, the dual-luciferase reporter gene assay confirmed that miR-let-7c-3p can target Egr-1. Western blotting showed that the expression of Egr-1 following transfection with miR-let-7c-3p inhibitor was significantly higher compared with that of the negative control and the expression of Egr-1 after transfection with miR-let-7c-3p mimic was significantly lower than that of the negative control. Following exposure to PMA, the expressions of CD11b and CD14 in the miR-let-7c-3p inhibitor group were significantly higher than those in the miR-let-7c-3p NC group, as indicated by CD11b and CD14 respectively. In conclusion, miR-let-7c-3p could bind to the 3'UTR of Egr-1 and negatively regulated Egr-1 expression. The miR-let-7c-3p/Egr-1 signaling axis was closely associated with the committed differentiation of K562 cells from leukemia cells to monocytes/macrophages.

12.
Vet Res Forum ; 13(1): 121-126, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35601773

ABSTRACT

Inflammation is an initial response of the body to infection and relationship between inflammation and cancer has been established. Nuclear factor kappa B (NF-κB) is a central factor in inflammation and its activity contributes to tumor progression and apoptosis prevention consequently leading to cancer promotion. As a result, NF-κB inhibitors can cause apoptosis. In this study, the effect of mesalazine as a NF-κB inhibitor on growth and apoptosis of K562 cells has been investigated. The K562 cells were first cultured in RPMI-1640 medium containing 10.00% fetal bovine serum. After that, they were treated for 72 hr with different concentrations of mesalazine (20.00, 40.00, 60.00 and 80.00 µM mL-1). The MTT assay was used to evaluate cell viability. Hoechst staining and RT-PCR of apoptosis related genes (Bcl-2 and Bax) were carried out to illustrate apoptosis induction and immunocytochemistry was performed to investigate changes in c-Myc protein level. According to the results of MTT assay, all of applied mesalazine concentrations decreased K562 cells viability. Hoechst staining showed that the fragmented nuclei increased indicating apoptosis induction. Immuno-cytochemical results showed that mesalazine decreased c-Myc in treated cells. The RT-PCR results also showed an increase in Bax and a decrease in Bcl-2 expressions in mesalazine-treated cells. As the results suggest, mesalazine reduces cell viability by inducing apoptosis in K562 cell line; therefore, it can be used as a candidate for the leukemia treatment.

13.
Elife ; 112022 01 05.
Article in English | MEDLINE | ID: mdl-34984978

ABSTRACT

The pioneer factor hypothesis (PFH) states that pioneer factors (PFs) are a subclass of transcription factors (TFs) that bind to and open inaccessible sites and then recruit non-pioneer factors (non-PFs) that activate batteries of silent genes. The PFH predicts that ectopic gene activation requires the sequential activity of qualitatively different TFs. We tested the PFH by expressing the endodermal PF FOXA1 and non-PF HNF4A in K562 lymphoblast cells. While co-expression of FOXA1 and HNF4A activated a burst of endoderm-specific gene expression, we found no evidence for a functional distinction between these two TFs. When expressed independently, both TFs bound and opened inaccessible sites, activated endodermal genes, and 'pioneered' for each other, although FOXA1 required fewer copies of its motif for binding. A subset of targets required both TFs, but the predominant mode of action at these targets did not conform to the sequential activity predicted by the PFH. From these results, we hypothesize an alternative to the PFH where 'pioneer activity' depends not on categorically different TFs but rather on the affinity of interaction between TF and DNA.


Cells only use a fraction of their genetic information to make the proteins they need. The rest is carefully packaged away and tightly bundled in structures called nucleosomes. This physically shields the DNA from being accessed by transcription factors ­ the molecular actors that can read genes and kickstart the protein production process. Effectively, the genetic sequences inside nucleosomes are being silenced. However, during development, transcription factors must overcome this nucleosome barrier and activate silent genes to program cells. The pioneer factor hypothesis describes how this may be possible: first, 'pioneer' transcription factors can bind to and 'open up' nucleosomes to make target genes accessible. Then, non-pioneer factors can access the genetic sequence and recruit cofactors that begin copying the now-exposed genetic information. The widely accepted theory is based on studies of two proteins ­ FOXA1, an archetypal pioneer factor, and HNF4A, a non-pioneer factor ­ but the predictions of the pioneer factor hypothesis have yet to be explicitly tested. To do so, Hansen et al. expressed FOXA1 and HNF4A, separately and together, in cells which do not usually make these proteins. They then assessed how the proteins could bind to DNA and impact gene accessibility and transcription. The experiments demonstrate that FOXA1 and HNF4A do not necessarily follow the two-step activation predicted by the pioneer factor hypothesis. When expressed independently, both transcription factors bound and opened inaccessible sites, activated target genes, and 'pioneered' for each other. Similar patterns were observed across the genome. The only notable distinction between the two factors was that FOXA1, the archetypal pioneering factor, required fewer copies of its target sequence to bind DNA than HNF4A. These findings led Hansen et al. to propose an alternative theory to the pioneer factor hypothesis which eliminates the categorical distinction between pioneer and non-pioneer factors. Overall, this work has implications for how biologists understand the way that transcription factors activate silent genes during development.


Subject(s)
Ectopic Gene Expression , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 4/genetics , Liver/metabolism , Hepatocyte Nuclear Factor 3-alpha/metabolism , Hepatocyte Nuclear Factor 4/metabolism , Humans , K562 Cells
14.
Int. j. morphol ; 40(5): 1276-1283, 2022. ilus, graf
Article in Spanish | LILACS | ID: biblio-1405294

ABSTRACT

RESUMEN: Las bacteriocinas son péptidos antimicrobianos de síntesis ribosomal secretadas por bacterias. Dentro de estas destaca nisina que posee potenciales usos en terapias antibióticas, como biopreservante de alimentos y probióticos. También se ha descrito que nisina posee citotoxicidad sobre líneas celulares neoplásicas, pero existe poca información de su efecto sobre células tumorales sanguíneas. Debido al potencial uso que presenta nisina, es relevante determinar la toxicidad que presenta sobre líneas celulares tumorales del tipo sanguíneo. Para esto, se realizaron ensayos de actividad hemolítica sobre eritrocitos humanos y de toxicidad sobre células mononucleares de sangre periférica humanas, determinándose que nisina no posee efecto citotóxico sobre este tipo de células normales humanas sanguíneas. Se realizaron también, ensayos de citotoxicidad con líneas celulares tumorales (K562 y U937), con el fin de determinar dosis, tiempo de exposición y selectividad en el efecto tóxico de nisina sobre las células tumorales humanas. Estos ensayos muestran que nisina presenta actividad citotóxica sobre líneas celulares K562 y U937 a las 72 h de exposición, a una concentración de 40 µg/mL, que corresponde a 100 veces la concentración mínima inhibitoria (MIC) usada para su acción sobre bacterias. Al comparar el efecto de nisina sobre células mononucleares de sangre periférica humanas con las líneas tumorales linfoides y mieloides (K562 y U937 respectivamente), se observa un efecto selectivo de nisina sobre las células tumorales sanguíneas.


SUMMARY: Bacteriocins are antimicrobial peptides of ribosomal synthesis secreted by bacteria. Among these, nisin stands out, which has potential uses in antibiotic therapies, as a food bio preservative and probiotics. Nisin has also been reported to have cytotoxicity on neoplastic cell lines, but there is little information on its effect on blood tumor cells. Due to the potential use that nisin presents, it is relevant to determine the toxicity it presents on tumor cell lines of the blood type. For this, hemolytic activity tests were carried out on human erythrocytes and toxicity on human peripheral blood mononuclear cells, determining that nisin does not have a toxic effect on this type of normal human blood cells. Cytotoxicity tests were also carried out with tumor cell lines (K562 and U937), to determine dose, exposure time and selectivity in the toxic effect of nisin on human tumor cells. These tests show that nisin shows cytotoxic activity on K562 and U937 cell lines at 72 h of exposure, at a concentration of 40 µg / mL, which corresponds to 100 times the minimum inhibitory concentration (MIC) used for its action on bacteria. When comparing the effect of nisin on human peripheral blood mononuclear cells with lymphoid and myeloid tumor lines (K562 and U937 respectively), a selective effect of nisin on blood tumor cells is observed.


Subject(s)
Humans , Cell Line, Tumor/drug effects , Anti-Bacterial Agents/pharmacology , Nisin/pharmacology , Staphylococcus aureus/drug effects , Bacteriocins/pharmacology , In Vitro Techniques , Microbial Sensitivity Tests , Cell Survival/drug effects , K562 Cells/drug effects , U937 Cells/drug effects
15.
Int. j. high dilution res ; 20(2/3): 34-43, June 4, 2021.
Article in English | LILACS, HomeoIndex Homeopathy | ID: biblio-1396358

ABSTRACT

Natural killer (NK) cells are among the first in defense of the innate immune system by eliminating a variety of abnormal or stressed cells such as cancer cells or virus-infected cells. Individuals who exhibit low cytolytic NK cell activity are believed to be at higher risk of viral infection, tumorigenesis, and various other diseases of the immune system. Therefore, restoration of impaired NK cell function might be an essential step in immunostimulatory therapy of immunocompromised patients. Bacillus firmus is a non-pathogenic gram-positive bacterium of the environment, which possesses various immunomodulatory properties in vitro and in vivo. This retrospective study reports on the effect of B. firmus on the activity of NK cells in vitro. Basal cytolytic NK cell activity against tumor cells among peripheral blood mononuclear cells (PBMCs) of routine patients was determined in a standardized NK cell cytotoxicity assay. The impact of cultivation of PBMCs with B. firmus preparation Bacillus firmus e volumine ex muris cellulae (Bacillus firmus (evc)) 6x on tumor cell killing by NK cells was monitored in relation to basal NK cell activity. This study showed that stimulation of PBMCs with Bacillus firmus (evc) 6x in vitro led to a significant increase in NK cell function. Substantial improvement in cytolytic NK cell activity (more than 1.3-fold of basal activity) was much more pronounced for patients with compromised NK cell function. Due to its immunostimulatory mode of action, Bacillus firmus (evc) may be of particular importance in therapy of patients with NK cell deficiency.


Subject(s)
Killer Cells, Natural , K562 Cells , Bacillus firmus/immunology
16.
Chem Biol Interact ; 344: 109535, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34051208

ABSTRACT

Imatinib, a specific Bcr-Abl tyrosine kinase inhibitor, is the most commonly used drug in the treatment of chronic myeloid leukemia. However, optimal response is not achieved in up to 33% of patients. Therefore, development of novel therapeutic strategies for chronic myeloid leukemia is critical. Betulinic (1) and ursolic (2) acids are natural pentacyclic triterpenes that exhibit antileukemic activities. In this study, we evaluated the effects of pharmacomodulations at the C-3 position of the triterpene moiety of betulinic and ursolic acids on their activity against K562 leukemia cells. Six new derivatives (1a-2c) were synthesized and evaluated for pro-apoptotic and anti-proliferative effects in mammalian and leukemic cells. 2c derivative containing an amine group at the C-3 position of ursolic acid was the most active against leukemia cells with an IC50 value of 5.2 µM after 48 h of treatment. 2c did not exhibit cytotoxic effects against VERO and HepG2 cells and human lymphocytes, showing a good selectivity index for cancer over normal cells. Induced cell death by apoptosis via caspases 3 and 8, and also caused cell cycle arrest as evidenced by accumulation of cells in the G1 phase and decreased cell population in the G2 phase. Furthermore, co-treatment of 2c with imatinib, the chemotherapy drug most commonly used to treat leukemia, resulted in a synergistic effect. Our findings provide a strong rationale for further investigation of combination therapy using the 2c derivative and imatinib in pre-clinical studies.


Subject(s)
Antineoplastic Agents/pharmacology , Imatinib Mesylate/pharmacology , Triterpenes/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Caspase 3/metabolism , Caspase 8/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Chlorocebus aethiops , Drug Screening Assays, Antitumor , Drug Synergism , G1 Phase Cell Cycle Checkpoints/drug effects , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Triterpenes/chemical synthesis , Vero Cells , Ursolic Acid
17.
Curr Drug Metab ; 22(7): 532-536, 2021.
Article in English | MEDLINE | ID: mdl-33334285

ABSTRACT

BACKGROUND: Recently, a series of 15 compounds with 2,4,5-trisubstitutedthiazole scaffold having 2- amino/amido/ureido functional groups attached with 5-aryl and 4-carboxylic acid/ester groups (1-15) were reported from our research group as novel potential inhibitors of carbonic anhydrase III (CA III) enzyme. Several research studies revealed the potential role of CA inhibitors as anticancer agents, giving us the impetus to further explore these compounds for their potential as anticancer agents. OBJECTIVES: The objective of this study is to investigate the potential of 2,4,5-trisubstitutedthiazole derivatives (1-15) for their possible cytotoxic activity (in vitro), and to calculate (in silico) the absorption, distribution, metabolism, excretion and toxicity (ADMET) properties to evaluate the drug-likeness of these compounds. METHODS: Cytotoxic activity (in vitro) was carried out on two breast cancer cell lines (MCF7 and MDA231), and the lymphoblastoid human erythroleukemia cell line (K562) using 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay. Doxorubicin was used as a positive control. ADMET properties were calculated (in silico) using the QikProp module of Schrodinger. RESULTS: Compounds 6 and 9 with a phenylureido group at 2-position, and a methyl-carboxylate moiety at 4-position having para-tolyl and benzyl moiety, respectively at the 5-position of the thiazole ring showed significant cytotoxicity against all the three cell lines. In particular, compound 6 with para-tolyl group at 5-position exhibited the most potent inhibitory effect on the viability of MCF7, MDA231 and K562 cells, with IC50 values of 22, 26 and 11 µM, respectively. Notably, all the highly active compounds possess a phenyluriedo group at 2-- position with a methyl ester group at 4-position, indicating the probable role of these substituents in the target interaction and inducing cytotoxicity. Interestingly, compounds 1-4 and 10-13 with a free amino group at 2-position did not show any cytotoxic effect on the K562 cell line, while exhibiting mild to moderate cytotoxicity against the MCF7 and MDA231 cell lines. However, none of the tested compounds showed any activity against normal human dermal fibroblast cells indicating the safety/tolerability of the examined concentrations. Furthermore, these compounds also exhibited satisfactory ADMET properties (in silico), without violating Lipinski's rule of five. CONCLUSION: The most active compounds 6 and 9 predicted to have good oral absorption and low human serum protein binding, exhibiting no reactive functional group and probable CNS activity compared with 95% of the known oral drugs as predicted (in silico) by QikProp. Thus, compounds 6 and 9 can be considered as lead molecules for further modification and discovery of novel anticancer agents with nanomolar potency.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Thiazoles/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor/drug effects , Computer Simulation , Humans , K562 Cells/drug effects , MCF-7 Cells/drug effects , Structure-Activity Relationship , Thiazoles/chemistry , Thiazoles/pharmacology
18.
Chinese Pharmacological Bulletin ; (12): 118-124, 2021.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1014302

ABSTRACT

Aim To investigate the effects of Evodiamine (EVO) on proliferation and apoptosis of human leukemia cell line K562 and its potential mechanisms. Methods K562 cells were treated with EVO at different concentrations (0, 1, 2, 4, 8, 16, 32, 64 jxmol • L

19.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-876048

ABSTRACT

@#[Abstract] Objective: To investigate whether AP1903, a small-molecule chemical inducer, can terminate the cytotoxicity of CD19CAR-T cells over-expressing iCasp9 suicide gene in vivo and in vitro. Methods: CD19CAR-T cells over-expressing iCasp9 (iCasp9-CD19CAR-T) were constructed and co-incubated with AP1903. Then, the cell phenotype and apoptosis were detected by Flow cytometry, and the iCasp9/CID suicide gene system was verified on K562 and T cells, respectively. The cytotoxicity of iCasp9-CD19CAR-T cells was detected in vivo (survival rate of NCG mice bearing Raji cell transplanted xenograft) and in vitro (cell killing function was detected by Flow cytometry) under the administration of AP1903. Results: Compared with CD19CAR-T cells, iCasp9-CD19CAR-T cells showed in significant difference in proliferation, phenotype and cytotoxicity both in vitro and in vivo (all P>0.05). At 2 h after AP1903 administration, the apoptosis rates of K562 and T cells co-expressing iCasp9 and CD19CAR were (33.8±0.9)% and (27.95±0.35)%, respectively; and at 24 h after AP1903 administration, the apoptosis rates reached 100% in both cell lines. The in vitro cytotoxicity of iCasp9-CD19CAR-T cells induced by AP1903 was significantly lower than that without AP1903 treatment (P<0.01); the 60-day survival rate of mice bearing Raji cell transplanted tumor treated with AP1903-induced iCasp9-CD19CAR-T cells was also significantly lower than those treated with iCasp9-CD19CAR-T cells alone (P<0.01). Conclusion: AP1903 can effectively terminate the cytotoxicity of CD19CAR-T cells over-expressing iCasp9 suicide gene in vitro and in vivo.

20.
J Oral Maxillofac Pathol ; 24(1): 93-98, 2020.
Article in English | MEDLINE | ID: mdl-32508455

ABSTRACT

BACKGROUND: Surge of cancer incidence, effects of chemotherapeutic agents and their cost and reduced survival and responsiveness to treatment have led to shift of attention of researchers toward herbal remedies to look for newer dimension in cancer therapy. Ocimum sanctum, Holy Basil or Tulsi, holiest herb well used in the Indian household, has drawn much attention toward its various health benefits, especially anti-cancer property. The present study was carried out to evaluate the cytotoxic effect of O. sanctum on leukemic cell lines K562. MATERIALS AND METHODS: Dry and aqueous extracts of two types of Tulsi leaves (Rama Tulsi and Krishna Tulsi) were evaluated for a dose-dependent cytotoxicity and anti-proliferative against K562 cell lines, leukoerythroid progenitor leukemic cell lines by 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Half-maximal inhibitory concentration was evaluated for each of the extracts. RESULTS: Both dry and aqueous extracts of both types of Tulsi leaves demonstrated a significant amount of cytotoxicity against the studied cell lines. CONCLUSION: This being preliminary study, we propose the initial finding of cytotoxic abilities of the herb against the leukemic cell lines and recommend a more detailed evaluation of the herb and its components.

SELECTION OF CITATIONS
SEARCH DETAIL
...