Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.175
Filter
1.
Sci Rep ; 14(1): 23746, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39390036

ABSTRACT

In the control of unipolar sinusoidal excited switched reluctance motors (SRMs), deadbeat predictive current controllers (DPCCs) have gained attention for their enhanced dynamic performance. However, periodic disturbances caused by mismatches between the predictive model's nominal and actual system parameters degrade the control performance of SRMs. To address this issue, a robust DPCC with multi-parameter compensation is proposed to improve dq0-axes current control performance. By analyzing the impact of parameter mismatches, a Kalman filter (KF) is developed to compensate for inductance coefficient mismatches, mitigating periodic disturbances. Additionally, a disturbance estimator with measurement noise suppression is integrated into the DPCC for both state and disturbance estimation to handle residual uncertainties, including winding resistance mismatches, magnetic saturation, and unmodeled dynamics. Compared simulation and experimental results validate the effectiveness of the proposed robust DPCC.

2.
Sci Rep ; 14(1): 23641, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39384820

ABSTRACT

In low-level image processing, where the main goal is to reconstruct a clean image from a noise-corrupted version, image denoising continues to be a critical challenge. Although recent developments have led to the introduction of complex architectures to improve denoising performance, these models frequently have more parameters and higher computational demands. Here, we propose a new, simplified architecture called KU-Net, which is intended to achieve better denoising performance while requiring less complexity. KU-Net is an extension of the basic U-Net architecture that incorporates gradient information and noise residue from a Kalman filter. The network's ability to learn is improved by this deliberate incorporation, which also helps it better preserve minute details in the denoised images. Without using Image augmentation, the proposed model is trained on a limited dataset to show its resilience in restricted training settings. Three essential inputs are processed by the architecture: gradient estimations, the predicted noisy image, and the original noisy grey image. These inputs work together to steer the U-Net's encoding and decoding stages to generate high-quality denoised outputs. According to our experimental results, KU-Net performs better than traditional models, as demonstrated by its superiority on common metrics like the Structural Similarity Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR). KU-Net notably attains a PSNR of 26.60 dB at a noise level of 50, highlighting its efficacy and potential for more widespread use in image denoising.

3.
ISA Trans ; : 1-10, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39379250

ABSTRACT

The hybrid reluctance actuator (HRA) has achieved widespread application in scanning motion tasks. However, the nonlinear perturbations arising from position-dependent stiffness fluctuations, hysteresis, eddy, and flux leakage can significantly affect the control performance. To enhance the control performance of HRA-based systems in scanning motion, this paper introduces an adaptive feedforward method, known as the Chua operator-based Kalman feedforward compensator (COKFC), which aims to mitigate these nonlinear perturbations, with a PID controller serving as the central control element. In the COKFC approach, a Chua operator is employed to effectively capture the inverse hysteresis behavior. A Chua-based time-varying feedforward compensation model is then formulated to represent the inversion of the nonlinear perturbations inherent in the HRA. An improved Kalman filter is utilized for the real-time adaptation of the time-varying parameters within the feedforward compensation model. The design procedure for this control strategy is presented. Experimental evaluations are conducted on an HRA-based stage (HRA-BS), and comparisons are made between the proposed method and several advanced control methods. The experimental results demonstrate that the proposed COKFC method exhibits superior control performance for the scanning motion of the HRA-BS, highlighting its effectiveness in practical applications.

4.
MethodsX ; 13: 102941, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39309251

ABSTRACT

This paper provides a novel and applicable work that builds a real system for disinfecting the air and surfaces of the environment in a hospital room, with a non-contact measurement system for supporting contagious disease treatments in hospitals. The system is built on an intelligent mobile robot system that operates autonomously in a simulated real treatment room. The research team uses a new positioning algorithm. It is a combination of data from the Lidar sensor, encoder, and Extended Kalman filter. The program that applies segmentation and image feature extraction algorithms is developed to meet requirements of real-time environment mapping in the room. Control algorithms for moving and avoiding obstacles are also proposed. Next, techniques for collecting health data including patient identification, body temperature, and blood oxygen index via wireless sensor network are also mentioned in the article. Analysis and experimental results show qualified outcomes and promise. The main contribution of the paper can be listed as follows.•Design and build a new CEE-IMR, an intelligent mobile robot that can regconize patients, guide and lead them walking in hospitals, especially keep a safe distance avoiding contagious deseases.•A novel framework for controlling the robot is proposed. The robot can move flexible, avoid obstacles, etc. based on advanced control algorithms. A new control mechanism is also proposed.•Methods of collecting data and processing medical data to support either patients or doctors to improve the effecency in hospitals in contagious disease management.

5.
Sensors (Basel) ; 24(17)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39275605

ABSTRACT

In the current study, which focuses on the operational safety problem in intelligent three-dimensional garages, an obstacle avoidance measurement and control scheme for the AGV parking robot is proposed. Under the premise of high-precision distance detection using Kalman filtering, a mathematical model of a brushless DC (BLDC) motor with full-speed range hybrid control is established. MATLAB/Simulink (R2022a) is used to build the control model, which has dual closed-loop vector-controlled motors in the low- to medium-speed range, with photoelectric encoders for speed feedback. The simulation results show that, at lower to medium speeds, the maximum overshoot of the output response curve is 1.5%, and the response time is 0.01 s. However, at higher speeds, there is significant jitter in the speed output waveform. Therefore, the speed feedback is switched to a sliding mode observer (SMO) instead of the original speed sensor at high speeds. Experiments show that, based on the SMO, the problem of speed waveform jitter at high motor speeds can be significantly improved, and the BLDC motor system has strong robustness. The above shows that the motor speed under the full-speed range hybrid control system can meet the AGV control and safety requirements.

6.
Micromachines (Basel) ; 15(9)2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39337801

ABSTRACT

The availability of raw Global Navigation Satellites System (GNSS) measurements in Android smartphones fosters advancements in high-precision positioning for mass-market devices. However, challenges like inconsistent pseudo-range and carrier phase observations, limited dual-frequency data integrity, and unidentified hardware biases on the receiver side prevent the ambiguity resolution of smartphone GNSS. Consequently, relying solely on GNSS for high-precision positioning may result in frequent cycle slips in complex conditions such as deep urban canyons, underpasses, forests, and indoor areas due to non-line-of-sight (NLOS) and multipath conditions. Inertial/GNSS fusion is the traditional common solution to tackle these challenges because of their complementary capabilities. For pedestrians and smartphones with low-cost inertial sensors, the usual architecture is Pedestrian Dead Reckoning (PDR)+ GNSS. In addition to this, different GNSS processing techniques like Precise Point Positioning (PPP) and Real-Time Kinematic (RTK) have also been integrated with INS. However, integration with PDR has been limited and only with Kalman Filter (KF) and its variants being the main fusion techniques. Recently, Factor Graph Optimization (FGO) has started to be used as a fusion technique due to its superior accuracy. To the best of our knowledge, on the one hand, no work has tested the fusion of GNSS Post-Processed Kinematics (PPK) and PDR on smartphones. And, on the other hand, the works that have evaluated the fusion of GNSS and PDR employing FGO have always performed it using the GNSS Single-Point Positioning (SPP) technique. Therefore, this work aims to combine the use of the GNSS PPK technique and the FGO fusion technique to evaluate the improvement in accuracy that can be obtained on a smartphone compared with the usual GNSS SPP and KF fusion strategies. We improved the Google Pixel 4 smartphone GNSS using Post-Processed Kinematics (PPK) with the open-source RTKLIB 2.4.3 software, then fused it with PDR via KF and FGO for comparison in offline mode. Our findings indicate that FGO-based PDR+GNSS-PPK improves accuracy by 22.5% compared with FGO-based PDR+GNSS-SPP, which shows smartphones obtain high-precision positioning with the implementation of GNSS-PPK via FGO.

7.
Sensors (Basel) ; 24(18)2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39338619

ABSTRACT

Utilizing reliable and accurate positioning and navigation systems is crucial for saving the lives of rescue personnel and accelerating rescue operations. However, Global Navigation Satellite Systems (GNSSs), such as GPS, may not provide stable signals in dense forests. Therefore, integrating multiple sensors like GPS and Inertial Measurement Units (IMUs) becomes essential to enhance the availability and accuracy of positioning systems. To accurately estimate rescuers' positions, this paper employs the Adaptive Unscented Kalman Filter (AUKF) algorithm with measurement noise variance matrix adaptation, integrating IMU and GPS data alongside barometric altitude measurements for precise three-dimensional positioning in complex environments. The AUKF enhances estimation robustness through the adaptive adjustment of the measurement noise variance matrix, particularly excelling when GPS signals are interrupted. This study conducted tests on two-dimensional and three-dimensional road scenarios in forest environments, confirming that the AUKF-algorithm-based integrated navigation system outperforms the traditional Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), and Adaptive Extended Kalman Filter (AEKF) in emergency rescue applications. The tests further evaluated the system's navigation performance on rugged roads and during GPS signal interruptions. The results demonstrate that the system achieves higher positioning accuracy on rugged forest roads, notably reducing errors by 18.32% in the north direction, 8.51% in the up direction, and 3.85% in the east direction compared to the EKF. Furthermore, the system exhibits good adaptability during GPS signal interruptions, ensuring continuous and accurate personnel positioning during rescue operations.

8.
Sensors (Basel) ; 24(18)2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39338644

ABSTRACT

To address the path planning problem for automated guided vehicles (AGVs) in challenging and complex industrial environments, a hybrid optimization approach is proposed, integrating a Kalman filter with grey wolf optimization (GWO), as well as incorporating partially matched crossover (PMX) mutation operations and roulette wheel selection. Paths are first optimized using GWO, then refined with Kalman filter corrections every ten iterations. Moreover, roulette wheel selection guides robust parent path selection, while an elite strategy and partially matched crossover (PMX) with mutation generate diverse offspring. Extensive simulations and experiments were carried out under a densely packed goods scenario and complex indoor layout scenario, within a fully automated warehouse environment. The results showed that this hybrid method not only enhanced the various optimization metrics but also ensured more predictable and collision-free navigation paths, particularly in environments with complex obstacles. These improvements lead to increased operational efficiency and safety, highlighting the method's potential in real-world applications.

9.
Sensors (Basel) ; 24(18)2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39338656

ABSTRACT

The pipe jacking guidance system based on a fiber optic gyroscope (FOG) has gained extensive attention due to its high degree of safety and autonomy. However, all inertial guidance systems have accumulative errors over time. The zero-velocity update (ZUPT) algorithm is an effective error compensation method, but accurately distinguishing between moving and stationary states in slow pipe jacking operations is a major challenge. To address this challenge, a "MV + ARE + SHOE" three-conditional zero-velocity detection (TCZVD) algorithm for the fiber optic gyroscope inertial navigation system (FOG-INS) is designed. Firstly, a Kalman filter model based on ZUPT is established. Secondly, the TCZVD algorithm, which combines the moving variance of acceleration (MV), angular rate energy (ARE), and stance hypothesis optimal estimation (SHOE), is proposed. Finally, experiments are conducted, and the results indicate that the proposed algorithm achieves a zero-velocity detection accuracy of 99.18% and can reduce positioning error to less than 2% of the total distance. Furthermore, the applicability of the proposed algorithm in the practical working environment is confirmed through on-site experiments. The results demonstrate that this method can effectively suppress the accumulated error of the inertial guidance system and improve the positioning accuracy of pipe jacking. It provides a robust and reliable solution for practical engineering challenges. Therefore, this study will contribute to the development of pipe jacking automatic guidance technology.

10.
Sensors (Basel) ; 24(18)2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39338700

ABSTRACT

Magnetic pose tracking is a non-contact, accurate, and occlusion-free method that has been increasingly employed to track intra-corporeal medical devices such as endoscopes in computer-assisted medical interventions. In magnetic pose-tracking systems, a nonlinear estimation algorithm is needed to recover the pose information from magnetic measurements. In existing pose estimation algorithms such as the extended Kalman filter (EKF), the 3-DoF orientation in the S3 manifold is normally parametrized as unit quaternions and simply treated as a vector in the Euclidean space, which causes a violation of the unity constraint of quaternions and reduces pose tracking accuracy. In this paper, a pose estimation algorithm based on the error-state Kalman filter (ESKF) is proposed to improve the accuracy and robustness of electromagnetic tracking systems. The proposed system consists of three electromagnetic coils for magnetic field generation and a tri-axial magnetic sensor attached to the target object for field measurement. A strategy of sequential coil excitation is developed to separate the magnetic fields from different coils and reject magnetic disturbances. Simulation and experiments are conducted to evaluate the pose tracking performance of the proposed ESKF algorithm, which is also compared with standard EKF and constrained EKF. It is shown that the ESKF can effectively maintain the quaternion unity and thus achieve a better tracking accuracy, i.e., a Euclidean position error of 2.23 mm and an average orientation angle error of 0.45°. The disturbance rejection performance of the electromagnetic tracking system is also experimentally validated.

11.
Sensors (Basel) ; 24(18)2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39338753

ABSTRACT

This paper deals with spatio-temporal field estimation with efficient sensor placement based on the QR decomposition. The proposed method also identifies the optimal number of sensors needed for field estimation that captures the most relevant features of the field of interest. To address the uncertainties inherent in spatio-temporal field estimation, a robust data-driven control method is utilized, providing resilience against unpredictable environmental and model changes. In particular, the approach uses the Kriged Kalman Filter (KKF) for uncertainty-aware field reconstruction. Unlike other reconstruction methods, the positional uncertainty originating from the data acquisition platform is integrated into the KKF estimator. Numerical results are presented to show the efficacy of the proposed dynamic sensor placement strategy together with the KKF field estimator.

12.
Sensors (Basel) ; 24(18)2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39338787

ABSTRACT

This paper addresses the collaborative localization problem for unmanned surface vehicle (USV) clusters with random measurement delays. We propose a Cubature Kalman Hybrid Consensus Filter (CKHCF) based on the cubature Kalman filter (CKF) for widely distributed USV clusters lacking global communication capabilities. In this approach, each USV exchanges two pairs of information with all its neighbors and recalculates the received localization data based on distance and relative angle measurements. The recalculated information is then fused with the locally filtered data and updated to obtain localization information based on global measurements. To mitigate the impact of random measurement delays, we employ one-step prediction to compensate for delayed measurements. We present the derivation of the CKHCF algorithm and prove its consistency and boundedness using mathematical induction. Finally, we validate the effectiveness of the proposed algorithm through simulation experiments.

13.
Sensors (Basel) ; 24(18)2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39338818

ABSTRACT

Monitoring patient safety in high-risk mental health environments is a challenge for clinical staff. There has been a recent increase in the adoption of contactless sensing solutions for remote patient monitoring. mmWave radar is a technology that has high potential in this field due it its low cost and protection of privacy; however, it is prone to multipath reflections and other sources of environmental noise. This paper discusses some of the challenges in mmWave remote sensing applications for patient safety in mental health wards. In line with these challenges, we propose a novel low-data solution to mitigate the impact of multipath reflections and other sources of noise in mmWave sensing. Our solution uses an unscented Kalman filter for target tracking over time and analyses features of movement to determine whether targets are human or not. We chose a commercial off-the-shelf radar and compared the accuracy and reliability of sensor measurements before and after applying our solution. Our results show a marked decrease in false positives and false negatives during human target tracking, as well as an improvement in spatial location detection in a two-dimensional space. These improvements demonstrate how a simple low-data solution can improve existing mmWave sensors, making them more suitable for patient safety solutions in high-risk environments.


Subject(s)
Radar , Humans , Monitoring, Physiologic/methods , Monitoring, Physiologic/instrumentation , Algorithms , Mental Health , Patient Safety , Remote Sensing Technology/methods
14.
Sensors (Basel) ; 24(18)2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39338839

ABSTRACT

The spatial target motion model exhibits a high degree of nonlinearity. This leads to the fact that it is easy to diverge when the conventional Kalman filter is used to track the spatial target. The Unscented Kalman filter can be a good solution to this problem. This is because it conveys the statistical properties of the state vector by selecting sampling points to be mapped through the nonlinear model. In practice, however, the measurement noise is often time-varying or unknown. In this case, the filtering accuracy of the Unscented Kalman filter will be reduced. In order to reduce the influence of time-varying measurement noise on the spatial target tracking, while accurately representing the a posteriori mean and covariance of the spatial target state vector, this paper proposes an adaptive noise factor method based on the Unscented Kalman filter to adaptively adjust the covariance matrix of the measurement noise. In this paper, numerical simulations are performed using measurement models from a space-based infrared satellite and a ground-based radar. It is experimentally demonstrated that the adaptive noise factor method can adapt to time-varying measurement noise and thus improve the accuracy of spatial target tracking compared to the Unscented Kalman filter.

15.
Diagnostics (Basel) ; 14(17)2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39272754

ABSTRACT

This paper investigates the feasibility of detecting and estimating the rate of internal hemorrhage based on continuous noninvasive hematocrit measurement. A unique challenge in hematocrit-based hemorrhage detection is that hematocrit decreases in response to hemorrhage and resuscitation with fluids, which makes hemorrhage detection during resuscitation challenging. We developed two sequential inference algorithms for detection of internal hemorrhage based on the Luenberger observer and the extended Kalman filter. The sequential inference algorithms use fluid resuscitation dose and hematocrit measurement as inputs to generate signatures to enable detection of internal hemorrhage. In the case of the extended Kalman filter, the signature is nothing but inferred hemorrhage rate, which allows it to also estimate internal hemorrhage rate. We evaluated the proof-of-concept of these algorithms based on in silico evaluation in 100 virtual patients subject to diverse hemorrhage and resuscitation rates. The results showed that the sequential inference algorithms outperformed naïve internal hemorrhage detection based on the decrease in hematocrit when hematocrit noise level was 1% (average F1 score: Luenberger observer 0.80; extended Kalman filter 0.76; hematocrit 0.59). Relative to the Luenberger observer, the extended Kalman filter demonstrated comparable internal hemorrhage detection performance and superior accuracy in estimating the hemorrhage rate. The analysis of the dependence of the sequential inference algorithms on measurement noise and plant parametric uncertainty showed that small (≤1%) hematocrit noise level and personalization of sequential inference algorithms may enable continuous noninvasive detection of internal hemorrhage and estimation of its rate.

16.
Sensors (Basel) ; 24(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39123893

ABSTRACT

Nowadays, control is pervasive in vehicles, and a full and accurate knowledge of vehicle states is crucial to guarantee safety levels and support the development of Advanced Driver-Assistance Systems (ADASs). In this scenario, real-time monitoring of the vehicle sideslip angle becomes fundamental, and various virtual sensing techniques based on both vehicle dynamics models and data-driven methods are widely presented in the literature. Given the need for on-board embedded device solutions in autonomous vehicles, it is mandatory to find the correct balance between estimation accuracy and the computational burden required. This work mainly presents different physical KF-based methodologies and proposes both mathematical and graphical analysis to explore the effectiveness of these solutions, all employing equal tire and vehicle simplified models. For this purpose, results are compared with accurate sensor acquisition provided by the on-track campaign on passenger vehicles; moreover, to truthfully represent the possibility of using such virtual sensing techniques in real-world scenarios, the vehicle is also equipped with low-end sensors that provide information to all the employed observers.

17.
Sensors (Basel) ; 24(15)2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39124095

ABSTRACT

Wireless sensor networks (WSNs) are essential for a wide range of applications, including environmental monitoring and smart city developments, thanks to their ability to collect and transmit diverse physical and environmental data. The nature of WSNs, coupled with the variability and noise sensitivity of cost-effective sensors, presents significant challenges in achieving accurate data analysis and anomaly detection. To address these issues, this paper presents a new framework, called Online Adaptive Kalman Filtering (OAKF), specifically designed for real-time anomaly detection within WSNs. This framework stands out by dynamically adjusting the filtering parameters and anomaly detection threshold in response to live data, ensuring accurate and reliable anomaly identification amidst sensor noise and environmental changes. By highlighting computational efficiency and scalability, the OAKF framework is optimized for use in resource-constrained sensor nodes. Validation on different WSN dataset sizes confirmed its effectiveness, showing 95.4% accuracy in reducing false positives and negatives as well as achieving a processing time of 0.008 s per sample.

18.
Heliyon ; 10(15): e34960, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39166087

ABSTRACT

Active Noise Control (ANC) systems play a crucial role in reducing unwanted noise in various settings. Traditional ANC methods, like the Filtered-x Least Mean Squares (FxLMS) algorithm, are effective in linear noise scenarios. However, they often struggle with more nonlinear and complex noise patterns. This paper introduces a novel approach using the brain storm optimization (BSO) algorithm in nonlinear ANC systems, which represents a significant departure from conventional techniques. The BSO algorithm, inspired by human brainstorming processes, excels in addressing the complexities of nonlinear noise by incorporating principles, such as delayed evaluation, free imagination, quantity and quality, and comprehensive improvement. By combining the BSO algorithm with an Extended Kalman Filter (EKF), a new ANC system is proposed that can adapt to a wide range of noise types with improved speed and accuracy. Experimental results showcase the superior performance of the BSO algorithm, achieving an impressive noise reduction of up to 48 dB (dB) in a 500Hz sinusoidal noise scenario, with a convergence time as fast as 0.01 s, outperforming the FxLMS algorithm by a significant margin. Moreover, in complex environments with multi-frequency and random noise, the BSO algorithm consistently demonstrates better noise reduction and quicker convergence, reducing noise levels by up to 27 dB within 0.001 s. The innovative use of the BSO algorithm in ANC systems not only enhances noise reduction capabilities, especially for nonlinear and complex noise signals, but also improves convergence times, paving the way for future advancements in ANC technologies.

19.
ISA Trans ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39179483

ABSTRACT

Angle-of-Attack (AOA) and angle-of-sideslip (AOS) are critical flight parameters affecting the flight safety, and their accuracy and reliability directly impact the operating status and performance of some significant airborne systems. To enhance the redundancy and accuracy of AOA and AOS, this article investigates the problem of the airflow angles estimation and complementary filter design for civil aircraft. Specifically, an extended Kalman filter based AOA and AOS estimation method considering acceleration correction is developed to increase the redundancy. Subsequently, a novel inertial AOA and inertial AOS calculation method using attitude angles, azimuth angle, and flight path angle is introduced, and two schemes for designing the discrete complementary filter based on Tustin transform are presented to improve the accuracy. Through simulations, the developed algorithms are verified, and the results illustrate that the AOA estimation error is within ± 0.6°, and the AOS estimation error is within ± 0.3°.

20.
Water Res ; 264: 122201, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39137483

ABSTRACT

Operators of water distribution systems (WDSs) need continuous and timely information on pressures and flows to ensure smooth operation and respond quickly to unexpected events. While hydraulic models provide reasonable estimates of pressures and flows in WDSs, updating model predictions with real-time sensor data provides clearer insights into true system behavior and enables more effective real-time response. Despite the growing prevalence of distributed sensing within WDSs, standard hydraulic modeling software like EPANET do not support synchronous data assimilation. This study presents a new method for state estimation in WDSs that combines a fully physically-based model of WDS hydraulics with an Extended Kalman Filter (EKF) to estimate system flows and heads based on sparse sensor measurements. To perform state estimation via EKF, a state-space model of the hydraulic system is first formulated based on the 1-D Saint-Venant equations of conservation of mass and momentum. Results demonstrate that the proposed model closely matches steady-state extended-period models simulated using EPANET. Next, through a holdout analysis it is found that fusing sensor data with EKF produces flow and head estimates that closely match ground truth flows and heads at unmonitored locations, indicating that state estimation successfully infers internal hydraulic states from sparse sensor measurements. These findings pave the way towards real-time operational models of WDSs that will enable online detection and mitigation of hazards like pipe leaks, main bursts, and hydraulic transients.


Subject(s)
Models, Theoretical , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL