Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 341
Filter
2.
Access Microbiol ; 6(5)2024.
Article in English | MEDLINE | ID: mdl-38868372

ABSTRACT

KSHV viral FLICE inhibitory protein (vFLIP) is a potent activator of NF-κB signalling and an inhibitor of apoptosis and autophagy. Inhibition of vFLIP function and NF-κB signalling promotes lytic reactivation. Here we provide evidence for a novel function of vFLIP through inhibition of the deubiquitinating (DUB) activity of the negative regulator, A20. We demonstrate direct interaction of vFLIP with Itch and A20 and provide evidence for subsequent loss of A20 DUB activity. Our results provide further insight into the function of vFLIP in the regulation of NF-κB signalling.

3.
Biol Pharm Bull ; 47(5): 912-916, 2024.
Article in English | MEDLINE | ID: mdl-38692868

ABSTRACT

The human herpesviruses (HHVs) are classified into the following three subfamilies: Alphaherpesvirinae, Betaherpesvirinae, and Gammaherpesvirinae. These HHVs have distinct pathological features, while containing a highly conserved viral replication pathway. Among HHVs, the basic viral particle structure and the sequential processes of viral replication are nearly identical. In particular, the capsid formation mechanism has been proposed to be highly similar among herpesviruses, because the viral capsid-organizing proteins are highly conserved at the structural and functional levels. Herpesviruses form capsids containing the viral genome in the nucleus of infected cells during the lytic phase, and release infectious virus (i.e., virions) to the cell exterior. In the capsid formation process, a single-unit-length viral genome is encapsidated into a preformed capsid. The single-unit-length viral genome is produced by cleavage from a viral genome precursor in which multiple unit-length viral genomes are tandemly linked. This encapsidation and cleavage is carried out by the terminase complex, which is composed of viral proteins. Since the terminase complex-mediated encapsidation and cleavage is a virus-specific mechanism that does not exist in humans, it may be an excellent inhibitory target for anti-viral drugs with high virus specificity. This review provides an overview of the functions of the terminase complexes of HHVs.


Subject(s)
Herpesviridae , Humans , Herpesviridae/physiology , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , Viral Proteins/metabolism , Viral Proteins/genetics , Animals , Genome, Viral , Capsid/metabolism , Virus Replication
4.
J Virol ; 98(6): e0057624, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38767375

ABSTRACT

Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8, is the causal agent of Kaposi sarcoma, a cancer that appears as tumors on the skin or mucosal surfaces, as well as primary effusion lymphoma and KSHV-associated multicentric Castleman disease, which are B-cell lymphoproliferative disorders. Effective prophylactic and therapeutic strategies against KSHV infection and its associated diseases are needed. To develop these strategies, it is crucial to identify and target viral glycoproteins involved in KSHV infection of host cells. Multiple KSHV glycoproteins expressed on the viral envelope are thought to play a pivotal role in viral infection, but the infection mechanisms involving these glycoproteins remain largely unknown. We investigated the role of two KSHV envelope glycoproteins, KSHV complement control protein (KCP) and K8.1, in viral infection in various cell types in vitro and in vivo. Using our newly generated anti-KCP antibodies, previously characterized anti-K8.1 antibodies, and recombinant mutant KSHV viruses lacking KCP, K8.1, or both, we demonstrated the presence of KCP and K8.1 on the surface of both virions and KSHV-infected cells. We showed that KSHV lacking KCP and/or K8.1 remained infectious in KSHV-susceptible cell lines, including epithelial, endothelial, and fibroblast, when compared to wild-type recombinant KSHV. We also provide the first evidence that KSHV lacking K8.1 or both KCP and K8.1 can infect human B cells in vivo in a humanized mouse model. Thus, these results suggest that neither KCP nor K8.1 is required for KSHV infection of various host cell types and that these glycoproteins do not determine KSHV cell tropism. IMPORTANCE: Kaposi sarcoma-associated herpesvirus (KSHV) is an oncogenic human gamma-herpesvirus associated with the endothelial malignancy Kaposi sarcoma and the lymphoproliferative disorders primary effusion lymphoma and multicentric Castleman disease. Determining how KSHV glycoproteins such as complement control protein (KCP) and K8.1 contribute to the establishment, persistence, and transmission of viral infection will be key for developing effective anti-viral vaccines and therapies to prevent and treat KSHV infection and KSHV-associated diseases. Using newly generated anti-KCP antibodies, previously characterized anti-K8.1 antibodies, and recombinant mutant KSHV viruses lacking KCP and/or K8.1, we show that KCP and K8.1 can be found on the surface of both virions and KSHV-infected cells. Furthermore, we show that KSHV lacking KCP and/or K8.1 remains infectious to diverse cell types susceptible to KSHV in vitro and to human B cells in vivo in a humanized mouse model, thus providing evidence that these viral glycoproteins are not required for KSHV infection.


Subject(s)
Herpesvirus 8, Human , Sarcoma, Kaposi , Viral Envelope Proteins , Viral Proteins , Herpesvirus 8, Human/genetics , Herpesvirus 8, Human/physiology , Humans , Animals , Mice , Viral Proteins/metabolism , Viral Proteins/genetics , Sarcoma, Kaposi/virology , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/genetics , Cell Line , Castleman Disease/virology , Castleman Disease/metabolism , Herpesviridae Infections/virology , Herpesviridae Infections/metabolism , HEK293 Cells , Endothelial Cells/virology
5.
J Cancer ; 15(11): 3338-3349, 2024.
Article in English | MEDLINE | ID: mdl-38817860

ABSTRACT

The infection by Kaposi's sarcoma-associated herpesvirus (KSHV) is one of the most common causes of death in AIDS patients. Our studies have found that KSHV can infect SH-SY5Y cells (named SK-RG) in vivo and mTOR was up-regulated, which results in remarkable enhancement of cell proliferation, migration. But the regulatory role of mTOR in KSHV infected neurons has not yet been fully elucidated. Here, we find that miR-769-3p is decreased in SK-RG cells, which can exert anti-KSHV effect through negatively regulating the expression of mTOR. The knockdown of mTOR or overexpress of miR-769-3p decreased the proliferation, migration ability and cell cycle related protein of SK-RG cells, and the expression of KSHV related genes. In contrast, activating mTOR function by 3BDO treatment weakened the cellular behaviors of miR-769-3p overexpressing cells. Meanwhile, overexpressed miR-769-3p and rapamycin showed a shared inhibition trend in the effects on cell proliferation and motility. Our data indicated that miR-769-3p can inhibit cell proliferation and migration by down regulating mTOR in KSHV infected SH-SY5Y cells, and can be a candidate molecule for anti-KSHV therapy.

6.
Open Forum Infect Dis ; 11(4): ofae161, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38654970

ABSTRACT

Background: Reasons for the high prevalence of Kaposi sarcoma-associated herpesvirus (KSHV) in sub-Saharan Africa, and risk factors leading to viral reactivation and shedding, remain largely undefined. Preliminary studies have suggested that schistosome infection, which has been associated with impaired viral control, is associated with KSHV. In this study we sought to determine the relationship between active Schistosoma mansoni or Schistosoma haematobium infection and KSHV shedding. Methods: We quantified KSHV DNA in saliva and cervical swabs from 2 cohorts of women living in northwestern Tanzanian communities endemic for S mansoni or S haematobium by real-time polymerase chain reaction. χ2 and Fisher exact tests were used to determine differences in clinical and demographic factors between those who were and were not shedding KSHV. Results: Among 139 total women, 44.6% were KSHV seropositive. Six percent of those with S mansoni and 17.1% of those with S haematobium were actively shedding KSHV in saliva and none in cervical samples. Women from the S mansoni cohort who were shedding virus reported infertility more frequently (80% vs 19.5%, P = .009). There was no difference in frequency of KSHV salivary shedding between schistosome-infected and -uninfected women. Conclusions: In an area with high KSHV seroprevalence and endemic schistosome infections, we provide the first report with data demonstrating no association between schistosome infection and salivary or cervical herpesvirus shedding. KSHV salivary shedding was associated with infertility, a known effect of another herpesvirus, human herpesvirus 6.

7.
Infect Agent Cancer ; 19(1): 7, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38439055

ABSTRACT

BACKGROUND: Antiviral therapies that target herpesviruses are clinically important. Nelfinavir is a protease inhibitor that targets the human immunodeficiency virus (HIV) aspartyl protease. Previous studies demonstrated that this drug could also inhibit Kaposi's sarcoma-associated herpesvirus (KSHV) production. Our laboratory demonstrated nelfinavir can effectively inhibit herpes simplex virus type 1 (HSV-1) replication. For HSV-1 we were able to determine that virus capsids were assembled and exited the nucleus but did not mature in the cytoplasm indicating the drug inhibited secondary envelopment of virions. METHODS: For KSHV, we recently derived a tractable cell culture system that allowed us to analyze the virus replication cycle in greater detail. We used this system to further define the stage at which nelfinavir inhibits KSHV replication. RESULTS: We discovered that nelfinavir inhibits KSHV extracellular virus production. This was seen when the drug was incubated with the cells for 3 days and when we pulsed the cells with the drug for 1-5 min. When KSHV infected cells exposed to the drug were examined using ultrastructural methods there was an absence of mature capsids in the nucleus indicating a defect in capsid assembly. Because nelfinavir influences the integrated stress response (ISR), we examined the expression of viral proteins in the presence of the drug. We observed that the expression of many were significantly changed in the presence of drug. The accumulation of the capsid triplex protein, ORF26, was markedly reduced. This is an essential protein required for herpesvirus capsid assembly. CONCLUSIONS: Our studies confirm that nelfinavir inhibits KSHV virion production by disrupting virus assembly and maturation. This is likely because of the effect of nelfinavir on the ISR and thus protein synthesis and accumulation of the essential triplex capsid protein, ORF26. Of interest is that inhibition requires only a short exposure to drug. The source of infectious virus in saliva has not been defined in detail but may well be lymphocytes or other cells in the oral mucosa. Thus, it might be that a "swish and spit" exposure rather than systemic administration would prevent virion production.

8.
Viruses ; 16(3)2024 03 08.
Article in English | MEDLINE | ID: mdl-38543781

ABSTRACT

Approximately 12% of human cancers worldwide are associated with infectious agents, which are classified by the International Agency for Research on Cancer (IARC) as Group 1 within the agents that are carcinogenic to humans. Most of these agents are viruses. Group 1 oncogenic viruses include hepatitis C virus, hepatitis B virus (HBV), human T-cell lymphotropic virus type 1, Epstein-Barr virus, Kaposi sarcoma-associated herpesvirus, human immunodeficiency virus-1 and high-risk human papillomaviruses (HPVs). In addition, some human polyomaviruses are suspected of inducing cancer prevalently in hosts with impaired immune responses. Merkel cell polyomavirus has been associated with Merkel cell carcinoma and included by the IARC in Group 2A (i.e., probably carcinogenic to humans). Linking viruses to human cancers has allowed for the development of diagnostic, prophylactic and therapeutic measures. Vaccination significantly reduced tumours induced by two oncogenic viruses as follows: HBV and HPV. Herein, we focus on mucosal alpha HPVs, which are responsible for the highest number of cancer cases due to tumour viruses and against which effective prevention strategies have been developed to reduce the global burden of HPV-related cancers.


Subject(s)
Epstein-Barr Virus Infections , Neoplasms , Papillomavirus Infections , Viruses , Humans , Oncogenic Viruses/physiology , Human Papillomavirus Viruses , Papillomavirus Infections/complications , Papillomavirus Infections/epidemiology , Papillomavirus Infections/prevention & control , Herpesvirus 4, Human , Carcinogenesis , Hepatitis B virus
9.
Cell Rep ; 43(3): 113888, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38416644

ABSTRACT

Higher-order genome structure influences the transcriptional regulation of cellular genes through the juxtaposition of regulatory elements, such as enhancers, close to promoters of target genes. While enhancer activation has emerged as an important facet of Kaposi sarcoma-associated herpesvirus (KSHV) biology, the mechanisms controlling enhancer-target gene expression remain obscure. Here, we discover that the KSHV genome tethering protein latency-associated nuclear antigen (LANA) potentiates enhancer-target gene expression in primary effusion lymphoma (PEL), a highly aggressive B cell lymphoma causally associated with KSHV. Genome-wide analyses demonstrate increased levels of enhancer RNA transcription as well as activating chromatin marks at LANA-bound enhancers. 3D genome conformation analyses identified genes critical for latency and tumorigenesis as targets of LANA-occupied enhancers, and LANA depletion results in their downregulation. These findings reveal a mechanism in enhancer-gene coordination and describe a role through which the main KSHV tethering protein regulates essential gene expression in PEL.


Subject(s)
Herpesvirus 8, Human , Sarcoma, Kaposi , Humans , Herpesvirus 8, Human/physiology , Genome-Wide Association Study , Antigens, Viral/genetics , Antigens, Viral/metabolism , Promoter Regions, Genetic/genetics , Gene Expression Regulation , Virus Latency
10.
mSystems ; 9(2): e0100723, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38206015

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) is a large, oncogenic DNA virus belonging to the gammaherpesvirus subfamily. KSHV has been extensively studied with various high-throughput RNA-sequencing approaches to map the transcription start and end sites, the splice junctions, and the translation initiation sites. Despite these efforts, the comprehensive annotation of the viral transcriptome remains incomplete. In the present study, we generated a long-read sequencing data set of the lytic and latent KSHV transcriptome using native RNA and direct cDNA-sequencing methods. This was supplemented with Cap Analysis of Gene Expression sequencing based on a short-read platform. We also utilized data sets from previous publications for our analysis. As a result of this combined approach, we have identified a number of novel viral transcripts and RNA isoforms and have either corroborated or improved the annotation of previously identified viral RNA molecules, thereby notably enhancing our comprehension of the transcriptomic architecture of the KSHV genome. We also evaluated the coding capability of transcripts previously thought to be non-coding by integrating our data on the viral transcripts with translatomic information from other publications.IMPORTANCEDeciphering the viral transcriptome of Kaposi's sarcoma-associated herpesvirus is of great importance because we can gain insight into the molecular mechanism of viral replication and pathogenesis, which can help develop potential targets for antiviral interventions. Specifically, the identification of substantial transcriptional overlaps by this work suggests the existence of a genome-wide interference between transcriptional machineries. This finding indicates the presence of a novel regulatory layer, potentially controlling the expression of viral genes.


Subject(s)
Herpesvirus 8, Human , Herpesvirus 8, Human/genetics , Transcriptome/genetics , Virus Replication/genetics , Gene Expression Profiling , RNA/metabolism
11.
Curr Mol Pharmacol ; 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38258595

ABSTRACT

BACKGROUND: This study aimed to investigate the influence of Notch1 on c-Fos and the effect of c-Fos on the proliferation of Kaposi's sarcoma-associated herpesvirus (KSHV)-infected neuronal cells. METHODS: Real-time PCR and western blotting were used to determine c-Fos expression levels in KSHV-infected (SK-RG) and uninfected SH-SY5Y cells. C-Fos levels were measured again in SK-RG cells with or without Notch1 knockdown. Next, we measured c-Fos and p-c-Fos concentrations after treatment with the Notch1 γ-secretase inhibitor LY-411575 and the Notch1 activator Jagged-1. MTT and Ki-67 staining were used to evaluate the proliferation ability of cells after c-Fos levels downregulation. CyclinD1, CDK6, and CDK4 expression levels and cell cycle were analyzed by western blotting and flow cytometry, respectively. After the c-Fos intervention, the KSHV copy number and gene expression of RTA, LANA and K8.1 were analyzed by real-time TaqMan PCR. RESULTS: C-Fos was up-regulated in KSHV-infected SK-RG cells. However, the siRNA-mediated knockdown of Notch1 resulted in a significant decrease in the levels of c-Fos and p-c-Fos (P <0.01, P <0.001). Additionally, a decrease in Cyclin D1, CDK6, and CDK4 was also detected. The Notch1 inhibitor LY-411575 showed the potential to down-regulate the levels of c-Fos and p-c-Fos, which was consistent with Notch1 knockdown group (P <0.01), whereas the expression and phosphorylation of c-Fos were remarkably up-regulated by treatment of Notch1 activator Jagged-1 (P <0.05). In addition, our data obtained by MTT and Ki-67 staining revealed that the c-Fos down-regulation led to a significant reduction in cell viability and proliferation of the SK-RG cells (P <0.001). Moreover, FACS analysis showed that the cell cycle was arrested in the G0/G1 stage, and the expressions of Cyclin D1, CDK6, and CDK4 were down-regulated in the c-Fos-knockdown SK-RG cells (P <0.05). Reduction in total KSHV copy number and expressions of viral genes (RTA, LANA and K8.1) were also detected in c-Fos down-regulated SK-RG cells (P <0.05). CONCLUSION: Our findings strongly indicate that c-Fos plays a crucial role in the promotion of cell proliferation through Notch1 signaling in KSHV-infected cells. Furthermore, our results suggest that the inhibition of expression of key viral pathogenic proteins is likely involved in this process.

12.
J Virol ; 98(2): e0138623, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38240593

ABSTRACT

The Kaposi's sarcoma-associated herpesvirus (KSHV) genome consists of an approximately 140-kb unique coding region flanked by 30-40 copies of a 0.8-kb terminal repeat (TR) sequence. A gene enhancer recruits transcription-related enzymes by having arrays of transcription factor binding sites. Here, we show that KSHV TR possesses transcription regulatory function with latency-associated nuclear antigen (LANA). Cleavage under targets and release using nuclease demonstrated that TR fragments were occupied by LANA-interacting histone-modifying enzymes in naturally infected cells. The TR was enriched with histone H3K27 acetylation (H3K27Ac) and H3K4 tri-methylation (H3K4me3) modifications and also expressed nascent RNAs. The sites of H3K27Ac and H3K4me3 modifications were also conserved in the KSHV unique region among naturally infected primary effusion lymphoma cells. KSHV origin of lytic replication (Ori-Lyt) showed similar protein and histone modification occupancies with that of TR. In the Ori-Lyt region, the LANA and LANA-interacting proteins colocalized with an H3K27Ac-modified nucleosome along with paused RNA polymerase II. The KSHV transactivator KSHV replication and transcription activator (K-Rta) recruitment sites franked the LANA-bound nucleosome, and reactivation evicted the LANA-bound nucleosome. Including TR fragments in reporter plasmid enhanced inducible viral gene promoter activities independent of the orientations. In the presence of TR in reporter plasmids, K-Rta transactivation was drastically increased, while LANA acquired the promoter repression function. KSHV TR, therefore, functions as an enhancer for KSHV inducible genes. However, in contrast to cellular enhancers bound by multiple transcription factors, perhaps the KSHV enhancer is predominantly regulated by the LANA nuclear body.IMPORTANCEEnhancers are a crucial regulator of differential gene expression programs. Enhancers are the cis-regulatory sequences determining target genes' spatiotemporal and quantitative expression. Here, we show that Kaposi's sarcoma-associated herpesvirus (KSHV) terminal repeats fulfill the enhancer definition for KSHV inducible gene promoters. The KSHV enhancer is occupied by latency-associated nuclear antigen (LANA) and its interacting proteins, such as CHD4. Neighboring terminal repeat (TR) fragments to lytic gene promoters drastically enhanced KSHV replication and transcription activator and LANA transcription regulatory functions. This study, thus, proposes a new latency-lytic switch model in which TR accessibility to the KSHV gene promoters regulates viral inducible gene expression.


Subject(s)
Herpesvirus 8, Human , Immediate-Early Proteins , Sarcoma, Kaposi , Humans , Herpesvirus 8, Human/physiology , Histones/genetics , Histones/metabolism , Nucleosomes , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Virus Latency/genetics , Antigens, Viral/genetics , Antigens, Viral/metabolism , Terminal Repeat Sequences/genetics , Gene Expression Regulation, Viral
13.
mBio ; 15(2): e0299823, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38170993

ABSTRACT

Cancers associated with the oncogenic gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma herpesvirus, are notable for their constitutive activation of the transcription factor signal transducer and activator of transcription 3 (STAT3). To better understand the role of STAT3 during gammaherpesvirus latency and the B cell response to infection, we used the model pathogen murine gammaherpesvirus 68 (MHV68). Genetic deletion of STAT3 in B cells of CD19cre/+Stat3f/f mice reduced peak MHV68 latency approximately sevenfold. However, infected CD19cre/+Stat3f/f mice exhibited disordered germinal centers and heightened virus-specific CD8 T cell responses compared to wild-type (WT) littermates. To circumvent the systemic immune alterations observed in the B cell-STAT3 knockout mice and more directly evaluate intrinsic roles for STAT3, we generated mixed bone marrow chimeric mice consisting of WT and STAT3 knockout B cells. We discovered a dramatic reduction in latency in STAT3 knockout B cells compared to their WT B cell counterparts in the same lymphoid organ. RNA sequencing of sorted germinal center B cells revealed that MHV68 infection shifts the gene signature toward proliferation and away from type I and type II IFN responses. Loss of STAT3 largely reversed the virus-driven transcriptional shift without impacting the viral gene expression program. STAT3 promoted B cell processes of the germinal center, including IL-21-stimulated downregulation of surface CD23 on B cells infected with MHV68 or EBV. Together, our data provide mechanistic insights into the role of STAT3 as a latency determinant in B cells for oncogenic gammaherpesviruses.IMPORTANCEThere are no directed therapies to the latency program of the human gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma herpesvirus. Activated host factor signal transducer and activator of transcription 3 (STAT3) is a hallmark of cancers caused by these viruses. We applied the murine gammaherpesvirus pathogen system to explore STAT3 function upon primary B cell infection in the host. Since STAT3 deletion in all CD19+ B cells of infected mice led to altered B and T cell responses, we generated chimeric mice with both normal and STAT3-deleted B cells. B cells lacking STAT3 failed to support virus latency compared to normal B cells from the same infected animal. Loss of STAT3 impaired B cell proliferation and differentiation and led to a striking upregulation of interferon-stimulated genes. These findings expand our understanding of STAT3-dependent processes that are key to its function as a pro-viral latency determinant for oncogenic gammaherpesviruses in B cells and may provide novel therapeutic targets.


Subject(s)
Epstein-Barr Virus Infections , Gammaherpesvirinae , Herpesviridae Infections , Herpesvirus 8, Human , Rhadinovirus , Sarcoma, Kaposi , Animals , Humans , Mice , Gammaherpesvirinae/genetics , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , Herpesvirus 8, Human/metabolism , Mice, Inbred C57BL , Rhadinovirus/genetics , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Virus Latency/genetics
14.
J Infect Dis ; 229(2): 432-442, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-37536670

ABSTRACT

BACKGROUND: Previously, we showed that children with asymptomatic Plasmodium falciparum (Pf) malaria infection had higher Kaposi sarcoma-associated herpesvirus (KSHV) viral load, increased risk of KSHV seropositivity, and higher KSHV antibody levels. We hypothesize that clinical malaria has an even larger association with KSHV seropositivity. In the current study, we investigated the association between clinical malaria and KSHV seropositivity and antibody levels. METHODS: Between December 2020 and March 2022, sick children (aged 5-10 years) presenting at a clinic in Uganda were enrolled in a case-control study. Pf was detected using malaria rapid diagnostic tests (RDTs) and subsequently with quantitative real-time polymerase chain reaction (qPCR). Children with malaria were categorized into 2 groups: RDT+/PfPCR+ and RDT-/PfPCR+. RESULTS: The seropositivity of KSHV was 60% (47/78) among Pf-uninfected children, 79% (61/77) among children who were RDT-/PfPCR+ (odds ratio [OR], 2.41 [95% confidence interval {CI}, 1.15-5.02]), and 95% (141/149) in children who were RDT+/PfPCR+ (OR, 10.52 [95% CI, 4.17-26.58]; Ptrend < .001). Furthermore, RDT+/PfPCR+ children followed by RDT-/PfPCR+ children had higher KSHV IgG and IgM antibody levels and reacted to more KSHV antigens compared to uninfected children. CONCLUSIONS: Clinical malaria is associated with both increased KSHV seropositivity and antibody magnitude, suggesting that Pf is affecting KSHV immunity.


Subject(s)
Herpesvirus 8, Human , Malaria, Falciparum , Malaria , Child , Humans , Uganda/epidemiology , Case-Control Studies , Malaria, Falciparum/diagnosis , Malaria/complications , Antibodies, Viral , Plasmodium falciparum
15.
Infection ; 52(3): 1175-1180, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38113021

ABSTRACT

The spectrum of HHV-8-associated disorders includes Kaposi's sarcoma, primary effusion lymphoma, multicentric Castleman's disease, and the recently described KSHV inflammatory cytokine syndrome (KICS), a life-threatening disorder complicating HIV infection. There have been no reports in the literature concerning non-immunosuppressed individuals affected with KICS. We report here a KICS-like illness occurring in two elderly Greek men without HIV infection or other recognizable cause of immunosuppression.


Subject(s)
Herpesvirus 8, Human , Humans , Male , Aged , Greece , Herpesviridae Infections/complications , Herpesviridae Infections/virology , Cytokines/blood , Cytokine Release Syndrome/virology , Sarcoma, Kaposi/virology
16.
mBio ; 15(1): e0301123, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38117084

ABSTRACT

IMPORTANCE: Kaposi's sarcoma (KS) is the most common cancer in HIV-infected patients caused by Kaposi's sarcoma-associated herpesvirus (KSHV) infection. Hyperinflammation is the hallmark of KS. In this study, we have shown that KSHV mediates hyperinflammation by inducing IL-1α and suppressing IL-1Ra. Mechanistically, KSHV miRNAs and vFLIP induce hyperinflammation by activating the NF-κB pathway. A common anti-inflammatory agent dexamethasone blocks KSHV-induced hyperinflammation and tumorigenesis by activating glucocorticoid receptor signaling to suppress IL-1α and induce IL-1Ra. This work has identified IL-1-mediated inflammation as a potential therapeutic target and dexamethasone as a potential therapeutic agent for KSHV-induced malignancies.


Subject(s)
Cell Transformation, Neoplastic , Dexamethasone , Herpesvirus 8, Human , Receptors, Glucocorticoid , Sarcoma, Kaposi , Humans , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/metabolism , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Glucocorticoids/pharmacology , Glucocorticoids/therapeutic use , Herpesvirus 8, Human/physiology , Inflammation/virology , Interleukin 1 Receptor Antagonist Protein/metabolism , Receptors, Glucocorticoid/metabolism , Sarcoma, Kaposi/drug therapy
17.
Cancers (Basel) ; 15(24)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38136285

ABSTRACT

The oncogenic and persistent Epstein Barr virus (EBV) is carried by more than 95% of the human adult population. While asymptomatic in most of these, EBV can cause a wide variety of malignancies of lymphoid or epithelial cell origin. Some of these are also associated with co-infections that either increase EBV-induced tumorigenesis or weaken its immune control. The respective pathogens include Kaposi-sarcoma-associated herpesvirus (KSHV), Plasmodium falciparum and human immunodeficiency virus (HIV). In this review, I will discuss the respective tumor entities and possible mechanisms by which co-infections increase the EBV-associated cancer burden. A better understanding of the underlying mechanisms could allow us to identify crucial features of EBV-associated malignancies and defects in their immune control. These could then be explored to develop therapies against the respective cancers by targeting EBV and/or the respective co-infections with pathogen-specific therapies or vaccinations.

18.
Front Cell Infect Microbiol ; 13: 1270935, 2023.
Article in English | MEDLINE | ID: mdl-37928187

ABSTRACT

Kaposi sarcoma (KS), a multifocal vascular neoplasm frequently observed in HIV-positive individuals, primarily affects the skin, mucous membranes, visceral organs, and lymph nodes. KS is associated primarily with Kaposi sarcoma-associated herpesvirus (KSHV) infection. In this case report, we present a rare occurrence of co-infection and co-localization of KSHV and Epstein-Barr virus (EBV) in KS arising from the conjunctiva, which, to our knowledge, has not been reported previously. Immunohistochemistry (IHC), DNA polymerase chain reaction (PCR), and EBV-encoded RNA in situ hybridization (EBER-ISH) were utilized to demonstrate the presence of KSHV and EBV infection in the ocular KS lesion. Nearly all KSHV-positive cells displayed co-infection with EBV. In addition, the KS lesion revealed co-localization of KSHV Latency-Associated Nuclear Antigen (LANA) and EBV Epstein Barr virus Nuclear Antigen-1 (EBNA1) by multi-colored immunofluorescence staining with different anti-EBNA1 antibodies, indicating the possibility of interactions between these two gamma herpesviruses within the same lesion. Additional study is needed to determine whether EBV co-infection in KS is a common or an opportunistic event that might contribute to KS development and progression.


Subject(s)
Acquired Immunodeficiency Syndrome , Coinfection , Epstein-Barr Virus Infections , Herpesviridae Infections , Herpesvirus 8, Human , Sarcoma, Kaposi , Humans , Sarcoma, Kaposi/complications , Sarcoma, Kaposi/epidemiology , Herpesvirus 8, Human/genetics , Herpesvirus 4, Human , Epstein-Barr Virus Infections/complications , Coinfection/complications , Acquired Immunodeficiency Syndrome/complications
19.
J Virol ; 97(11): e0097223, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37909728

ABSTRACT

IMPORTANCE: The current view is that the default pathway of Kaposi's sarcoma-associated herpesvirus (KSHV) infection is the establishment of latency, which is a prerequisite for lifelong infection and viral oncogenesis. This view about KSHV infection is supported by the observations that KSHV latently infects most of the cell lines cultured in vitro in the absence of any environmental stresses that may occur in vivo. The goal of this study was to determine the effect of hypoxia, a natural stress stimulus, on primary KSHV infection. Our data indicate that hypoxia promotes euchromatin formation on the KSHV genome following infection and supports lytic de novo KSHV infection. We also discovered that hypoxia-inducible factor-1α is required and sufficient for allowing lytic KSHV infection. Based on our results, we propose that hypoxia promotes lytic de novo infection in cells that otherwise support latent infection under normoxia; that is, the environmental conditions can determine the outcome of KSHV primary infection.


Subject(s)
Herpesviridae Infections , Hypoxia-Inducible Factor 1, alpha Subunit , Hypoxia , Humans , Gene Expression Regulation, Viral , Herpesvirus 8, Human , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Sarcoma, Kaposi , Virus Latency
20.
bioRxiv ; 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38014281

ABSTRACT

Hyperinflammation is the hallmark of Kaposi's sarcoma (KS), the most common cancer in AIDS patients caused by Kaposi's sarcoma-associated herpesvirus (KSHV) infection. However, the role and mechanism of induction of inflammation in KS remain unclear. In a screening for inhibitors of KSHV-induced oncogenesis, over half of the identified candidates were anti-inflammatory agents including dexamethasone functions by activating glucocorticoid receptor (GR) signaling. Here, we examined the mechanism mediating KSHV-induced inflammation. We found that numerous inflammatory pathways were activated in KSHV-transformed cells. Particularly, interleukin-1 alpha (IL-1α) and IL-1 receptor antagonist (IL-1Ra) from the IL-1 family were the most induced and suppressed cytokines, respectively. We found that KSHV miRNAs mediated IL-1α induction while both miRNAs and vFLIP mediated IL-1Ra suppression. Furthermore, GR signaling was inhibited in KSHV-transformed cells, which was mediated by vFLIP and vCyclin. Dexamethasone treatment activated GR signaling, and inhibited cell proliferation and colony formation in soft agar of KSHV-transformed cells but had a minimal effect on matched primary cells. Consequently, dexamethasone suppressed the initiation and growth of KSHV-induced tumors in mice. Mechanistically, dexamethasone suppressed IL-1α but induced IL-1Ra expression. Treatment with recombinant IL-1α protein rescued the inhibitory effect of dexamethasone while overexpression of IL-1Ra caused a weak growth inhibition of KSHV-transformed cells. Furthermore, dexamethasone induced IκBα expression resulting in inhibition of NF-κB pathway and IL-1α expression. These results reveal an important role of IL-1 pathway in KSHV-induced inflammation and oncogenesis, which can be inhibited by dexamethasone-activated GR signaling, and identify IL-1-mediated inflammation as a potential therapeutic target for KSHV-induced malignancies.

SELECTION OF CITATIONS
SEARCH DETAIL
...