Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.323
Filter
1.
Adv Protein Chem Struct Biol ; 141: 255-297, 2024.
Article in English | MEDLINE | ID: mdl-38960477

ABSTRACT

Glial cells provide physical and chemical support and protection for neurons and for the extracellular compartments of neural tissue through secretion of soluble factors, insoluble scaffolds, and vesicles. Additionally, glial cells have regenerative capacity by remodeling their physical microenvironment and changing physiological properties of diverse cell types in their proximity. Various types of aberrant glial and macrophage cells are associated with human diseases, disorders, and malignancy. We previously demonstrated that transmembrane protein, TMEM230 has tissue revascularization and regenerating capacity by its ability to secrete pro-angiogenic factors and metalloproteinases, inducing endothelial cell sprouting and channel formation. In healthy normal neural tissue, TMEM230 is predominantly expressed in glial and marcophate cells, suggesting a prominent role in neural tissue homeostasis. TMEM230 regulation of the endomembrane system was supported by co-expression with RNASET2 (lysosome, mitochondria, and vesicles) and STEAP family members (Golgi complex). Intracellular trafficking and extracellular secretion of glial cellular components are associated with endocytosis, exocytosis and phagocytosis mediated by motor proteins. Trafficked components include metalloproteins, metalloproteinases, glycans, and glycoconjugate processing and digesting enzymes that function in phagosomes and vesicles to regulate normal neural tissue microenvironment, homeostasis, stress response, and repair following neural tissue injury or degeneration. Aberrantly high sustained levels TMEM230 promotes metalloprotein expression, trafficking and secretion which contribute to tumor associated infiltration and hypervascularization of high tumor grade gliomas. Following injury of the central nervous or peripheral systems, transcient regulated upregulation of TMEM230 promotes tissue wound healing, remodeling and revascularization by activating glial and macrophage generated microchannels/microtubules (referred to as vascular mimicry) and blood vessel sprouting and branching. Our results support that TMEM230 may act as a master regulator of motor protein mediated trafficking and compartmentalization of a large class of metalloproteins in gliomas and gliosis.


Subject(s)
Glioma , Gliosis , Membrane Proteins , Humans , Membrane Proteins/metabolism , Glioma/metabolism , Glioma/pathology , Gliosis/metabolism , Gliosis/pathology , Animals , Receptors, Peptide
2.
Adv Protein Chem Struct Biol ; 141: 563-650, 2024.
Article in English | MEDLINE | ID: mdl-38960486

ABSTRACT

Cytoskeletal motor proteins are biological nanomachines that convert chemical energy into mechanical work to carry out various functions such as cell division, cell motility, cargo transport, muscle contraction, beating of cilia and flagella, and ciliogenesis. Most of these processes are driven by the collective operation of several motors in the crowded viscous intracellular environment. Imaging and manipulation of the motors with powerful experimental probes have been complemented by mathematical analysis and computer simulations of the corresponding theoretical models. In this article, we illustrate some of the key theoretical approaches used to understand how coordination, cooperation and competition of multiple motors in the crowded intra-cellular environment drive the processes that are essential for biological function of a cell. In spite of the focus on theory, experimentalists will also find this article as an useful summary of the progress made so far in understanding multiple motor systems.


Subject(s)
Computer Simulation , Molecular Motor Proteins , Molecular Motor Proteins/metabolism , Molecular Motor Proteins/chemistry , Humans , Animals , Models, Biological
3.
Adv Protein Chem Struct Biol ; 141: 87-122, 2024.
Article in English | MEDLINE | ID: mdl-38960488

ABSTRACT

The dimeric kinesin-8 motors have the biological function of depolymerizing microtubules (MTs) from the plus end. However, the molecular mechanism of the depolymerization promoted by the kinesin-8 motors is still undetermined. Here, a model is proposed for the MT depolymerization by the kinesin-8 motors. Based on the model, the dynamics of depolymerization in the presence of the single motor at the MT plus end under no load and under load on the motor is studied theoretically. The dynamics of depolymerization in the presence of multiple motors at the MT plus end is also analyzed. The theoretical results explain well the available experimental data. The studies can also be applicable to other families of kinesin motors such as kinesin-13 mitotic centromere-associated kinesin motors that have the ability to depolymerize MTs.


Subject(s)
Kinesins , Microtubules , Polymerization , Kinesins/metabolism , Kinesins/chemistry , Microtubules/metabolism , Humans , Animals
4.
Oncol Lett ; 28(2): 396, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38974111

ABSTRACT

Kinesin family protein 2A (KIF2A) is a microtubule depolymerase that participates in the progression of various cancers; however, its clinical utility in endometrial carcinoma (EC) remains unclear. The aim of the present study was to assess KIF2A expression and its relationship with prognosis in patients with EC. Data from 230 patients with EC who underwent tumor resection were reviewed in the current, retrospective study. KIF2A expression was measured in 230 formalin-fixed paraffin-embedded (FFPE) specimens of tumor tissue and 50 FFPE specimens of non-tumor tissue using immunohistochemistry (IHC). KIF2A expression was elevated in EC tumor tissue vs. non-tumor tissue (P<0.001). Furthermore, tumor KIF2A expression was linked with lymphovascular invasion (P=0.004) and higher International Federation of Gynecology and Obstetrics (FIGO) stage (P=0.001). High tumor KIF2A expression (IHC score>3) was correlated with shorter disease-free survival (DFS; P=0.014) and overall survival (OS; P=0.012). Moreover, the time-dependent receiver operating characteristic curves revealed that tumor KIF2A expression had an acceptable use for estimating the relapse and death risks at each timepoint within 6 years, with each area under the curve remaining stable at ≥0.7. Notably, tumor KIF2A expression (high vs. low) independently forecast shorter DFS (hazard ratio, 2.506; P=0.013), but not OS (P>0.05). Furthermore, information from The Human Protein Atlas database indicated that high tumor KIF2A expression was associated with worse OS in patients with EC (P=0.027). Tumor KIF2A is not only associated with lymphovascular invasion and higher FIGO stage, but also reflects unfavorable survival in patients with EC.

5.
Proc Natl Acad Sci U S A ; 121(30): e2403739121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39012822

ABSTRACT

Natural kinesin motors are tethered to their cargoes via short C-terminal or N-terminal linkers, whose docking against the core motor domain generates directional force. It remains unclear whether linker docking is the only process contributing directional force or whether linker docking is coupled to and amplifies an underlying, more fundamental force-generating mechanical cycle of the kinesin motor domain. Here, we show that kinesin motor domains tethered via double-stranded DNAs (dsDNAs) attached to surface loops drive robust microtubule (MT) gliding. Tethering using dsDNA attached to surface loops disconnects the C-terminal neck-linker and the N-terminal cover strand so that their dock-undock cycle cannot exert force. The most effective attachment positions for the dsDNA tether are loop 2 or loop 10, which lie closest to the MT plus and minus ends, respectively. In three cases, we observed minus-end-directed motility. Our findings demonstrate an underlying, potentially ancient, force-generating core mechanical action of the kinesin motor domain, which drives, and is amplified by, linker docking.


Subject(s)
Kinesins , Microtubules , Protein Domains , Kinesins/metabolism , Kinesins/chemistry , Microtubules/metabolism , Animals , DNA/metabolism , DNA/chemistry
6.
Int J Mol Sci ; 25(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39000337

ABSTRACT

Few efficacious treatment options are available for patients with small cell lung carcinoma (SCLC), indicating the need to develop novel therapeutic approaches. In this study, we explored kinesin family member 11 (KIF11), a potential therapeutic target in SCLC. An analysis of publicly available data suggested that KIF11 mRNA expression levels are significantly higher in SCLC tissues than in normal lung tissues. When KIF11 was targeted by RNA interference or a small-molecule inhibitor (SB743921) in two SCLC cell lines, Lu-135 and NCI-H69, cell cycle progression was arrested at the G2/M phase with complete growth suppression. Further work suggested that the two cell lines were more significantly affected when both KIF11 and BCL2L1, an anti-apoptotic BCL2 family member, were inhibited. This dual inhibition resulted in markedly decreased cell viability. These findings collectively indicate that SCLC cells are critically dependent on KIF11 activity for survival and/or proliferation, as well as that KIF11 inhibition could be a new strategy for SCLC treatment.


Subject(s)
Cell Survival , Kinesins , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Kinesins/metabolism , Kinesins/genetics , Kinesins/antagonists & inhibitors , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/metabolism , Small Cell Lung Carcinoma/pathology , Cell Line, Tumor , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Cell Survival/drug effects , Cell Survival/genetics , Cell Proliferation , bcl-X Protein/metabolism , bcl-X Protein/genetics , Gene Expression Regulation, Neoplastic , Apoptosis/genetics , Benzamides , Quinazolines
7.
EMBO J ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898313

ABSTRACT

In cells, mRNAs are transported to and positioned at subcellular areas to locally regulate protein production. Recent studies have identified the kinesin-3 family member motor protein KIF1C as an RNA transporter. However, it is not clear how KIF1C interacts with RNA molecules. Here, we show that the KIF1C C-terminal tail domain contains an intrinsically disordered region (IDR) that drives liquid-liquid phase separation (LLPS). KIF1C forms dynamic puncta in cells that display physical properties of liquid condensates and incorporate RNA molecules in a sequence-selective manner. Endogenous KIF1C forms condensates in cellular protrusions, where mRNAs are enriched in an IDR-dependent manner. Purified KIF1C tail constructs undergo LLPS in vitro at near-endogenous nM concentrations and in the absence of crowding agents and can directly recruit RNA molecules. Overall, our work uncovers an intrinsic correlation between the LLPS activity of KIF1C and its role in mRNA positioning. In addition, the LLPS activity of KIF1C's tail represents a new mode of motor-cargo interaction that extends our current understanding of cytoskeletal motor proteins.

8.
Dev Cell ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38848716

ABSTRACT

In plant vegetative tissues, cell division employs a mitotic microtubule array called the preprophase band (PPB) that marks the cortical division site. This transient cytoskeletal array imprints the spatial information to be read by the cytokinetic phragmoplast at later stages of mitotic cell division. In Arabidopsis thaliana, we discovered that the PPB recruited the Myosin XI motor MYA1/Myo11F to the cortical division site, where it joined microtubule-associated proteins and motors to form a ring of prominent cytoskeletal assemblies that received the expanding phragmoplast. Such a myosin localization pattern at the cortical division site was dependent on the POK1/2 Kinesin-12 motors. This regulatory function of MYA1/Myo11F in phragmoplast guidance was dependent on intact actin filaments. The discovery of these cytoskeletal motor assemblies pinpoints a mechanism underlying how two dynamic cytoskeletal networks work in concert to govern PPB-dependent division plane orientation in flowering plants.

9.
bioRxiv ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38895253

ABSTRACT

Rab4 GTPase organizes endosomal sorting essential for maintaining the balance between recycling and degradative pathways. Rab4 localizes to many cargos whose transport in neurons is critical for regulating neurotransmission and neuronal health. Furthermore, elevated Rab4 levels in the CNS are associated with synaptic atrophy and neurodegeneration in Drosophila and humans, respectively. However, how the transport of Rab4-associated vesicles is regulated in neurons remains unknown. Using in vivo time-lapse imaging of Drosophila larvae, we show that activation of insulin signaling via Dilp2 and dInR increases the anterograde velocity, run length, and flux of Rab4 vesicles in the axons. Molecularly, we show that activation of neuronal insulin signaling further activates Vps34, elevates the levels of PI(3)P on Rab4-associated vesicles, recruits Klp98A (a PI(3)P-binding kinesin-3 motor) and activates their anterograde transport. Together, these observations delineate the role of insulin signaling in regulating axonal transport and synaptic homeostasis.

10.
Curr Biol ; 34(12): 2756-2763.e2, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38838665

ABSTRACT

Extracellular vesicles (EVs) are submicron membranous structures and key mediators of intercellular communication.1,2 Recent research has highlighted roles for cilia-derived EVs in signal transduction, underscoring their importance as bioactive extracellular organelles containing conserved ciliary signaling proteins.3,4 Members of the transient receptor potential (TRP) channel polycystin-2 (PKD-2) family are found in ciliary EVs of the green algae Chlamydomonas and the nematode Caenorhabditis elegans5,6 and in EVs in the mouse embryonic node and isolated from human urine.7,8 In C. elegans, PKD-2 is expressed in male-specific EV-releasing sensory neurons, which extend ciliary tips to ciliary pore and directly release EVs into the environment.6,9 Males release EVs in a mechanically stimulated manner, regulate EV cargo content in response to mating partners, and deposit PKD-2::GFP-labeled EVs on the vulval cuticle of hermaphrodites during mating.9,10 Combined, our findings suggest that ciliary EV release is a dynamic process. Herein, we identify mechanisms controlling dynamic EV shedding using time-lapse imaging. Cilia can sustain the release of PKD-2-labeled EVs for 2 h. This extended release doesn't require neuronal transmission. Instead, ciliary intrinsic mechanisms regulate PKD-2 ciliary membrane replenishment and dynamic EV release. The kinesin-3 motor kinesin-like protein 6 (KLP-6) is necessary for initial and extended EV release, while the transition zone protein NPHP-4 is required only for sustained EV release. The dynamic replenishment of PKD-2 at the ciliary tip is key to sustained EV release. Our study provides a comprehensive portrait of real-time ciliary EV release and mechanisms supporting cilia as proficient EV release platforms.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cilia , Extracellular Vesicles , Sensory Receptor Cells , TRPP Cation Channels , Animals , Cilia/metabolism , Cilia/physiology , Extracellular Vesicles/metabolism , Extracellular Vesicles/physiology , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/physiology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , TRPP Cation Channels/metabolism , TRPP Cation Channels/genetics , Male
11.
Article in English | MEDLINE | ID: mdl-38926763

ABSTRACT

BACKGROUND: Sarcopenia, a group of muscle-related disorders, leads to the gradual decline and weakening of skeletal muscle over time. Recognizing the pivotal role of gastrointestinal conditions in maintaining metabolic homeostasis within skeletal muscle, we hypothesize that the effectiveness of the myogenic programme is influenced by the levels of gastrointestinal hormones in the bloodstream, and this connection is associated with the onset of sarcopenia. METHODS: We first categorized 145 individuals from the Emergency Room of Taipei Veterans General Hospital into sarcopenia and non-sarcopenia groups, following the criteria established by the Asian Working Group for Sarcopenia. A thorough examination of specific gastrointestinal hormone levels in plasma was conducted to identify the one most closely associated with sarcopenia. Techniques, including immunofluorescence, western blotting, glucose uptake assays, seahorse real-time cell metabolic analysis, flow cytometry analysis, kinesin-1 activity assays and qPCR analysis, were applied to investigate its impacts and mechanisms on myogenic differentiation. RESULTS: Individuals in the sarcopenia group exhibited elevated plasma levels of glucagon-like peptide 1 (GLP-1) at 1021.5 ± 313.5 pg/mL, in contrast to non-sarcopenic individuals with levels at 351.1 ± 39.0 pg/mL (P < 0.05). Although it is typical for GLP-1 levels to rise post-meal and subsequently drop naturally, detecting higher GLP-1 levels in starving individuals with sarcopenia raised the possibility of GLP-1 influencing myogenic differentiation in skeletal muscle. Further investigation using a cell model revealed that GLP-1 (1, 10 and 100 ng/mL) dose-dependently suppressed the expression of the myogenic marker, impeding myocyte fusion and the formation of polarized myotubes during differentiation. GLP-1 significantly inhibited the activity of the microtubule motor kinesin-1, interfering with the translocation of glucose transporter 4 (GLUT4) to the cell membrane and the dispersion of mitochondria. These impairments subsequently led to a reduction in glucose uptake to 0.81 ± 0.04 fold (P < 0.01) and mitochondrial adenosine triphosphate (ATP) production from 25.24 ± 1.57 pmol/min to 18.83 ± 1.11 pmol/min (P < 0.05). Continuous exposure to GLP-1, even under insulin induction, attenuated the elevated glucose uptake. CONCLUSIONS: The elevated GLP-1 levels observed in individuals with sarcopenia are associated with a reduction in myogenic differentiation. The impact of GLP-1 on both the membrane translocation of GLUT4 and the dispersion of mitochondria significantly hinders glucose uptake and the production of mitochondrial ATP necessary for the myogenic programme. These findings point us towards strategies to establish the muscle-gut axis, particularly in the context of sarcopenia. Additionally, these results present the potential of identifying relevant diagnostic biomarkers.

12.
Dev Neurobiol ; 84(3): 203-216, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38830696

ABSTRACT

Formation of the corpus callosum (CC), anterior commissure (AC), and postoptic commissure (POC), connecting the left and right cerebral hemispheres, is crucial for cerebral functioning. Collapsin response mediator protein 2 (CRMP2) has been suggested to be associated with the mechanisms governing this formation, based on knockout studies in mice and knockdown/knockout studies in zebrafish. Previously, we reported two cases of non-synonymous CRMP2 variants with S14R and R565C substitutions. Among the, the R565C substitution (p.R565C) was caused by the novel CRMP2 mutation c.1693C > T, and the patient presented with intellectual disability accompanied by CC hypoplasia. In this study, we demonstrate that crmp2 mRNA could rescue AC and POC formation in crmp2-knockdown zebrafish, whereas the mRNA with the R566C mutation could not. Zebrafish CRMP2 R566C corresponds to human CRMP2 R565C. Further experiments with transfected cultured cells indicated that CRMP2 with the R566C mutation could not bind to kinesin light chain 1 (KLC1). Knockdown of klc1a in zebrafish resulted in defective AC and POC formation, revealing a genetic interaction with crmp2. These findings suggest that the CRMP2 R566C mutant fails to bind to KLC1, preventing axonal elongation and leading to defective AC and POC formation in zebrafish and CC formation defects in humans. Our study highlights the importance of the interaction between CRMP2 and KLC1 in the formation of the forebrain commissures, revealing a novel mechanism associated with CRMP2 mutations underlying human neurodevelopmental abnormalities.


Subject(s)
Intercellular Signaling Peptides and Proteins , Nerve Tissue Proteins , Zebrafish Proteins , Zebrafish , Animals , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Prosencephalon/metabolism , Kinesins/metabolism , Kinesins/genetics , Corpus Callosum/metabolism , Humans , Animals, Genetically Modified , Embryo, Nonmammalian
13.
J Mol Evol ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926179

ABSTRACT

Kinesins are eukaryotic microtubule motor proteins subdivided into conserved families with distinct functional roles. While many kinesin families are widespread in eukaryotes, each organismal lineage maintains a unique kinesin repertoire composed of many families with distinct numbers of genes. Previous genomic surveys indicated that land plant kinesin repertoires differ markedly from other eukaryotes. To determine when repertoires diverged during plant evolution, we performed robust phylogenomic analyses of kinesins in 24 representative plants, two algae, two animals, and one yeast. These analyses show that kinesin repertoires expand and contract coincident with major shifts in the biology of algae and land plants. One kinesin family and five subfamilies, each defined by unique domain architectures, emerged in the green algae. Four of those kinesin groups expanded in ancestors of modern land plants, while six other kinesin groups were lost in the ancestors of pollen-bearing plants. Expansions of different kinesin families and subfamilies occurred in moss and angiosperm lineages. Other kinesin families remained stable and did not expand throughout plant evolution. Collectively these data support a radiation of kinesin domain architectures in algae followed by differential positive and negative selection on kinesins families and subfamilies in different lineages of land plants.

14.
EMBO J ; 43(13): 2606-2635, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38806659

ABSTRACT

Microtubule-based kinesin motor proteins are crucial for intracellular transport, but their hyperactivation can be detrimental for cellular functions. This study investigated the impact of a constitutively active ciliary kinesin mutant, OSM-3CA, on sensory cilia in C. elegans. Surprisingly, we found that OSM-3CA was absent from cilia but underwent disposal through membrane abscission at the tips of aberrant neurites. Neighboring glial cells engulf and eliminate the released OSM-3CA, a process that depends on the engulfment receptor CED-1. Through genetic suppressor screens, we identified intragenic mutations in the OSM-3CA motor domain and mutations inhibiting the ciliary kinase DYF-5, both of which restored normal cilia in OSM-3CA-expressing animals. We showed that conformational changes in OSM-3CA prevent its entry into cilia, and OSM-3CA disposal requires its hyperactivity. Finally, we provide evidence that neurons also dispose of hyperactive kinesin-1 resulting from a clinic variant associated with amyotrophic lateral sclerosis, suggesting a widespread mechanism for regulating hyperactive kinesins.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cilia , Kinesins , Neuroglia , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Kinesins/metabolism , Kinesins/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Neuroglia/metabolism , Cilia/metabolism , Neurons/metabolism , Mutation , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology
15.
Proc Natl Acad Sci U S A ; 121(19): e2401341121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38696466

ABSTRACT

Neurotropic alphaherpesviruses, including herpes simplex virus type 1 (HSV-1), recruit microtubule motor proteins to invade cells. The incoming viral particle traffics to nuclei in a two-step process. First, the particle uses the dynein-dynactin motor to sustain transport to the centrosome. In neurons, this step is responsible for long-distance retrograde axonal transport and is an important component of the neuroinvasive property shared by these viruses. Second, a kinesin-dependent mechanism redirects the particle from the centrosome to the nucleus. We have reported that the kinesin motor used during the second step of invasion is assimilated into nascent virions during the previous round of infection. Here, we report that the HSV-1 pUL37 tegument protein suppresses the assimilated kinesin-1 motor during retrograde axonal transport. Region 2 (R2) of pUL37 was required for suppression and functioned independently of the autoinhibitory mechanism native to kinesin-1. Furthermore, the motor domain and proximal coiled coil of kinesin-1 were sufficient for HSV-1 assimilation, pUL37 suppression, and nuclear trafficking. pUL37 localized to the centrosome, the site of assimilated kinesin-1 activation during infection, when expressed in cells in the absence of other viral proteins; however, pUL37 did not suppress kinesin-1 in this context. These results indicate that the pUL37 tegument protein spatially and temporally regulates kinesin-1 via the amino-terminal motor region in the context of the incoming viral particle.


Subject(s)
Herpesvirus 1, Human , Kinesins , Viral Structural Proteins , Kinesins/metabolism , Herpesvirus 1, Human/physiology , Herpesvirus 1, Human/metabolism , Humans , Animals , Axonal Transport/physiology , Chlorocebus aethiops , Centrosome/metabolism , Neurons/metabolism , Neurons/virology , Vero Cells , Cell Nucleus/metabolism , Cell Nucleus/virology
16.
Int J Biol Macromol ; 270(Pt 1): 132347, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754673

ABSTRACT

Aberrant cell proliferation is one of the main characteristics of tumor cells that can be affected by many cellular processes and signaling pathways. Kinesin superfamily proteins (KIFs) are motor proteins that are involved in cytoplasmic transportations and chromosomal segregation during cell proliferation. Therefore, regulation of the KIF functions as vital factors in chromosomal stability is necessary to maintain normal cellular homeostasis and proliferation. KIF deregulations have been reported in various cancers. MicroRNAs (miRNAs) and signaling pathways are important regulators of KIF proteins. MiRNAs have key roles in regulation of the cell proliferation, migration, and apoptosis. In the present review, we discussed the role of miRNAs in tumor biology through the regulation of KIF proteins. It has been shown that miRNAs have mainly a tumor suppressor function via the KIF targeting. This review can be an effective step to introduce the miRNAs/KIFs axis as a probable therapeutic target in tumor cells.


Subject(s)
Gene Expression Regulation, Neoplastic , Kinesins , MicroRNAs , Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Kinesins/metabolism , Kinesins/genetics , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Animals , Cell Proliferation/genetics , Disease Progression , Signal Transduction , Apoptosis/genetics , Cell Movement/genetics
17.
Cell Mol Bioeng ; 17(2): 137-151, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38737453

ABSTRACT

Introduction: Kinesin-3 motor, which is in the monomeric and inactive form in solution, after cargo-induced dimerization can step on microtubules towards the plus end with a high velocity and a supperprocessivity, which is responsible for transporting the cargo in axons and dendrites. The kinesin-3 motor has a large initial landing rate to microtubules and spends the majority of its stepping cycle in a one-head-bound state. Under the load the kinesin-3 motor can dissociate more readily than the kinesin-1 motor. Methods: To understand the physical origin of the peculiar features for the kinesin-3 motor, a model is presented here for its chemomechanical coupling. Based on the model the dynamics of the motor under no load, under the ramping load and under the constant load is studied analytically. Results: The theoretical results explain well the available experimental data under no load and under the ramping load. For comparison, the corresponding available experimental data for the kinesin-1 motor under the ramping load are also explained. The predicted results of the velocity, dissociation rate and run length versus the constant load for the kinesin-3 motor are provided. Conclusions: The study has strong implications for the chemomechanical coupling mechanism of the kinesin-3 dimer. The origin of the kinesin-3 dimer in the predominant one-head-bound state is due to the fact that the rate of ATP transition to ADP in the trailing head is much larger than that of ADP release from the MT-bound head. The study shows that the kinesin-3 ADP-head has an evidently longer interaction distance with microtubule than the kinesin-1 ADP-head, explaining why in the initial ADP state the kinesin-3 motor has the much larger landing rate than the kinesin-1 motor and why under the load the kinesin-3 motor can dissociate more readily than the kinesin-1 motor. Supplementary Information: The online version contains supplementary material available at 10.1007/s12195-024-00795-1.

18.
Cell Mol Life Sci ; 81(1): 168, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587639

ABSTRACT

Kinesin family member 3A (KIF3A) is a microtubule-oriented motor protein that belongs to the kinesin-2 family for regulating intracellular transport and microtubule movement. In this study, we characterized the critical roles of KIF3A during mouse oocyte meiosis. We found that KIF3A associated with microtubules during meiosis and depletion of KIF3A resulted in oocyte maturation defects. LC-MS data indicated that KIF3A associated with cell cycle regulation, cytoskeleton, mitochondrial function and intracellular transport-related molecules. Depletion of KIF3A activated the spindle assembly checkpoint, leading to metaphase I arrest of the first meiosis. In addition, KIF3A depletion caused aberrant spindle pole organization based on its association with KIFC1 to regulate expression and polar localization of NuMA and γ-tubulin; and KIF3A knockdown also reduced microtubule stability due to the altered microtubule deacetylation by histone deacetylase 6 (HDAC6). Exogenous Kif3a mRNA supplementation rescued the maturation defects caused by KIF3A depletion. Moreover, KIF3A was also essential for the distribution and function of mitochondria, Golgi apparatus and endoplasmic reticulum in oocytes. Conditional knockout of epithelial splicing regulatory protein 1 (ESRP1) disrupted the expression and localization of KIF3A in oocytes. Overall, our results suggest that KIF3A regulates cell cycle progression, spindle assembly and organelle distribution during mouse oocyte meiosis.


Subject(s)
Kinesins , Oocytes , Animals , Mice , Biological Transport , Kinesins/genetics , Meiosis , Metaphase
19.
Article in English | MEDLINE | ID: mdl-38646780

ABSTRACT

Skeletal dysplasias are group of rare genetic diseases resulting from mutations in genes encoding structural proteins of the cartilage extracellular matrix (ECM), signaling molecules, transcription factors, epigenetic modifiers, and several intracellular proteins. Cell division, organelle maintenance, and intracellular transport are all orchestrated by the cytoskeleton associated proteins, and intracellular processes effected through microtubule-associated movement are important for the function of skeletal cells. Amongst microtubule associated motor proteins, kinesins in particular have been shown to play a key role in cell cycle dynamics, including chromosome segregation, mitotic spindle formation and ciliogenesis, in addition to cargo trafficking, receptor recycling and endocytosis. Recent studies highlight the fundamental role of kinesins in embryonic development and morphogenesis and have shown that mutations in kinesin genes lead to several skeletal dysplasias. However, many questions concerning the specific functions of kinesins and their adaptor molecules as well as specific molecular mechanisms in which the kinesin proteins are involved during skeletal development remain unanswered. Here we present a review of the skeletal dysplasias resulting from defects in kinesins and discuss the involvement of kinesin proteins in the molecular mechanisms that are active during skeletal development.

20.
J Biol Chem ; 300(6): 107323, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677516

ABSTRACT

Organelles and vesicular cargoes are transported by teams of kinesin and dynein motors along microtubules. We isolated endocytic organelles from cells at different stages of maturation and reconstituted their motility along microtubules in vitro. We asked how the sets of motors transporting a cargo determine its motility and response to the microtubule-associated protein tau. Here, we find that phagosomes move in both directions along microtubules, but the directional bias changes during maturation. Early phagosomes exhibit retrograde-biased transport while late phagosomes are directionally unbiased. Correspondingly, early and late phagosomes are bound by different numbers and combinations of kinesins-1, -2, -3, and dynein. Tau stabilizes microtubules and directs transport within neurons. While single-molecule studies show that tau differentially regulates the motility of kinesins and dynein in vitro, less is known about its role in modulating the trafficking of endogenous cargoes transported by their native teams of motors. Previous studies showed that tau preferentially inhibits kinesin motors, which biases late phagosome transport towards the microtubule minus-end. Here, we show that tau strongly inhibits long-range, dynein-mediated motility of early phagosomes. Tau reduces forces generated by teams of dynein motors on early phagosomes and accelerates dynein unbinding under load. Thus, cargoes differentially respond to tau, where dynein complexes on early phagosomes are more sensitive to tau inhibition than those on late phagosomes. Mathematical modeling further explains how small changes in the number of kinesins and dynein on cargoes impact the net directionality but also that cargoes with different sets of motors respond differently to tau.


Subject(s)
Dyneins , Kinesins , Microtubules , tau Proteins , Kinesins/metabolism , Kinesins/genetics , tau Proteins/metabolism , tau Proteins/genetics , Dyneins/metabolism , Dyneins/genetics , Animals , Microtubules/metabolism , Phagosomes/metabolism , Biological Transport , Mice , Humans , Endocytosis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...