Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.239
Filter
1.
BMC Microbiol ; 24(1): 265, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026143

ABSTRACT

BACKGROUND: The emergence of fluoroquinolone resistance in clinical isolates of Klebsiella pneumoniae is a growing concern. To investigate the mechanisms behind this resistance, we studied a total of 215 K. pneumoniae isolates from hospitals in Bushehr province, Iran, collected between 2017 and 2019. Antimicrobial susceptibility test for fluoroquinolones was determined. The presence of plasmid mediated quinolone resistance (PMQR) and mutations in quinolone resistance-determining region (QRDR) of gyrA and parC genes in ciprofloxacin-resistant K. pneumoniae isolates were identified by PCR and sequencing. RESULTS: Out of 215 K. pneumoniae isolates, 40 were resistant to ciprofloxacin as determined by E-test method. PCR analysis revealed that among these ciprofloxacin-resistant isolates, 13 (32.5%), 7 (17.5%), 40 (100%), and 25 (62.5%) isolates harbored qnrB, qnrS, oqxA and aac(6')-Ib-cr genes, respectively. Mutation analysis of gyrA and parC genes showed that 35 (87.5%) and 34 (85%) of the ciprofloxacin-resistant isolates had mutations in these genes, respectively. The most frequent mutations were observed in codon 83 of gyrA and codon 80 of parC gene. Single gyrA substitution, Ser83→ Ile and Asp87→Gly, and double substitutions, Ser83→Phe plus Asp87→Ala, Ser83→Tyr plus Asp87→Ala, Ser83→Ile plus Asp87→Tyr, Ser83→Phe plus Asp87→Asn and Ser83→Ile plus Asp87→Gly were detected. In addition, Ser80→Ile and Glu84→Lys single substitution were found in parC gene. CONCLUSIONS: Our results indicated that 90% of isolates have at least one mutation in QRDR of gyrA orparC genes, thus the frequency of mutations was very significant and alarming in our region.


Subject(s)
Anti-Bacterial Agents , DNA Gyrase , DNA Topoisomerase IV , Drug Resistance, Bacterial , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Mutation , Plasmids , Quinolones , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , DNA Gyrase/genetics , Plasmids/genetics , DNA Topoisomerase IV/genetics , Humans , Anti-Bacterial Agents/pharmacology , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Drug Resistance, Bacterial/genetics , Quinolones/pharmacology , Ciprofloxacin/pharmacology , Iran , Bacterial Proteins/genetics , Prevalence , Fluoroquinolones/pharmacology
2.
Indian J Med Microbiol ; 51: 100664, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38977132

ABSTRACT

Small colony variants (SCVs) in Klebsiella pneumoniae are rare and understudied. We report an SCV of Klebsiella pneumoniae isolated from the urine of a prostate cancer patient undergoing prolonged radiotherapy. The strain was non-lactose fermenting, non-mucoid, slow-growing, multi-drug resistant, and showed atypical biochemical reactions and biofilm formation. On whole genome sequencing, it showed low-level virulence, sequence type 231 and gene CTX-M-15. Three major porins OmpK35, OmpK36 and OmpK37 were found. SCVs pose challenges like difficulties in identification, altered metabolism, and increased biofilm formation, which contribute to persistent infections. Radiotherapy and chemotherapy may have led to the formation of the SCV phenotype.

3.
Environ Pollut ; : 124598, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39053799

ABSTRACT

Wastewater treatment plants are hotspots for the release of antimicrobial-resistant pathogenic bacteria into aquatic ecosystems, significantly contributing to the cycle of antimicrobial resistance. Special attention should be paid to antimicrobial resistant ESKAPE bacteria, which have been identified as high-priority targets for control measures. Among them, Klebsiella pneumoniae is particularly noteworthy. In this study, we collected wastewater samples from the inlet, sedimentation tank, and effluent water of a wastewater treatment plant in June, July, October, and November of 2018. We detected and characterized 42 K. pneumoniae strains using whole genome sequencing (15 from the inlet, 8 from the sedimentation tank, and 19 from the effluent). Additionally, the strains were tested for their antimicrobial resistance phenotype. Using whole genome sequencing no distinct patterns were observed in terms of their genetic profiles. All strains were resistant to tetracycline, meanwhile 60%, 47%, and 37.5% of strains isolated from the inlet, sedimentation tank, and effluent, respectively, were multidrug resistant. Some of the multidrug resistant isolates were also resistant to colistin, and nearly all tested positive for the eptB and arnT genes, which are associated with polymyxin resistance. Various antimicrobial resistance genes were linked to mobile genetic elements, and they did not correlate with detected virulence groups or defense systems. Overall, our results, although not quantitative, highlight that multidrug resistant K. pneumoniae strains, including those resistant to colistin and genetically unrelated, being discharged into aquatic ecosystems from wastewater treatment plants. This suggests the necessity of monitoring aimed at genetically characterizing these pathogenic bacteria.

4.
Microbiol Spectr ; : e0049624, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041815

ABSTRACT

Omadacycline and eravacycline are gradually being used as new tetracycline antibiotics for the clinical treatment of Gram-negative pathogens. Affected by various tetracycline-inactivating enzymes, there have been reports of resistance to eravacycline and omadacycline in recent years. We isolated a strain carrying the mobile tigecycline resistance gene tet(X4) from the feces of a patient in Zhejiang Province, China. The strain belongs to the rare ST485 sequence type. The isolate was identified as Klebsiella pneumoniae by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The MICs of antimicrobial agents were determined using either the agar dilution method or the micro broth dilution method. The result showed that the isolate was resistant to eravacycline (MIC = 32 mg/L), omadacycline (MIC > 64 mg/L), and tigecycline (MIC > 32 mg/L). Whole-genome sequencing revealed that the tet(X4) resistance gene is located on the IncFII(pCRY) conjugative plasmid. tet(X4) is flanked by ISVsa3, and we hypothesize that this association contributes to the spread of the resistance gene. Plasmids were analyzed by S1-nuclease pulsed-field gel electrophoresis (S1-PFGE), Southern blotting, and electrotransformation experiment. We successfully transferred the plasmid carrying tet(X4) to the recipient bacteria by electrotransformation experiment. Compared with the DH-5α, the MICs of the transformant L3995-DH5α were increased by eight-fold for eravacycline and two-fold higher for omadacycline. Overall, the emergence of plasmid-borne tet(X4) resistance gene in a clinical isolate of K. pneumoniae ST485 underscores the essential requirement for the ongoing monitoring of tet(X4) to prevent and control its further dissemination in China.IMPORTANCEThere are still limited reports on Klebsiella pneumoniae strains harboring tetracycline-resistant genes in China, and K. pneumoniae L3995hy adds a new example to those positive for the tet(X4) gene. Importantly, our study raises concerns that plasmid-mediated resistance to omadacycline and eravacycline may spread further to a variety of ecological and clinical pathogens, limiting the choice of medication for extensively drug-resistant bacterial infections. Therefore, it is important to continue to monitor the prevalence and spread of tet(X4) and other tetracyclines resistance genes in K. pneumoniae and diverse bacterial populations.

5.
Front Microbiol ; 15: 1416628, 2024.
Article in English | MEDLINE | ID: mdl-38989015

ABSTRACT

Background: Multidrug-resistant bacteria and the shortage of new antibiotics constitute a serious health problem. This problem has led to increased interest in the use of bacteriophages, which have great potential as antimicrobial agents but also carry the risk of inducing resistance. The objective of the present study was to minimize the development of phage resistance in Klebsiella pneumoniae strains by inhibiting quorum sensing (QS) and thus demonstrate the role of QS in regulating defense mechanisms. Results: Cinnamaldehyde (CAD) was added to K. pneumoniae cultures to inhibit QS and thus demonstrate the role of the signaling system in regulating the anti-phage defense mechanism. The QS inhibitory activity of CAD in K. pneumoniae was confirmed by a reduction in the quantitative expression of the lsrB gene (AI-2 pathway) and by proteomic analysis. The infection assays showed that the phage was able to infect a previously resistant K. pneumoniae strain in the cultures to which CAD was added. The results were confirmed using proteomic analysis. Thus, anti-phage defense-related proteins from different systems, such as cyclic oligonucleotide-based bacterial anti-phage signaling systems (CBASS), restriction-modification (R-M) systems, clustered regularly interspaced short palindromic repeat-Cas (CRISPR-Cas) system, and bacteriophage control infection (BCI), were present in the cultures with phage but not in the cultures with phage and CAD. When the QS and anti-phage defense systems were inhibited by the combined treatment, proteins related to phage infection and proliferation, such as the tail fiber protein, the cell division protein DamX, and the outer membrane channel protein TolC, were detected. Conclusion: Inhibition of QS reduces phage resistance in K. pneumoniae, resulting in the infection of a previously resistant strain by phage, with a significant increase in phage proliferation and a significant reduction in bacterial growth. QS inhibitors could be considered for therapeutic application by including them in phage cocktails or in phage-antibiotic combinations to enhance synergistic effects and reduce the emergence of antimicrobial resistance.

6.
Front Cell Infect Microbiol ; 14: 1362513, 2024.
Article in English | MEDLINE | ID: mdl-38994004

ABSTRACT

The bacterium Klebsiella pneumoniae (Kp) was the primary pathogen of hospital-acquired infection, but the current detection method could not rapidly and conveniently identify Kp. Recombinase polymerase amplification (RPA) was a fast and convenient isothermal amplification technology, and the clustered regularly interspaced short palindromic repeats (CRISPR) system could rapidly amplify the signal of RPA and improve its limit of detection (LOD). In this study, we designed three pairs of RPA primers for the rcsA gene of Kp, amplified the RPA signal through single-strand DNA reporter cleavage by CRISPR/Cas12a, and finally analyzed the cleavage signal using fluorescence detection (FD) and lateral flow test strips (LFTS). Our results indicated that the RPA-CRISPR/Cas12a platform could specifically identify Kp from eleven common clinical pathogens. The LOD of FD and LFTS were 1 fg/µL and 10 fg/µL, respectively. In clinical sample testing, the RPA-CRISPR/Cas12a platform was consistent with the culture method and qPCR method, and its sensitivity and specificity were 100% (16/16) and 100% (9/9), respectively. With the advantages of detection speed, simplicity, and accuracy, the RPA-CRISPR/Cas12a platform was expected to be a convenient tool for the early clinical detection of Kp.


Subject(s)
CRISPR-Cas Systems , Klebsiella pneumoniae , Limit of Detection , Nucleic Acid Amplification Techniques , Sensitivity and Specificity , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Nucleic Acid Amplification Techniques/methods , Humans , Klebsiella Infections/diagnosis , Klebsiella Infections/microbiology , Recombinases/metabolism , Recombinases/genetics , Molecular Diagnostic Techniques/methods , Bacterial Proteins/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , CRISPR-Associated Proteins/genetics , DNA, Bacterial/genetics , Endodeoxyribonucleases
7.
Microbiol Spectr ; : e0033124, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984824

ABSTRACT

To illustrate the genomic and drug resistance traits of the Klebsiella pneumoniae Kpn_XM9, which harbors a transposon (Tn) As1 and was barely susceptible to ceftazidime-avibactam (CZA). Whole-genome sequencing, gene deletion, antimicrobial susceptibility, and conjugation tests were carried out to illustrate the traits of Kpn_XM9. As confirmed by whole-genome sequencing, the Kpn_XM9 harbored a 5,523,536 bp chromosome and five plasmids with lengths being 128,129, 196,512, 84,812, 43,695, and 5,596 bp, respectively. Plasmid p1_Kpn_XM9 (128,219 bp) contained four resistance genes, blaCTX-M-65, blaTEM-1B, rmtB, and two copies of blaKPC-2. Genes blaKPC-2 were bracketed by ISKpn17 and ISKpn16 within a new composite Tn3-like TnAs1. The two tandem repeats, positioned opposite each other, were spaced 93,447 bp apart in p1_Kpn_XM9. Kpn_XM9 belonged to K64 and sequence type (ST) 11. The Kpn_XM9 was resistant to amikacin, aztreonam, ticarcillin/clavulanic acid, piperacillin/tazobactam, ceftazidime, cefepime, imipenem, meropenem, tobramycin, ciprofloxacin, levofloxacin, doxycycline, minocycline, tigecycline, colistin, and trimethoprim/sulfamethoxazole; it was barely susceptible to CZA with a minimum inhibitory concentration of 8/4 µg/mL, which declined to 2/4 µg/mL after a 18,555 bp nucleotide was knocked out and one copy of blaKPC-2 was sustained on p1_Kpn_XM9. Kpn_XM9 had virulence genes encoding Types 1 and 3 fimbriae, four siderophores, and capsular polysaccharide anchoring protein but no genes upregulating capsular polysaccharide synthesis. The Kpn_XM9 presented a classical phenotype with extreme drug resistance. The emergence of double copies of blaKPC-2 in a single plasmid from the predominant ST11 K. pneumoniae represents a new therapeutic challenge.IMPORTANCEWith the wide use of ceftazidime-avibactam against carbapenem-resistant organisms, its resistance is increasingly documented; among the corresponding resistance mechanisms, mutations of blaKPC-2 or blaKPC-3 into other subtypes are dominant to date. However, more copies of blaKPC-2 may also greatly increase the minimum inhibitory concentration of ceftazidime-avibactam, which could be conferred by transposon As1 and insertion sequence 26 and should be of concern.

8.
Article in English | MEDLINE | ID: mdl-39004342

ABSTRACT

OBJECTIVES: . Despite the critical importance of colistin as a last-resort antibiotic, limited studies have investigated colistin resistance in human infections in Cambodia. This study aimed to investigate the colistin resistance and its molecular determinants among Extended-spectrum beta-lactamase (ESBL)- and carbapenemase-producing (CP) Klebsiella pneumoniae (KP) and Escherichia coli (EC) isolated in Cambodia between 2016 and 2020. METHODS: . EC (n=223) and KP (n=39) were tested for colistin minimum inhibitory concentration (MIC) by broth microdilution. Resistant isolates were subjected to PCR for detection of mobile colistin resistance genes (mcr) and chromosomal mutations in the two-component system (TCS). RESULTS: . Eighteen isolates (10 KP, 8 EC) revealed colistin resistance with a rate of 5.9% in EC and 34.8% in KP among ESBL isolates, and 1% in EC and 12.5% in KP among CP isolates. The resistance was associated with mcr variants (13/18 isolates, mcr-1, mcr-3 and mcr-8.2) and TCS mutations within EC and KP, with the first detection of mcr-8.2 in Cambodia, the discovery of new mutations potentially associated to colistin resistance in the TCS of EC (PhoP I47V, PhoQ N352K, PmrB G19R, PmrD G85R) and the co-occurrence of mcr genes and colistin resistance conferring TCS mutations in 11/18 isolates. CONCLUSIONS: The findings highlight the presence of colistin resistance in ESBL- and CP- Enterobacteriaceae involved in human infections in Cambodia as well as chromosomal mutations in TCS and the emergence of mcr-8.2 in EC and KP. It underscores the need for continuous surveillance, antimicrobial stewardship, and control measures to mitigate the spread of colistin resistance.

9.
J Appl Genet ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39031267

ABSTRACT

Klebsiella pneumoniae is the most important species of the Klebsiella genus and often causes hospital infections. These bacteria have a high resistance to most of the available drugs, which has caused concern all over the world. In this study, we investigated the antibiotic resistance profile and the ability to produce extended-spectrum beta-lactamase (ESBL) among K. pneumoniae isolates, and then we investigated the relationship between these two factors with biofilm formation and the prevalence of different virulence genes. In this study, 130 isolates of K. pneumoniae isolated from wounds were investigated. The antibiotic resistance of the isolates was evaluated by the disk diffusion method. The microtiter plate method was used to measure biofilm formation. The prevalence of virulence genes was detected by multiplex PCR. Among the examined isolates, 85.3% showed multidrug resistance. 87.6% of the isolates were ESBL-positive. Imipenem, meropenem, and fosfomycin were the most effective drugs. The ability of the isolates to produce biofilm was strong (80%), moderate (12.3%), and weak (7.6%), respectively. fimH, mrKD, entB, and tolC virulence genes were observed in all isolates. High prevalence of antibiotic resistance (especially multidrug resistance), high prevalence of ESBL-producing isolates, the ability of all isolates to biofilm formation, and the presence of fimH, mrKD, entB, and tolC virulence genes in all isolates show the importance of these factors in the pathogenesis of K. pneumoniae isolates in Iraq.

10.
Biomol NMR Assign ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39018011

ABSTRACT

Klebsiella pneumoniae (Kp) poses an escalating threat to public health, particularly given its association with nosocomial infections and its emergence as a leading cause of neonatal sepsis, particularly in low- and middle-income countries (LMICs). Host cell adherence and biofilm formation of Kp is mediated by type 1 and type 3 fimbriae whose major fimbrial subunits are encoded by the fimA and mrkA genes, respectively. In this study, we focus on MrkA subunit, which is a 20 KDa protein whose 3D molecular structure remains elusive. We applied solution NMR to characterize a recombinant version of MrkA in which the donor strand segment situated at the protein's N-terminus is relocated to the C-terminus, preceded by a hexaglycine linker. This construct yields a self-complemented variant of MrkA. Remarkably, the self-complemented MrkA monomer loses its capacity to interact with other monomers and to extend into fimbriae structures. Here, we report the nearly complete assignment of the 13C,15N labelled self-complemented MrkA monomer. Furthermore, an examination of its internal mobility unveiled that relaxation parameters are predominantly uniform across the polypeptide sequence, except for the glycine-rich region within loop 176-181. These data pave the way to a comprehensive structural elucidation of the MrkA monomer and to structurally map the molecular interaction regions between MrkA and antigen-induced antibodies.

11.
Emerg Microbes Infect ; 13(1): 2366354, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38979571

ABSTRACT

In recent years, polymyxin has been used as a last-resort therapy for carbapenem-resistant bacterial infections. The emergence of heteroresistance (HR) to polymyxin hampers the efficacy of polymyxin treatment by amplifying resistant subpopulation. However, the mechanisms behind polymyxin HR remain unclear. Small noncoding RNAs (sRNAs) play an important role in regulating drug resistance. The purpose of this study was to investigate the effects and mechanisms of sRNA on polymyxin B (PB)-HR in carbapenem-resistant Klebsiella pneumoniae. In this study, a novel sRNA PhaS was identified by transcriptome sequencing. PhaS expression was elevated in the PB heteroresistant subpopulation. Overexpression and deletion of PhaS were constructed in three carbapenem-resistant K. pneumoniae strains. Population analysis profiling, growth curve, and time-killing curve analysis showed that PhaS enhanced PB-HR. In addition, we verified that PhaS directly targeted phoP through the green fluorescent protein reporter system. PhaS promoted the expression of phoP, thereby encouraging the expression of downstream genes pmrD and arnT. This upregulation of arnT promoted the 4-amino-4-deoxyL-arabinosaccharide (L-Ara4N) modification of lipid A in PhaS overexpressing strains, thus enhancing PB-HR. Further, within the promoter region of PhaS, specific PhoP recognition sites were identified. ONPG assays and RT-qPCR analysis confirmed that PhaS expression was positively modulated by PhoP and thus up-regulated by PB stimulation. To sum up, a novel sRNA enhancing PB-HR was identified and a positive feedback regulatory pathway of sRNA-PhoP/Q was demonstrated in the study. This helps to provide a more comprehensive and clear understanding of the underlying mechanisms behind polymyxin HR in carbapenem-resistant K. pneumoniae.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Carbapenems , Gene Expression Regulation, Bacterial , Klebsiella pneumoniae , Polymyxin B , RNA, Small Untranslated , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Polymyxin B/pharmacology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbapenems/pharmacology , RNA, Small Untranslated/genetics , Microbial Sensitivity Tests , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Humans , RNA, Bacterial/genetics , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Drug Resistance, Bacterial/genetics
12.
Bull Exp Biol Med ; 177(1): 88-92, 2024 May.
Article in English | MEDLINE | ID: mdl-38960956

ABSTRACT

We studied antimicrobial activity of epigallocatechin-3-gallate (EGCG), a green tea polyphenolic catechin, and its combined use with ceftazidime (CAZ) against bacterial strains of Klebsiella pneumoniae. EGCG exhibited no activity against strains of K. pneumoniae with a different sensitivity to CAZ. However, for a "sensitive" strain, a decrease in minimum inhibitory concentration (MIC) of CAZ (from 0.064 to 0.023 mg/liter) was revealed when CAZ was co-administered with EGCG. For a "resistant" stain, MIC of CAZ remained high, but activation of EGCG at its high concentrations was observed. Indirect evidence of antimicrobial effect of EGCG co-administered with CAZ on Klebsiella was obtained.


Subject(s)
Anti-Bacterial Agents , Catechin , Ceftazidime , Klebsiella pneumoniae , Microbial Sensitivity Tests , Catechin/analogs & derivatives , Catechin/pharmacology , Catechin/chemistry , Klebsiella pneumoniae/drug effects , Ceftazidime/pharmacology , Anti-Bacterial Agents/pharmacology , Tea/chemistry
13.
BMC Microbiol ; 24(1): 256, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987681

ABSTRACT

BACKGROUND: The emergence of multi-drug-resistant Klebsiella pneumoniae (MDR-KP) represents a serious clinical health concern. Antibiotic resistance and virulence interactions play a significant role in the pathogenesis of K. pneumoniae infections. Therefore, tracking the clinical resistome and virulome through monitoring antibiotic resistance genes (ARG) and virulence factors in the bacterial genome using computational analysis tools is critical for predicting the next epidemic. METHODS: In the current study, one hundred extended spectrum ß-lactamase (ESBL)-producing clinical isolates were collected from Mansoura University Hospital, Egypt, in a six-month period from January to June 2022. One isolate was selected due to the high resistance phenotype, and the genetic features of MDR-KP recovered from hospitalized patient were investigated. Otherwise, the susceptibility to 25 antimicrobials was determined using the DL Antimicrobial Susceptibility Testing (AST) system. Whole genome sequencing (WGS) using Illumina NovaSeq 6000 was employed to provide genomic insights into K. pneumoniae WSF99 clinical isolate. RESULTS: The isolate K. pneumoniae WSF99 was phenotypically resistant to the antibiotics under investigation via antibiotic susceptibility testing. WGS analysis revealed that WSF99 total genome length was 5.7 Mb with an estimated 5,718 protein-coding genes and a G + C content of 56.98 mol%. Additionally, the allelic profile of the WSF99 isolate was allocated to the high-risk clone ST147. Furthermore, diverse antibiotic resistance genes were determined in the genome that explain the high-level resistance phenotypes. Several ß-lactamase genes, including blaCTX-M-15, blaTEM-1, blaTEM-12, blaSHV-11, blaSHV-67, and blaOXA-9, were detected in the WSF99 isolate. Moreover, a single carbapenemase gene, blaNDM-5, was predicted in the genome, positioned within a mobile cassette. In addition, other resistance genes were predicted in the genome including, aac(6')-Ib, aph(3')-VI, sul1, sul2, fosA, aadA, arr-2, qnrS1, tetA and tetC. Four plasmid replicons CoIRNAI, IncFIB(K), IncFIB(pQil), and IncR were predicted in the genome. The draft genome analysis revealed the occurrence of genetic mobile elements positioned around the ARGs, suggesting the ease of dissemination via horizontal gene transfer. CONCLUSIONS: This study reports a comprehensive pathogenomic analysis of MDR-KP isolated from a hospitalized patient. These findings could be relevant for future studies investigating the diversity of antimicrobial resistance and virulence in Egypt.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Genome, Bacterial , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Virulence Factors , Whole Genome Sequencing , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/classification , Humans , Egypt , Drug Resistance, Multiple, Bacterial/genetics , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Virulence Factors/genetics , Genome, Bacterial/genetics , beta-Lactamases/genetics , Bacterial Proteins/genetics , Plasmids/genetics
14.
J Appl Microbiol ; 135(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955378

ABSTRACT

AIMS: This study was conducted to evaluate the in vitro activity of clinically relevant aminoglycosides and to determine the prevalence of genes encoding aminoglycoside modifying enzymes (AMEs) and 16S ribosomal RNA (rRNA) methyltransferases among aminoglycoside-resistant E. coli (n = 61) and K. pneumoniae (n = 44) clinical isolates. Associated resistances to beta-lactams and their bla genes as well as the genetic relatedness of isolates were also investigated. MATERIALS AND METHODS: A total of 105 aminoglycoside-resistant E. coli (n = 61) and K. pneumoniae (n = 44) isolates recovered between March and May 2017 from 100 patients hospitalized in different wards of Charles Nicolle Hospital of Tunis, Tunisia, were studied. Minimal inhibitory concentrations of aminoglycoside compounds were determined by broth microdilution method. Aminoglycosides resistance encoding genes [aph(3´)-Ia, aph(3') IIa, aph(3´)-VIa, ant(2″)-Ia, aac(3)-IIa, aac(3)-IVa, aac(6')-Ib, rmtA, rmtB, rmtC, armA, and npmA] and bla genes were investigated by PCR and sequencing. Genetic relatedness was examined by multilocus sequence typing (MLST) for representative isolates. RESULTS: High rates of aminoglycoside resistance were found: gentamicin (85.7%), tobramycin (87.6%), kanamycin (78.0%), netilmincin (74.3%), and amikcin (18.0%). Most common AME gene was aac(3)-IIa (42%), followed by aac(6')-Ib (36.2%) and aph(3')-VIa (32.4%). The majority of isolates were resistant to beta-lactams and blaCTX-M-15 was the most common ESBL. The blaNDM-1 and blaOXA-48 were also produced by 1 and 23 isolates, respectively. Novel sequence types have been reported among our isolates and high-risk clonal lineages have been detected, such as E. coli ST43 (ST131 in Achtman MLST scheme) and K. pneumoniae (ST11/ST13). CONCLUSIONS: The high prevalence of aminoglycoside resistance rates and the diversity of corresponding genes, with diverse ß-lactamase enzymes among genetically heterogeneous clinical isolates present a matter of concern.


Subject(s)
Aminoglycosides , Anti-Bacterial Agents , Escherichia coli , Klebsiella pneumoniae , Microbial Sensitivity Tests , Aminoglycosides/pharmacology , Tunisia , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Humans , Anti-Bacterial Agents/pharmacology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/enzymology , Escherichia coli Infections/microbiology , Drug Resistance, Bacterial/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , Klebsiella Infections/microbiology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
15.
BMC Microbiol ; 24(1): 240, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961341

ABSTRACT

OBJECTIVE: We explored whether the Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas and restriction-modification (R-M) systems are compatible and act together to resist plasmid attacks. METHODS: 932 global whole-genome sequences from GenBank, and 459 K. pneumoniae isolates from six provinces of China, were collected to investigate the co-distribution of CRISPR-Cas, R-M systems, and blaKPC plasmid. Conjugation and transformation assays were applied to explore the anti-plasmid function of CRISPR and R-M systems. RESULTS: We found a significant inverse correlation between the presence of CRISPR and R-M systems and blaKPC plasmids in K. pneumoniae, especially when both systems cohabited in one host. The multiple matched recognition sequences of both systems in blaKPC-IncF plasmids (97%) revealed that they were good targets for both systems. Furthermore, the results of conjugation assay demonstrated that CRISPR-Cas and R-M systems in K. pneumoniae could effectively hinder blaKPC plasmid invasion. Notably, CRISPR-Cas and R-M worked together to confer a 4-log reduction in the acquisition of blaKPC plasmid in conjugative events, exhibiting robust synergistic anti-plasmid immunity. CONCLUSIONS: Our results indicate the synergistic role of CRISPR and R-M in regulating horizontal gene transfer in K. pneumoniae and rationalize the development of antimicrobial strategies that capitalize on the immunocompromised status of KPC-KP.


Subject(s)
CRISPR-Cas Systems , Conjugation, Genetic , Klebsiella pneumoniae , Plasmids , Klebsiella pneumoniae/genetics , Plasmids/genetics , beta-Lactamases/genetics , DNA Restriction-Modification Enzymes/genetics , China , Klebsiella Infections/microbiology , Gene Transfer, Horizontal , Humans , Genome, Bacterial/genetics
16.
Antimicrob Resist Infect Control ; 13(1): 70, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961463

ABSTRACT

OBJECTIVES: Genomic surveillance of Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae (KPC-Kp) is crucial for virulence, drug-resistance monitoring, and outbreak containment. METHODS: Genomic analysis on 87 KPC-Kp strains isolated from 3 Northern Italy hospitals in 2019-2021 was performed by whole genome sequencing (WGS), to characterize resistome, virulome, and mobilome, and to assess potential associations with phenotype resistance and clinical presentation. Maximum Likelihood and Minimum Spanning Trees were used to determine strain correlations and identify potential transmission clusters. RESULTS: Overall, 15 different STs were found; the predominant ones included ST307 (35, 40.2%), ST512/1519 (15, 17.2%), ST20 (12, 13.8%), and ST101 (7, 8.1%). 33 (37.9%) KPC-Kp strains were noticed to be in five transmission clusters (median number of isolates in each cluster: 5 [3-10]), four of them characterized by intra-hospital transmission. All 87 strains harbored Tn4401a transposon, carrying blaKPC-3 (48, 55.2%), blaKPC-2 (38, 43.7%), and in one case (1.2%) blaKPC-33, the latter gene conferred resistance to ceftazidime/avibactam (CZA). Thirty strains (34.5%) harbored porin mutations; of them, 7 (8.1%) carried multiple Tn4401a copies. These strains were characterized by significantly higher CZA minimum inhibitory concentration compared with strains with no porin mutations or single Tn4401a copy, respectively, even if they did not overcome the resistance breakpoint of 8 ug/mL. Median 2 (IQR:1-2) virulence factors per strain were detected. The lowest number was observed in ST20 compared to the other STs (p<0.001). While ST307 was associated with infection events, a trend associated with colonization events could be observed for ST20. CONCLUSIONS: Integration of genomic, resistance score, and clinical data allowed us to define a relative diversification of KPC-Kp in Northern Italy between 2019 and 2021, characterized by few large transmission chains and rare inter-hospital transmission. Our results also provided initial evidence of correlation between KPC-Kp genomic signatures and higher MIC levels to some antimicrobial agents or colonization/infection status, once again underlining WGS's importance in bacterial surveillance.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Hospitals, University , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Whole Genome Sequencing , beta-Lactamases , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/classification , Klebsiella pneumoniae/enzymology , Italy/epidemiology , Humans , beta-Lactamases/genetics , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Bacterial Proteins/genetics , Anti-Bacterial Agents/pharmacology , Genome, Bacterial , Drug Resistance, Multiple, Bacterial/genetics , Genomics , Cross Infection/microbiology , Cross Infection/epidemiology
17.
Microb Cell Fact ; 23(1): 205, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39044245

ABSTRACT

BACKGROUND: (R,R)-2,3-butanediol (BDO) is employed in a variety of applications and is gaining prominence due to its unique physicochemical features. The use of glycerol as a carbon source for 2,3-BDO production in Klebsiella pneumoniae has been limited, since 1,3-propanediol (PDO) is generated during glycerol fermentation. RESULTS: In this study, the inactivation of the budC gene in K. pneumoniae increased the production rate of (R,R)-2,3-BDO from 21.92 ± 2.10 to 92.05 ± 1.20%. The major isomer form of K. pneumoniae (meso-2,3-BDO) was shifted to (R,R)-2,3-BDO. The purity of (R,R)-2,3-BDO was examined by agitation speed, and 98.54% of (R,R)-2,3-BDO was obtained at 500 rpm. However, as the cultivation period got longer, the purity of (R,R)-2,3-BDO declined. For this problem, a two-step agitation speed control strategy (adjusted from 500 to 400 rpm after 24 h) and over-expression of the dhaD gene involved in (R,R)-2,3-BDO biosynthesis were used. Nevertheless, the purity of (R,R)-2,3-BDO still gradually decreased over time. Finally, when pure glycerol was replaced with crude glycerol, the titer of 89.47 g/L of (R,R)-2,3-BDO (1.69 g/L of meso-2,3-BDO), productivity of 1.24 g/L/h, and yield of 0.35 g/g consumed crude glycerol was achieved while maintaining a purity of 98% or higher. CONCLUSIONS: This study is meaningful in that it demonstrated the highest production and productivity among studies in that produced (R,R)-2,3-BDO with a high purity in Klebsiella sp. strains. In addition, to the best of our knowledge, this is the first study to produce (R,R)-2,3-BDO using glycerol as the sole carbon source.


Subject(s)
Butylene Glycols , Fermentation , Glycerol , Klebsiella pneumoniae , Klebsiella pneumoniae/metabolism , Klebsiella pneumoniae/genetics , Glycerol/metabolism , Butylene Glycols/metabolism , Metabolic Engineering/methods , Oxidation-Reduction , Stereoisomerism , Propylene Glycols/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
18.
Front Cell Infect Microbiol ; 14: 1407246, 2024.
Article in English | MEDLINE | ID: mdl-38962322

ABSTRACT

Introduction: In the battle against multidrug-resistant bacterial infections, ceftazidime- avibactam (CZA) stands as a pivotal defense, particularly against carbapenemresistant (CR) Gram-negative pathogens. However, the rise in resistance against this drug poses a significant threat to its effectiveness, highlighting the critical need for in-depth studies about its resistance mechanisms. Methods: This research focuses on the genomic characterization of CR- and CZA-resistant Escherichia coli (n=26) and Klebsiella pneumoniae (n=34) strains, harboring the blaNDM and/or blaOXA-48-like genes, at a major Lebanese tertiary care medical center, using whole genome sequencing (WGS). Results: Our findings revealed a notable prevalence of blaNDM in all K. pneumoniae strains isolates, with 27 of these also harboring blaOXA-48. On the other hand, E. coli strains predominantly carried the blaNDM-5 gene. Whole genome sequencing (WGS) identified a predominance of ST383 among K. pneumoniae strains, which possessed a multi-replicon IncFIB-IncHI1B plasmid harboring the blaNDM-5. Additionally, various Inc group plasmids in K. pneumoniae across multiple sequence types were found to carry the blaNDM. Similarly, diverse STs of E. coli were observed to carry blaNDM-5 on different plasmids. Discussion: The study underscores NDM carbapenemases as a paramount resistance mechanism in Lebanon,jeopardizing critical last-resort treatments. It also illuminates the role of varied sequence types and mobile genetic elements in the spread of NDM resistance,stressing the urgent need for strategies to mitigate this threat, especially in nosocomial infections.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Carbapenems , Ceftazidime , Drug Combinations , Drug Resistance, Multiple, Bacterial , Escherichia coli , Klebsiella pneumoniae , Whole Genome Sequencing , beta-Lactamases , Ceftazidime/pharmacology , Azabicyclo Compounds/pharmacology , Humans , Lebanon , beta-Lactamases/genetics , beta-Lactamases/metabolism , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Escherichia coli/drug effects , Carbapenems/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Plasmids/genetics , Microbial Sensitivity Tests , Gene Transfer, Horizontal , Genome, Bacterial , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Tertiary Care Centers
19.
Article in English | MEDLINE | ID: mdl-38990705

ABSTRACT

Background: Carbapenem-resistant Klebsiella pneumoniae (CRKP), a significant worldwide public health threat, is common in patients in intensive care units. Methods: A retrospective study was conducted over a period of 22 months to assess the risk factors associated with infection caused by CRKP isolates. Strain identification was performed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), and antimicrobial sensitivity was assessed using the micro broth dilution method and Kirby-Bauer test. The genes blaKPC, blaOXA-48, blaNDM, blaVIM, and blaGES were amplified using polymerase chain reaction (PCR), followed by sequencing of the PCR products. The polymerase hypermucoviscosity phenotype was determined using the string test. Capsular serotypes (K1, K2) and presence of the virulence gene (rmpA) in positive isolates were investigated using phenotypic tests followed by PCR. Results: Length of hospitalization and use of carbapenems were associated with CRKP infection. CRKP isolates exhibited extensive drug resistance, but retained sensitivity to colistin and ceftazidime-avibactam (CZA). The main gene detected in 35 CRKP isolates was blaKPC-2. In addition, 11 strains were positive in the string test, and two of these strains carried rmpA. Conclusions: Prolonged hospitalization and carbapenem exposure increased the risk of CRKP infection in intensive care unit (ICU) patients. The prevalence of CRKP carrying the blaKPC-2 gene was high, and suspected hypervirulent carbapenem-resistant K. pneumoniae isolates were scattered.

20.
J Infect Dev Ctries ; 18(6): 972-977, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38990989

ABSTRACT

INTRODUCTION: In recent years, hypervirulent Klebsiella pneumoniae (hvKp) has attracted increasing attention. It usually causes liver abscesses, which spread through the bloodstream to other parts such as the eyes, brain, lungs. 5.5% of all paroxysmal sympathetic hyperactivity syndrome are associated with infection, hydrocephalus, brain tumors, and some unknown causes. Younger patients with focal lesions of the brain parenchyma are at higher risk of paroxysmal sympathetic hyperactivity (PSH). CASE PRESENTATION: This case report details the clinical features of Klebsiella pneumoniae diagnosed in a healthy individual. In addition to liver abscesses, bacteremia, and hyperglycemia, there are also brain abscesses, hernias, and postoperative paroxysmal sympathetic hyperactivity, an unexpected association between diseases or symptoms. The patient stabilized after comprehensive treatment, including early drainage of abscesses, rapid pathogen diagnosis, and timely and appropriate antibiotics. At a two-month follow-up, no signs of infection recurrence were noted, and the patient regained neurological function and could participate in regular physical activity. DISCUSSION: Symptoms of Klebsiella pneumoniae infection usually appear gradually, and misdiagnosis is common. When young patients suddenly develop high fever and abscess at a particular site, Klebsiella pneumoniae infection should be considered routine. Paroxysmal sympathetic hyperactivity syndrome caused by infection is rare, but a clinical score (PSH assessment measure, PSH-AM score) should be performed when clinical features appear. Early diagnosis and treatment can improve the prognosis.


Subject(s)
Anti-Bacterial Agents , Klebsiella Infections , Klebsiella pneumoniae , Humans , Klebsiella Infections/diagnosis , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/pathogenicity , Male , Anti-Bacterial Agents/therapeutic use , Adult , Liver Abscess/microbiology , Liver Abscess/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...