Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Article in English | MEDLINE | ID: mdl-38710235

ABSTRACT

BACKGROUND: LCP1 encodes L-plastin, an actin-bundling protein primarily expressed in hematopoietic cells. In mouse and fish models, LCP1 deficiency has been shown to result in hematologic and immune defects. OBJECTIVE: This study aimed to determine the nature of a human inborn error of immunity resulting from a novel genetic variant of LCP1. METHODS: We performed genetic, protein, and cellular analysis of PBMCs from a kindred with apparent autosomal dominant immune deficiency. We identified a candidate causal mutation in LCP1, which we evaluated by engineering the orthologous mutation in mice and Jurkat cells. RESULTS: A splice-site variant in LCP1 segregated with lymphopenia, neutropenia, and thrombocytopenia. The splicing defect resulted in at least 2 aberrant transcripts, producing an in-frame deletion of 24 nucleotides, and a frameshift deletion of exon 8. Cellular analysis of the kindred revealed a proportionate reduction of T and B cells and a mild expansion of transitional B cells. Similarly, mice carrying the orthologous genetic variant exhibited the same in-frame aberrant transcript, reduced expression Lcp1 and gene dose-dependent leukopenia, mild thrombocytopenia, and lymphopenia, with a significant reduction of T-cell populations. Functional analysis revealed that LCP1c740-1G>A confers a defect in platelet development and function with aberrant spreading on collagen. Immunologic analysis revealed defective actin organization in T cells, reduced migration of PBMCs from patients, splenocytes from mutant mice, and a mutant Jurkat cell line in response to CXCL12; impaired germinal center B-cell expansion after immunization; and reduced cytokinesis during T cell proliferation. CONCLUSIONS: We describe a unique human hematopoietic defect affecting neutrophils, lymphocytes, and platelets arising from partial LCP1 deficiency.

2.
Fish Shellfish Immunol ; 141: 108994, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37619761

ABSTRACT

Leukolectins (LL) belong to the tectonin-family of proteins, with functions in innate immunity. Fish larvae compensating for loss of maternal chorionic protection post-hatching, provide a model-system for studying how lectins contribute to immunity. Atlantic salmon (Ssal) LL-proteins function after secretion in mucus from dermal lectocytes, as this mucus envelops embryos and larvae. The Ssalll-gene possesses multiple putative binding sites for diverse transcription-factors, suggestive of LL-functions in non-epithelial cells. Since zebrafish (zF) perivitelline fluid (PVF) contains LL-proteins, this study aims to characterize zF-leukolectins, their cellular origin, expression and gene structure. Extracts of (10 hpf) zF-embryos contained LL-proteins, and whole mount immuno-histochemistry revealed dispersed LL-positive cells including zF-lectocytes, accounting for exocrine LL-secretion by embryos. Lectocytes are lcp1-negative, but other zF-cells co-expressed LL-proteins and lcp1-transcripts, which (at this stage) identified such non-lectocytes as early macrophages (termed lectophages). In sections, LL-expression characterized large macrophage-progenitors and smaller colonizing macrophages. RT- and RACE-PCR yielded zF-LLcDNA including parts of untranslated regions. ORF encoded 255 AAs including (19 AA) signal peptide. Processing of a primary LL-transcript to (∼1.300 nt) LL-mRNA was suggested by Northern blots. Most zebrafish-egg lectins (zFELs) possess four TECPR-domains, while five TECPR-domains were predicted for zF-LL. Minor sequence variations suggested nearly identical zF-LL isoforms. Alignment of zFEL-proteins predicted a zFEL-tree with a separate leukolectin-branch. LL-amplification using zF-DNA, revealed five exons and four introns. Predicted structures of zF- and Ssal-leukolectins showed strong structural conservation (92% sequence-identity) with shorter zF-introns 2&4, but identical introns 1&3. Non-lectocytic LL-functions were investigated further by dual in situ hybridization, revealing that only some embryonic lcp1-expressing cells in early zF-embryos co-expressed LL-transcripts. Macrophages from erythro-myeloid progenitor (EMP) are known to colonize zebrafish tissues as resident macrophages (TRM), e.g. nervous system (CNS) and epiderm. Unlike Ssal-larvae relying on yolk for months, zF-larvae switch within days to nutrition from the digestive-tract, necessitating additional immuno-protection possibly from TRMs. EMP also gives rise to microglia, the TRM of CNS. The neural tube of zF-embryos exhibited numerous small, LL-positive cells, presumably stemming from lectophage-progenitors. Functions of these LL-positive embryonic microglia (lectoglia) appear more relevant for tissue remodelling than for pathogenic threats. Lectoglia sustaining CNS-neurons suggests physiological LL-roles relevant for adult health and disease. The data focus the need for resolving whether lectophages represent an unrecognized myelogenic lineage, or whether instead, LL-expression occurs in a subpopulation of the early macrophage-lineage.


Subject(s)
DNA , Zebrafish , Animals , Zebrafish/metabolism , RNA, Messenger/metabolism , Macrophages/metabolism , Lectins/genetics , Lectins/metabolism
3.
Front Cell Dev Biol ; 11: 1020091, 2023.
Article in English | MEDLINE | ID: mdl-37138794

ABSTRACT

Introduction: The actin cytoskeleton remodels to enable diverse processes essential to immunity, such as cell adhesion, migration and phagocytosis. A panoply of actin-binding proteins regulate these rapid rearrangements to induce actin-based shape changes and to generate force. L-plastin (LPL) is a leukocyte-specific, actin-bundling protein that is regulated in part by phosphorylation of the Ser-5 residue. LPL deficiency in macrophages impairs motility, but not phagocytosis; we recently found that expression of LPL in which the S5 residue is converted to a non-phosphorylatable alanine (S5A-LPL) resulted in diminished phagocytosis, but unimpaired motility. Methods: To provide mechanistic insight into these findings, we now compare the formation of podosomes (an adhesive structure) and phagosomes in alveolar macrophages derived from wild-type (WT), LPL-deficient, or S5A-LPL mice. Both podosomes and phagosomes require rapid remodeling of actin, and both are force-transmitting. Actin rearrangement, force generation, and signaling rely upon recruitment of many actin-binding proteins, including the adaptor protein vinculin and the integrin-associated kinase Pyk2. Prior work suggested that vinculin localization to podosomes was independent of LPL, while Pyk2 was displaced by LPL deficiency. We therefore chose to compare vinculin and Pyk2 co-localization with F-actin at sites of adhesion of phagocytosis in AMs derived from WT, S5A-LPL or LPL-/- mice, using Airyscan confocal microscopy. Results: As described previously, podosome stability was significantly disrupted by LPL deficiency. In contrast, LPL was dispensable for phagocytosis and was not recruited to phagosomes. Recruitment of vinculin to sites of phagocytosis was significantly enhanced in cells lacking LPL. Expression of S5A-LPL impeded phagocytosis, with reduced appearance of ingested bacteria-vinculin aggregates. Discussion: Our systematic analysis of the regulation of LPL during podosome vs. phagosome formation illuminates essential remodeling of actin during key immune processes.

4.
Front Immunol ; 13: 916137, 2022.
Article in English | MEDLINE | ID: mdl-35844504

ABSTRACT

Rapid re-organization of the actin cytoskeleton supports T-cell trafficking towards immune sites and interaction with antigen presenting cells (APCs). F-actin rearrangement enables T-cell trafficking by stabilizing adhesion to vascular endothelial cells and promoting transendothelial migration. T-cell/APC immune synapse (IS) maturation also relies upon f-actin-anchored LFA-1:ICAM-1 ligation. Therefore, efficient T-cell responses require tight regulation of f-actin dynamics. In this review, we summarize how the actin-bundling protein L-plastin (LPL) regulates T-cell activation and migration. LPL enhances f-actin polymerization and also directly binds to the ß2 chain of the integrin LFA-1 to support intercellular adhesion and IS formation in human and murine T cells. LPL- deficient T cells migrate slowly in response to chemo-attractants such as CXCL12, CCL19, and poorly polarize towards ICAM-1. Loss of LPL impairs thymic egress and intranodal motility. LPL is also required for T-cell IS maturation with APCs, and therefore for efficient cytokine production and proliferation. LPL-/- mice are less susceptible to T-cell mediated pathologies, such as allograft rejection and experimental autoimmune encephalomyelitis (EAE). LPL activity is regulated by its N-terminal "headpiece", which contains serine and threonine phosphorylation and calcium- and calmodulin-binding sites. LPL phosphorylation is required for lamellipodia formation during adhesion and migration, and also for LFA-1 clustering during IS formation. However, the precise molecular interactions by which LPL supports T-cell functional responses remain unclear. Future studies elucidating LPL-mediated regulation of T-cell migration and/or activation may illuminate pathways for therapeutic targeting in T-cell-mediated diseases.


Subject(s)
Actins , Lymphocyte Function-Associated Antigen-1 , Actins/metabolism , Animals , Cell Movement , Endothelial Cells/metabolism , Humans , Intercellular Adhesion Molecule-1 , Membrane Glycoproteins , Mice , Microfilament Proteins
5.
Dev Comp Immunol ; 127: 104268, 2022 02.
Article in English | MEDLINE | ID: mdl-34571096

ABSTRACT

Monitoring fish welfare has become a central issue for the fast-growing aquaculture industry, and finding proper biomarkers of stress, inflammation and infection is necessary for surveillance and documentation of fish health. In this study, a proteomic approach using mass spectrometry was applied to identify indicators of the acute response in Atlantic salmon blood plasma by comparing Aeromonas salmonicida subsp. salmonicida infected fish and non-infected controls. The antimicrobial proteins cathelicidin (CATH), L-plastin (Plastin-2, LCP1) and soluble toll-like receptor 5 (sTLR5) were uniquely or mainly identified in the plasma of infected fish. In addition, five immune-related proteins showed significantly increased expression in plasma of infected fish: haptoglobin, high affinity immunoglobulin Fc gamma receptor I (FcγR1, CD64), leucine-rich alpha 2 glycoprotein (LRG1), complement C4 (C4) and phospholipase A2 inhibitor 31 kDa subunit-like protein. However, various fibrinogen components, CD209 and CD44 antigen-like molecules decreased in infected fish. Selected biomarkers were further verified by Western blot analysis of plasma and real time PCR of spleen and liver, including CATH1, CATH2 and L-plastin. A significant increase of L-plastin occurred as early as 24 h after infection, and a CATH2 increase was observed from 72 h in plasma of infected fish. Real time PCR of selected genes confirmed increased transcription of CATH1 and CATH2. In addition, serum amyloid A mRNA significantly increased in liver and spleen after bacterial infection. However, transcription of L-plastin was not consistently induced in liver and spleen. The results of the present study reveal novel and promising biomarkers of the acute phase response and inflammation in Atlantic salmon.


Subject(s)
Aeromonas salmonicida , Fish Diseases , Gram-Negative Bacterial Infections , Salmo salar , Aeromonas salmonicida/physiology , Animals , Biomarkers , Fish Diseases/microbiology , Gram-Negative Bacterial Infections/microbiology , Inflammation , Plasma , Proteomics/methods
6.
Cells ; 10(9)2021 09 15.
Article in English | MEDLINE | ID: mdl-34572081

ABSTRACT

Tumor necrosis factor-alpha (TNF-α) signaling regulates phosphorylation of L-plastin, which is involved in forming the nascent sealing zone, a precursor zone for the matured sealing ring. This study aimed to illustrate the molecular mechanisms of L-plastin phosphorylation and the subsequent formation of the nascent sealing zone in osteoclasts treated with TNF-α. Here, we report that anti-TNF-receptor 1, inhibitors of signaling proteins (Src, PI3-K, Rho, and Rho-kinase), and siRNA of TRAF-6 attenuated the phosphorylation of LPL and filamentous actin content significantly in the presence of TNF-α. An inhibitor of integrin αvß3, PKC, or PKA did not inhibit TNF-α-induced L-plastin phosphorylation. Inhibitors of Src and PI3-K and not Rho or Rho-kinase reduced tyrosine phosphorylation of TRAF-6, suggesting that Src and PI3-K regulate TRAF-6 phosphorylation, and Rho and Rho-kinase are downstream of TRAF-6 regulation. Osteoclasts expressing constitutively active or kinase-defective Src proteins were used to determine the role of Src on L-plastin phosphorylation; similarly, the effect of Rho was confirmed by transducing TAT-fused constitutively active (V14) or dominant-negative (N19) Rho proteins into osteoclasts. Pull-down analysis with glutathione S-transferase-fused SH2 and SH3 domains of Src and PI3-K demonstrated coprecipitation of L-plastin and TRAF-6 with the SH3 and SH2 domains of the PI3-K and Src proteins. However, the actual order of the interaction of proteins requires further elucidation; a comprehensive screening should corroborate the initial findings of protein interactions via the SH2/SH3 domains. Ultimately, inhibition of the interaction of proteins with SH2/SH3 could reduce L-plastin phosphorylation and affect NSZ formation and bone resorption in conditions that display osteoclast activation and bone loss.


Subject(s)
Membrane Glycoproteins/metabolism , Microfilament Proteins/metabolism , Osteoclasts/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism , Actins/metabolism , Animals , Bone Resorption/metabolism , Mice , Mice, Inbred C57BL , Osteoclasts/cytology , Osteoclasts/drug effects , Phosphorylation/drug effects , Protein Interaction Domains and Motifs/drug effects , Receptors, Tumor Necrosis Factor, Type I/drug effects , Signal Transduction/drug effects , TNF Receptor-Associated Factor 6/metabolism , Tumor Necrosis Factor Inhibitors/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , src Homology Domains/drug effects , src-Family Kinases/metabolism
7.
Cell Commun Signal ; 19(1): 22, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33618712

ABSTRACT

BACKGROUND: Metastasis is the predominant cause for cancer morbidity and mortality accounting for approximatively 90% of cancer deaths. The actin-bundling protein L-plastin has been proposed as a metastatic marker and phosphorylation on its residue Ser5 is known to increase its actin-bundling activity. We recently showed that activation of the ERK/MAPK signalling pathway leads to L-plastin Ser5 phosphorylation and that the downstream kinases RSK1 and RSK2 are able to directly phosphorylate Ser5. Here we investigate the involvement of the PI3K pathway in L-plastin Ser5 phosphorylation and the functional effect of this phosphorylation event in breast cancer cells. METHODS: To unravel the signal transduction network upstream of L-plastin Ser5 phosphorylation, we performed computational modelling based on immunoblot analysis data, followed by experimental validation through inhibition/overexpression studies and in vitro kinase assays. To assess the functional impact of L-plastin expression/Ser5 phosphorylation in breast cancer cells, we either silenced L-plastin in cell lines initially expressing endogenous L-plastin or neoexpressed L-plastin wild type and phosphovariants in cell lines devoid of endogenous L-plastin. The established cell lines were used for cell biology experiments and confocal microscopy analysis. RESULTS: Our modelling approach revealed that, in addition to the ERK/MAPK pathway and depending on the cellular context, the PI3K pathway contributes to L-plastin Ser5 phosphorylation through its downstream kinase SGK3. The results of the transwell invasion/migration assays showed that shRNA-mediated knockdown of L-plastin in BT-20 or HCC38 cells significantly reduced cell invasion, whereas stable expression of the phosphomimetic L-plastin Ser5Glu variant led to increased migration and invasion of BT-549 and MDA-MB-231 cells. Finally, confocal image analysis combined with zymography experiments and gelatin degradation assays provided evidence that L-plastin Ser5 phosphorylation promotes L-plastin recruitment to invadopodia, MMP-9 activity and concomitant extracellular matrix degradation. CONCLUSION: Altogether, our results demonstrate that L-plastin Ser5 phosphorylation increases breast cancer cell invasiveness. Being a downstream molecule of both ERK/MAPK and PI3K/SGK pathways, L-plastin is proposed here as a potential target for therapeutic approaches that are aimed at blocking dysregulated signalling outcome of both pathways and, thus, at impairing cancer cell invasion and metastasis formation. Video abstract.


Subject(s)
Breast Neoplasms/metabolism , Membrane Glycoproteins/metabolism , Microfilament Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinases/metabolism , Breast Neoplasms/pathology , Cell Line , Cell Movement , Female , Humans , Membrane Glycoproteins/genetics , Microfilament Proteins/genetics , Models, Biological , Neoplasm Invasiveness , Phosphorylation , Serine/metabolism
8.
Int Rev Cell Mol Biol ; 355: 109-154, 2020.
Article in English | MEDLINE | ID: mdl-32859369

ABSTRACT

The dynamic organization of the actin cytoskeleton into bundles and networks is orchestrated by a large variety of actin-binding proteins. Among them, the actin-bundling protein L-plastin is normally expressed in hematopoietic cells, where it is involved in the immune response. However, L-plastin is also often ectopically expressed in malignant cancer cells of non-hematopoietic origin and is even considered as a marker for cancer progression. Post-translational modification modulates L-plastin activity. In particular, L-plastin Ser5 phosphorylation has been shown to be important for the immune response in leukocytes as well as for invasion and metastasis formation of carcinoma cells. This chapter discusses the physiological and pathological role of L-plastin with a special focus on the importance of L-plastin Ser5 phosphorylation for the protein functions. The potential use of Ser5 phosphorylated L-plastin as a biomarker and/or therapeutic target will be evoked.


Subject(s)
Immunity , Microfilament Proteins/metabolism , Neoplasms/metabolism , Actin Cytoskeleton/metabolism , Humans , Microfilament Proteins/immunology , Phosphorylation , Protein Processing, Post-Translational , Signal Transduction
9.
Front Cell Dev Biol ; 8: 618261, 2020.
Article in English | MEDLINE | ID: mdl-33585453

ABSTRACT

The actin cytoskeleton of eukaryotic cells is a dynamic, fibrous network that is regulated by the concerted action of actin-binding proteins (ABPs). In particular, rapid polarization of cells in response to internal and external stimuli is fundamental to cell migration and invasion. Various isoforms of ABPs in different tissues equip cells with variable degrees of migratory and adhesive capacities. In addition, regulation of ABPs by posttranslational modifications (PTM) is pivotal to the rapid responsiveness of cells. In this context, phosphorylation of ABPs and its functional consequences have been studied extensively. However, the study of reduction/oxidation (redox) modifications of oxidation-sensitive cysteine and methionine residues of actin, ABPs, adhesion molecules, and signaling proteins regulating actin cytoskeletal dynamics has only recently emerged as a field. The relevance of such protein oxidations to cellular physiology and pathophysiology has remained largely elusive. Importantly, studying protein oxidation spatiotemporally can provide novel insights into localized redox regulation of cellular functions. In this review, we focus on the redox regulation of the actin cytoskeleton, its challenges, and recently developed tools to study its physiological and pathophysiological consequences.

10.
J Cell Biochem ; 121(1): 284-298, 2020 01.
Article in English | MEDLINE | ID: mdl-31453638

ABSTRACT

Trafficking protein particle complex 9 (TRAPPC9) is a major subunit of the TRAPPII complex. TRAPPC9 has been reported to bind nuclear factor κB kinase subunit ß (IKKß) and NF-kB-inducing kinase (NIK) where it plays a role in the canonical and noncanonical of nuclear factor-κB (NF-kB) signaling pathways, receptively. The role of TRAPPC9 in protein trafficking and cytoskeleton organization in osteoclast (OC) has not been studied yet. In this study, we examined the mRNA expression of TRAPPC9 during OC differentiation. Next, we examined the colocalization of TRAPPC9 with cathepsin-K, known to mediate OC resorption suggesting that TRAPPC9 mediates the trafficking pathway within OC. To identify TRAPPC9 protein partners important for OC-mediated cytoskeleton re-organization, we conducted immunoprecipitation of TRAPPC9 in mature OCs followed by mass spectrometry analysis. Our data showed that TRAPPC9 binds various protein partners. One protein with high recovery rate is L-plastin (LPL). LPL localizes at the podosomes and reported to play a crucial role in actin aggregation thereby actin ring formation and OC function. Although the role of LPL in OC-mediated bone resorption has not fully reported in detail. Here, first, we confirmed the binding of LPL to TRAPPC9 and, then, we investigated the potential regulatory role of TRAPPC9 in LPL-mediated OC cytoskeleton reorganization. We assessed the localization of TRAPPC9 and LPL in OC and found that TRAPPC9 is colocalized with LPL at the periphery of OC. Next, we determined the effect of TRAPPC9 overexpression on LPL recruitment to the actin ring using a viral system. Interestingly, our data showed that TRAPPC9 overexpression promotes the recruitment of LPL to the actin ring when compared with control cultures. In addition, we observed that TRAPPC9 overexpression reorganizes actin clusters/aggregates and regulates vinculin recruitment into the OC periphery to initiate podosome formation.


Subject(s)
Actins/metabolism , Cathepsin K/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Membrane Glycoproteins/metabolism , Microfilament Proteins/metabolism , Osteoclasts/metabolism , Podosomes/metabolism , Animals , Cell Differentiation , Chromatography, Liquid , Gene Expression Regulation , Male , Mice , Mice, Inbred C57BL , NF-kappa B p50 Subunit/metabolism , Osteoclasts/cytology , Recombinant Proteins/metabolism , Tandem Mass Spectrometry , Vesicular Transport Proteins , Vinculin/metabolism
11.
Exp Cell Res ; 383(1): 111498, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31302031

ABSTRACT

Radiation-induced bystander effects (RIBE) are discussed as relevant processes during radiotherapy. Irradiated cells are suggested to release growth-inhibitory/DNA-damaging factors transported to non-irradiated cells. However, the molecular nature of this phenomenon has not yet been resolved. We aimed at identifying the growth-inhibitory factor(s) transmitted to non-irradiated cells. RIBE-competent PC3 cells were used to produce conditioned medium (CM) after exposure to ionizing radiation. Indicator cells were incubated with CM and clonogenic survival as well as cell proliferation were determined as endpoints. A549 indicator cells exhibited a bystander effect upon incubation with CM from irradiated PC3 cells. This bystander effect was not due to DNA-damaging factors, but a radiation-triggered reduction of mitogenic/clonogenic activity present in CM. Several tumor cells, but not normal fibroblasts secrete this factor, whose release is reduced by irradiation. We identified L-Plastin to be responsible for the mitogenic/clonogenic activity. Removal of L-Plastin from CM by immunoprecipitation or siRNA-mediated knockdown of L-Plastin expression resulted in loss or reduction of mitogenic/clonogenic activity transmitted via CM, respectively. Exosome-transported L-Plastin was constitutively Ser5-phosphorylated, indicative of its bioactive conformation. In summary, we observed production and exosomal secretion of L-Plastin by cancer cells. Via exosome-transmitted L-Plastin, tumors induce clonogenic and mitogenic activity in cancer and normal cells of the tumor microenvironment. Irradiation inhibits L-Plastin production targeting both cancer cells and the tumor niche and may explain the high impact of radiotherapy in tumor control.


Subject(s)
Bystander Effect/radiation effects , Cell Proliferation/radiation effects , Exosomes/metabolism , Lung Neoplasms/pathology , Microfilament Proteins/metabolism , Prostatic Neoplasms/pathology , Radiation, Ionizing , Bystander Effect/drug effects , Cell Proliferation/drug effects , Cell Survival , Cells, Cultured , Culture Media, Conditioned/pharmacology , Culture Media, Conditioned/radiation effects , Exosomes/radiation effects , Fibroblasts/radiation effects , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/radiotherapy , Male , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/radiotherapy
12.
Methods Mol Biol ; 1929: 245-260, 2019.
Article in English | MEDLINE | ID: mdl-30710278

ABSTRACT

The three human plastins (L-plastin, T-plastin, and I-plastin) are important regulatory Ca2+-binding proteins that belong to the family of actin-binding proteins. Plastins are involved in the regulation of the actin cytoskeleton as well as the cross-linking of actin filaments. In addition to four calponin-homology (CH) domains, all three plastins contain two N-terminal EF-hand Ca2+-binding motifs which together are homologous to a single lobe of the well-known calcium-regulatory protein calmodulin. This part of the protein allows for the regulation of the actin bundling activity in response to elevated calcium levels. In this protocol, we describe the purification of the EF-hand headpiece domains of all three plastins, as well as SPR studies, ITC studies, and NMR interaction studies with different peptides and calcium. In combination, these three experimental techniques provide detailed insights into a novel regulatory mechanism, involving the linker region between the EF-hand domain and the first CH domain of the plastins.


Subject(s)
Calcium/metabolism , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/metabolism , Microfilament Proteins/chemistry , Microfilament Proteins/metabolism , Binding Sites , Calmodulin/chemistry , EF Hand Motifs , Humans , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Sequence Homology, Amino Acid
13.
Exp Cell Res ; 372(1): 73-82, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30244178

ABSTRACT

The process of sealing ring formation requires major actin filament reorganization. We previously demonstrated that an actin-bundling protein L-plastin has a role in the cross-linking of actin filaments into tight bundles and forms actin aggregates (denoted as nascent sealing zones). These nascent sealing zones mature into fully functional sealing rings. We have shown here that TNF-alpha signaling regulates the phosphorylation of serine-5 and -7 in L-plastin which increases the actin bundling capacity of L-plastin and hence the formation of nascent sealing zones in mouse osteoclasts. Using the TAT-mediated transduction method, we confirmed the role of L-plastin in nascent sealing zones formation at the early phase of the sealing ring assembly. Transduction of TAT-fused full-length L-plastin peptide significantly increases the number of nascent sealing zones and therefore sealing rings. But, transduction of amino-terminal L-plastin peptides consisting of the serine-5 and -7 reduces the formation of both nascent sealing zones and sealing rings. Therefore, bone resorption in vitro was reduced considerably. The decrease was associated with the selective inhibition of cellular L-plastin phosphorylation by the transduced peptides. Neither the formation of podosomes nor the migration was affected in these osteoclasts. Phosphorylation of L- plastin on serine 5 and -7 residues increases the F-actin bundling capacity. The significance of our studies stands on laying the groundwork for a better understanding of L-plastin as a potential regulator at the early phase of sealing ring formation and could be a new therapeutic target to treat bone loss.


Subject(s)
Actin Cytoskeleton/metabolism , Bone Resorption/genetics , Osteoclasts/metabolism , Phosphoproteins/genetics , Serine/metabolism , Tumor Necrosis Factor-alpha/genetics , Actin Cytoskeleton/ultrastructure , Actins/genetics , Actins/metabolism , Animals , Bone Resorption/metabolism , Bone Resorption/pathology , Cytoskeletal Proteins , Femur/cytology , Femur/metabolism , Gene Expression Regulation , Gene Products, tat/genetics , Gene Products, tat/metabolism , Mice , Mice, Inbred C57BL , Microfilament Proteins , Osteoclasts/cytology , Peptides/genetics , Peptides/metabolism , Phosphoproteins/metabolism , Phosphorylation , Podosomes/metabolism , Podosomes/ultrastructure , Primary Cell Culture , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Signal Transduction , Transduction, Genetic , Tumor Necrosis Factor-alpha/metabolism
14.
J Cell Biochem ; 119(12): 10351-10357, 2018 12.
Article in English | MEDLINE | ID: mdl-30136304

ABSTRACT

Mice with disruption of Lrrk1 and patients with nonfunctional mutant Lrrk1 exhibit severe osteopetrosis phenotypes because of osteoclast cytoskeletal dysfunction. To understand how Lrrk1 regulates osteoclast function by modulating cytoskeleton rearrangement, we examined the proteins that are differentially phosphorylated in wild-type mice and Lrrk1-deficient osteoclasts by metal affinity purification coupled liquid chromatography/mass spectrometry (LC/MS) analyses. One of the candidates that we identified by LC/MS is L-plastin, an actin bundling protein. We found that phosphorylation of L-plastin at serine (Ser) residues 5 was present in wild-type osteoclasts but not in Lrrk1-deficient cells. Western blot analyses with antibodies specific for Ser5 phosphorylated L-plastin confirmed the reduced L-plastin Ser5 phosphorylation in Lrrk1 knockout (KO) osteoclasts. micro computed tomography (Micro-CT) analyses revealed that the trabecular bone volume of the distal femur was increased by 27% in the 16 to 21-week-old L-plastin KO females as compared with the wild-type control mice. The ratio of bone volume to tissue volume and connectivity density were increased by 44% and 47% (both P < 0.05), respectively, in L-plastin KO mice. Our data suggest that targeted disruption of L-plastin increases trabecular bone volume, and phosphorylation of Ser5 in L-plastin in the Lrrk1 signaling pathway may in part contribute to actin assembly in mature osteoclasts.


Subject(s)
Actins/genetics , Membrane Glycoproteins/genetics , Microfilament Proteins/genetics , Osteopetrosis/genetics , Protein Serine-Threonine Kinases/genetics , Animals , Cancellous Bone/growth & development , Cancellous Bone/metabolism , Cytoskeleton/genetics , Humans , Mice , Mice, Knockout , Osteoclasts/metabolism , Osteoclasts/pathology , Osteopetrosis/pathology , Phosphorylation/genetics , Protein Binding , Protein Serine-Threonine Kinases/deficiency , Serine/genetics , Signal Transduction/genetics
15.
Int J Mol Sci ; 19(6)2018 05 23.
Article in English | MEDLINE | ID: mdl-29882856

ABSTRACT

The introduction of novel frontline agents in multiple myeloma (MM), like immunomodulatory drugs and proteasome inhibitors, has improved the overall survival of patients. Yet, MM is still not curable, and drug resistance (DR) remains the main challenge. To improve the understanding of DR in MM, we established a resistant cell line (MOLP8/R). The exploration of DR mechanisms yielded an overexpression of HIF1α, due to impaired proteasome activity of MOLP8/R. We show that MOLP8/R, like other tumor cells, overexpressing HIF1α, have an increased resistance to the immune system. By exploring the main target genes regulated by HIF1α, we could not show an overexpression of these targets in MOLP8/R. We, however, show that MOLP8/R cells display a very high overexpression of LCP1 gene (l-Plastin) controlled by HIF1α, and that this overexpression also exists in MM patient samples. The l-Plastin activity is controlled by its phosphorylation in Ser5. We further show that the inhibition of l-Plastin phosphorylation restores the sensitivity of MOLP8/R to immunomodulatory drugs (IMiDs) and proteasome inhibitors (PIs). Our results reveal a new target gene of DR, controlled by HIF1α.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Membrane Glycoproteins/genetics , Microfilament Proteins/genetics , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Up-Regulation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Hypoxia/drug effects , Cell Line, Tumor , Cytotoxicity, Immunologic/drug effects , Drug Resistance, Neoplasm/drug effects , Humans , Immunologic Factors/pharmacology , Killer Cells, Natural/drug effects , Killer Cells, Natural/metabolism , Membrane Glycoproteins/metabolism , Microfilament Proteins/metabolism , Multiple Myeloma/pathology , Phosphorylation/drug effects , Proteasome Endopeptidase Complex/metabolism , Proteolysis/drug effects , Up-Regulation/drug effects
16.
Article in Korean | WPRIM (Western Pacific) | ID: wpr-718852

ABSTRACT

The cytoskeleton consists of 3 filamentous components: intermediate filaments, microtubules, and actin filaments. Actin filaments continuously assemble and disassemble far out of equilibrium to adapt cells in response to external stimuli. Actin filaments organization and dynamic are controlled by a multitude of actin-binding proteins including actin-bundling proteins. L-plastin, expressed abundantly in lymphocytes and monocytes, is an actin-bundling protein that roles in immune defense and in metastatic invasion of cancer cells. The actin-bundling activity of L-plastin is regulated not only by intracellular calcium concentration, but by phosphorylation of Ser5. The actin-bundling activity of L-pastin decreases by increased calcium concentration but is promoted by phosphorylation of Ser5. The morphology changes and motility of cells requires continuous remodeling of actin filaments which demands the sensitive nature of L-plastin to Ca2+-signal, phosphorylation of Ser5, and probably additional regulation. This review briefly describes the structure and regulation of L-plastin, and roles for L-plastin in cancer invasion and in macrophages.


Subject(s)
Actin Cytoskeleton , Calcium , Cytoskeleton , Intermediate Filaments , Lymphocytes , Macrophages , Microfilament Proteins , Microtubules , Monocytes , Phosphorylation
17.
FASEB J ; 31(11): 5019-5035, 2017 11.
Article in English | MEDLINE | ID: mdl-28768720

ABSTRACT

Within the kidney, angiotensin II (AngII) targets different cell types in the vasculature, tubuli, and glomeruli. An important part of the renal filtration barrier is composed of podocytes with their actin-rich foot processes. In this study, we used stable isotope labeling with amino acids in cell culture coupled to mass spectrometry to characterize relative changes in the phosphoproteome of human podocytes in response to short-term treatment with AngII. In 4 replicates, we identified a total of 17,956 peptides that were traceable to 2081 distinct proteins. Bioinformatic analyses revealed that among the increasingly phosphorylated peptides are predominantly peptides that are related to actin filaments, cytoskeleton, lamellipodia, mammalian target of rapamycin, and MAPK signaling. Among others, this screening approach highlighted the increased phosphorylation of actin-bundling protein, l-plastin (LCP1). AngII-dependent phosphorylation of LCP1 in cultured podocytes was mediated by the kinases ERK, p90 ribosomal S6 kinase, PKA, or PKC. LCP1 phosphorylation increased filopodia formation. In addition, treatment with AngII led to LCP1 redistribution to the cell margins, membrane ruffling, and formation of lamellipodia. Our data highlight the importance of AngII-triggered actin cytoskeleton-associated signal transduction in podocytes.-Schenk, L. K., Möller-Kerutt, A., Klosowski, R., Wolters, D., Schaffner-Reckinger, E., Weide, T., Pavenstädt, H., Vollenbröker, B. Angiotensin II regulates phosphorylation of actin-associated proteins in human podocytes.


Subject(s)
Angiotensin II/pharmacology , MAP Kinase Signaling System , Microfilament Proteins/metabolism , Podocytes/metabolism , Angiotensin II/genetics , Angiotensin II/metabolism , Cell Line, Transformed , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Microfilament Proteins/genetics , Phosphorylation/drug effects , Phosphorylation/genetics , Protein Kinase C/genetics , Protein Kinase C/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/genetics , Ribosomal Protein S6 Kinases, 90-kDa/metabolism
18.
Int J Mol Sci ; 18(7)2017 Jul 04.
Article in English | MEDLINE | ID: mdl-28677658

ABSTRACT

Microglia remove apoptotic cells by phagocytosis when the central nervous system is injured in vertebrates. Ionizing irradiation (IR) induces apoptosis and microglial activation in embryonic midbrain of medaka (Oryzias latipes), where apolipoprotein E (ApoE) is upregulated in the later phase of activation of microglia In this study, we found that another microglial marker, l-plastin (lymphocyte cytosolic protein 1), was upregulated at the initial phase of the IR-induced phagocytosis when activated microglia changed their morphology and increased motility to migrate. We further conducted targeted irradiation to the embryonic midbrain using a collimated microbeam of carbon ions (250 µm diameter) and found that the l-plastin upregulation was induced only in the microglia located in the irradiated area. Then, the activated microglia might migrate outside of the irradiated area and spread through over the embryonic brain, expressing ApoE and with activated morphology, for longer than 3 days after the irradiation. These findings suggest that l-plastin and ApoE can be the biomarkers of the activated microglia in the initial and later phase, respectively, in the medaka embryonic brain and that the abscopal and persisted activation of microglia by IR irradiation could be a cause of the abscopal and/or adverse effects following irradiation.


Subject(s)
Brain/metabolism , Brain/radiation effects , Heavy Ions , Microglia/metabolism , Microglia/radiation effects , Radiation, Ionizing , Animals , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Apoptosis/radiation effects , Brain/embryology , Brain/growth & development , Embryo, Nonmammalian , Fishes , Gene Expression , Heavy Ions/adverse effects , Neurons/metabolism , Neurons/radiation effects , Oryzias
19.
J Leukoc Biol ; 102(3): 941-948, 2017 09.
Article in English | MEDLINE | ID: mdl-28637896

ABSTRACT

Migration of B cells supports their development and recruitment into functional niches. Therefore, defining factors that control B cell migration will lead to a better understanding of adaptive immunity. In vitro cell migration assays with B cells have been limited by poor adhesion of cells to glass coated with adhesion molecules. We have developed a technique using monolayers of endothelial cells as the substrate for B cell migration and used this technique to establish a robust in vitro assay for B cell migration. We use TNF-α to up-regulate surface expression of the adhesion molecule VCAM-1 on endothelial cells. The ligand VLA-4 is expressed on B cells, allowing them to interact with the endothelial monolayer and migrate on its surface. We tested our new method by examining the role of L-plastin (LPL), an F-actin-bundling protein, in B cell migration. LPL-deficient (LPL-/-) B cells displayed decreased speed and increased arrest coefficient compared with wild-type (WT) B cells, following chemokine stimulation. However, the confinement ratios for WT and LPL-/- B cells were similar. Thus, we demonstrate how the use of endothelial monolayers as a substrate will support future interrogation of molecular pathways essential to B cell migration.


Subject(s)
B-Lymphocytes/immunology , Cell Movement/immunology , Endothelial Cells/immunology , Integrin alpha4beta1/immunology , Phosphoproteins/immunology , Tumor Necrosis Factor-alpha/immunology , Animals , B-Lymphocytes/cytology , Cell Movement/genetics , Coculture Techniques/methods , Cytoskeletal Proteins , Endothelial Cells/cytology , Integrin alpha4beta1/genetics , Mice , Mice, Knockout , Microfilament Proteins , Phosphoproteins/genetics , Tumor Necrosis Factor-alpha/genetics
20.
Mol Immunol ; 78: 79-88, 2016 10.
Article in English | MEDLINE | ID: mdl-27614263

ABSTRACT

Elucidating the molecular regulation of macrophage migration is essential for understanding the pathophysiology of multiple human diseases, including host responses to infection and autoimmune disorders. Macrophage migration is supported by dynamic rearrangements of the actin cytoskeleton, with formation of actin-based structures such as podosomes and lamellipodia. Here we provide novel insights into the function of the actin-bundling protein l-plastin (LPL) in primary macrophages. We found that podosome stability is disrupted in primary resident peritoneal macrophages from LPL-/- mice. Live-cell imaging of F-actin using resident peritoneal macrophages from LifeACT-RFP+ mice demonstrated that loss of LPL led to decreased longevity of podosomes, without reducing the number of podosomes initiated. Additionally, macrophages from LPL-/- mice failed to elongate in response to chemotactic stimulation. These deficiencies in podosome stabilization and in macrophage elongation correlated with impaired macrophage transmigration in culture and decreased monocyte migration into murine peritoneum. Thus, we have identified a role for LPL in stabilizing long-lived podosomes and in enabling macrophage motility.


Subject(s)
Cell Movement/physiology , Macrophages, Peritoneal/metabolism , Phosphoproteins/metabolism , Podosomes/metabolism , Animals , Cytoskeletal Proteins , Mice , Mice, Knockout , Microfilament Proteins , Microscopy, Confocal
SELECTION OF CITATIONS
SEARCH DETAIL
...