Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(2): 166-174, 2023 Feb 20.
Article in Chinese | MEDLINE | ID: mdl-36946034

ABSTRACT

OBJECTIVE: To investigate the effects of LASS2/TMSG1 gene overexpression on proliferation and apoptosis of human lung cancer A549 cells and explore the possible mechanism. METHODS: We examined LASS2/TMSG1 expression level in a previously constructed A549 cell line overexpressing LASS2/TMSG1 using Western blotting. The proliferation and apoptosis of the cells were detected using colony-forming assay, CCK-8 assay, Hoechst/PI double staining and flow cytometry. Fourteen nude mice were randomized into 2 groups (n=7) to receive subcutaneous injection of A549 cells with or without LASS2/TMSG1 overexpression on the back of the neck, and the cell proliferation in vivo was observed. The expression levels of p38 MAPK protein and p-p38 MAPK protein in the xenografts were detected with Western blotting. ELISA was used to detect the levels of ceramide and p38 MAPK protein in cultured A549 cell supernatants and the xenografts in nude mice. RESULTS: Compared with the negative control cells, A549 cells with LASS2/TMSG1 overexpression had significantly lowered proliferation ability in vitro with increased early apoptosis rate (P < 0.05), and showed obvious growth inhibition after inoculation in nude mice(P < 0.05). Western blotting showed that in both cultured A549 cells and the xenografts in nude mice, LASS2/TMSG1 gene overexpression significantly increased the expression levels of p38 MAPK protein and p-p38 MAPK protein (P < 0.05); the results of ELISA also revealed significantly increased levels of ceramide and p38 MAPK protein in the cell supernatant andxenografts as well (P < 0.05). CONCLUSION: Overexpression of LASS2/TMSG1 gene can significantly inhibit the proliferation and promote early apoptosis of human lung cancer A549 cells both in vitro and in vivo possibly by upregulating the expressions of ceramide and p38 MAPK protein to activate a signal transduction cascade.


Subject(s)
Lung Neoplasms , p38 Mitogen-Activated Protein Kinases , Animals , Humans , Mice , A549 Cells , Apoptosis , Cell Line, Tumor , Cell Proliferation , Membrane Proteins/metabolism , Mice, Nude , p38 Mitogen-Activated Protein Kinases/metabolism , Signal Transduction , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
2.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-971511

ABSTRACT

OBJECTIVE@#To investigate the effects of LASS2/TMSG1 gene overexpression on proliferation and apoptosis of human lung cancer A549 cells and explore the possible mechanism.@*METHODS@#We examined LASS2/TMSG1 expression level in a previously constructed A549 cell line overexpressing LASS2/TMSG1 using Western blotting. The proliferation and apoptosis of the cells were detected using colony-forming assay, CCK-8 assay, Hoechst/PI double staining and flow cytometry. Fourteen nude mice were randomized into 2 groups (n=7) to receive subcutaneous injection of A549 cells with or without LASS2/TMSG1 overexpression on the back of the neck, and the cell proliferation in vivo was observed. The expression levels of p38 MAPK protein and p-p38 MAPK protein in the xenografts were detected with Western blotting. ELISA was used to detect the levels of ceramide and p38 MAPK protein in cultured A549 cell supernatants and the xenografts in nude mice.@*RESULTS@#Compared with the negative control cells, A549 cells with LASS2/TMSG1 overexpression had significantly lowered proliferation ability in vitro with increased early apoptosis rate (P < 0.05), and showed obvious growth inhibition after inoculation in nude mice(P < 0.05). Western blotting showed that in both cultured A549 cells and the xenografts in nude mice, LASS2/TMSG1 gene overexpression significantly increased the expression levels of p38 MAPK protein and p-p38 MAPK protein (P < 0.05); the results of ELISA also revealed significantly increased levels of ceramide and p38 MAPK protein in the cell supernatant andxenografts as well (P < 0.05).@*CONCLUSION@#Overexpression of LASS2/TMSG1 gene can significantly inhibit the proliferation and promote early apoptosis of human lung cancer A549 cells both in vitro and in vivo possibly by upregulating the expressions of ceramide and p38 MAPK protein to activate a signal transduction cascade.


Subject(s)
Animals , Humans , Mice , A549 Cells , Apoptosis , Cell Line, Tumor , Cell Proliferation , Lung Neoplasms , Membrane Proteins/metabolism , Mice, Nude , p38 Mitogen-Activated Protein Kinases/metabolism , Signal Transduction , Tumor Suppressor Proteins/metabolism
3.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-664789

ABSTRACT

Objective:Vacuolar ATPase (V-ATPase) was found within the membranes and internal organelles of a vast array of eukaryotic cells,and was related to various kinds of highly metastatic tumors.LASS2/TMSG1 gene was a novel tumor metastasis suppressor gene cloned from human prostate cancer cell line PC-3M in 1999 by our laboratory.It was found out that protein encoded by LASS2/TMSG1 could interact with the c subunit of V-ATPase (ATP6V0C).In this study,To use RNA interference to suppress the expression of ATP6V0C and try to further investigate the molecular mechanism of ATP6V0C in tumor metastasis and its relationship with LASS2/TMSG1 gene.Methods and Results:The expression level of ATP6V0C mRNA and protein in high metastatic potential prostate cancer cell lines (PC-3M-1E8 and PC-3M) was significantly higher than that in low metastatic potential prostate cancer cell lines (PC-3M-2B4 and PC-3),the expression level in PC-3M-1E8 being the highest.Follow-up tests selected PC-3M-1E8 cells for gene silencing.The expression and secretion of MMP-2 and the expression of MMP-9 in ATP6V0C siRNA transfected PC-3M-1E8 cells displayed no obvious change,but the activity of secreted MMP-9 was abated noticeably compared with the controls (P < 0.05).Extracellular hydrogen ion concentration and V-ATPase activity in interference group were both reduced significantly compared with the controls (P < 0.05).The migration and invasion capacity of ATP6V0C siRNA interfered cells in vitro were diminished significantly compared with the controls (P < 0.05).Furthermore,a dramatic reduction of LASS2/TMSG1 mRNA and protein level after transfection of siRNA in PC-3M-1 E8 cells was discovered (P < 0.05).Confocal immunofluorescence showed a vast co-localization of ATP6V0C protein and LASS2/TMSG1 protein in plasma and membrane.The co-localization signals of control group were much stronger than those of interference group.Conclusion:Specific siRNA silencing of ATP6V0C gene inhibits the invasion of human prostate cancer cells in vitro by mechanism of inhibiting V-ATPase activity and then reducing the extracellular hydrogen ion concentration,inhibiting MMP-9 activation and affecting ECM degradation and reconstruction.Meanwhile,ATP6V0C and LASS2/TMSG1 have interaction and it is likely that ATP6V0C functions as a feedback regulator of LASS2/TMSG1.

4.
J Cell Biochem ; 115(4): 731-43, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24453046

ABSTRACT

Homo sapiens longevity assurance homolog 2 of yeast LAG1 (LASS2), also known as tumor metastasis suppressor gene 1 (TMSG1), was firstly cloned by our laboratory in 1999. However, its antitumor molecular mechanisms are still unclear. LASS2/TMSG-1 could directly interact with the C subunit of Vacuolar H(+) ATPase (V-ATPase), which suggested that LASS2/TMSG1 might inhibit the invasion and metastasis through regulating the function of V-ATPase. In this study, we explored the effect of small hairpin RNA (shRNA) targeting LASS2/TMSG1 on the invasion and metastasis of human prostate carcinoma cell line PC-3M-2B4 with low metastatic potential and its functional interaction with V-ATPase. Silencing of LASS2/TMSG1 gene in PC-3M-2B4 cells increased V-ATPase activity, extracellular hydrogen ion concentration and in turn the activation of secreted MMP-2 and MMP-9, which coincided with enhancing cell proliferation, cell survival, and cell invasion in vitro, as well as acceleration of prostate cancer (PCA) growth and lymph node metastases in vivo. Thus we concluded that silencing of LASS2/TMSG1 enhances invasion and metastasis of PCA cell through increase of V-ATPase activity. These results establish LASS2/TMSG1 as a promising therapeutic target for advanced PCA.


Subject(s)
Membrane Proteins/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Sphingosine N-Acyltransferase/genetics , Tumor Suppressor Proteins/genetics , Animals , Apoptosis/drug effects , Apoptosis/genetics , Base Sequence , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Line, Tumor , Gene Silencing , Humans , Male , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Nude , Molecular Sequence Data , Neoplasm Invasiveness/genetics , RNA, Small Interfering/genetics , Vacuolar Proton-Translocating ATPases/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...