Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Publication year range
1.
Arch Razi Inst ; 74(4): 435-439, 2019 12.
Article in English | MEDLINE | ID: mdl-31939261

ABSTRACT

The current research aimed to quantify melittin (MEL) in Iranian honey bee (Apis mellifera meda) venom. To this end, a liquid chromatography-electrospray ionization-ion trap tandem mass spectrometry (LC-ESI-IT-MS/MS) approach was employed. Melittin is the main toxic peptide of honey bee venom with various biological and pharmacological activities. It was extracted with pure water from the bee venom samples. The analyses were performed on XBridge BEH300 C4 column using a gradient method with the mobile phase consisting of ultrapure water and acetonitrile (containing 0.1% formic acid). Signals of the melittin were recorded with the selected reaction monitoring (SRM) mode, which is a quantitative approach capable of quantifying analyte peptides with high sensitivity and. The mass spectrum of MEL was obtained in the positive ion mode and the quantification analysis was performed using precursor to product ion transition of m/z 570.2/669.9. This method demonstrated good linearity (R2˃0.997) in the range of 1-100 µg mL-1, with a limit of quantification (LOQ) of 1.0 µg mL-1. The content of MEL in Iranian honey bee venom accounts for 43–55% of total dry weight. This method can be used to evaluate the quality and authenticity of bee venom samples for different therapeutic applications of MEL.


Subject(s)
Bee Venoms/chemistry , Bees/chemistry , Chromatography, Liquid/methods , Melitten/isolation & purification , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Animals , Iran
2.
Talanta ; 151: 217-223, 2016 May 01.
Article in English | MEDLINE | ID: mdl-26946030

ABSTRACT

Magnetic nanoparticles of cobalt ferrite with oleic acid as the surfactant (CoFe2O4/oleic acid) were used as sorbent material for the determination of alkylphenols in fruit juices. High sensitivity and specificity were achieved by liquid chromatography and detection using both diode-array (DAD) and electrospray-ion trap-tandem mass spectrometry (ESI-IT-MS/MS) in the selected reaction monitoring (SRM) mode of the negative fragment ions for alkylphenols (APs) and in positive mode for ethoxylate APs (APEOs). The optimized conditions for the different variables influencing the magnetic separation procedure were: mass of magnetic nanoparticles, 50mg, juice volume, 10mL diluted to 25mL with water, pH 6, stirring for 10min at room temperature, separation with an external neodymium magnet, desorption with 3mL of methanol and orbital shaking for 5min. The enriched organic phase was evaporated and reconstituted with 100µL acetonitrile before injecting 30µL into a liquid chromatograph with a mobile phase composed of acetonitrile/0.1% (v/v) formic acid under gradient elution. Quantification limits were in the range 3.6 to 125ngmL(-1). The recoveries obtained were in the 91-119% range, with RSDs lower than 14%. The ESI-MS/MS spectra permitted the correct identification of both APs and APEOs in the fruit juice samples.


Subject(s)
Chromatography, Liquid/methods , Fruit and Vegetable Juices/analysis , Nanoparticles/chemistry , Oleic Acid/chemistry , Phenols/analysis , Solid Phase Microextraction/methods , Tandem Mass Spectrometry/methods , Acetonitriles/chemistry , Adsorption , Formates/chemistry , Hydrogen-Ion Concentration , Magnetics , Methanol/chemistry , Neodymium/chemistry , Phenols/chemistry , Phenols/isolation & purification , Reproducibility of Results , Spectrometry, Mass, Electrospray Ionization , Water/chemistry
3.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1009-1010: 25-33, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26688345

ABSTRACT

Some terrestrial Trichoderma sp. strains are already used as biological control agents (BCAs). They all produce peptaibols, small antimicrobial peptides which are supposed to play a role in the anti-phytopathogenic activity of Trichoderma sp. Trichoderma strains producing high amounts of peptaibols could represent new potential BCAs. In this context, marine-derived Trichoderma strains from the marine fungal strain collection of the "Mer, Molécules, Santé" (MMS) laboratory were investigated for their peptaibol production. Previously, the quantification of peptaibols was performed using alamethicin, as standard (20-amino acid residues peptaibol). In this study, the development and validation of quantification LC/ESI-TI-MS methods using different standards of peptaibols (11-, 14- and 20-amino acid residues) was performed in order to quantify all of them, in a single analysis, in Trichoderma crude extracts according to their chain length. The developed and validated methods were used to study the peptaibol production kinetic of a marine-derived Trichoderma strain, i.e., Trichoderma longibrachiatum (MMS 151). The results showed the optimal culture time at the 9th day with concentrations reaching 1.4±0.2% and 2.3±0.4% of the fungal biomass respectively for 11- and 20-residue peptaibols. Then, the different peptaibol subgroups produced by 13 Trichoderma strains were quantified. According to their 18-, 19- and 20-residue peptaibol production, three strains referenced as MMS 1541, MMS 639 and MMS 151 seemed to be good candidates as potential new biological control agents with respective production of 0.4, 0.4 and 2.1%.


Subject(s)
Anti-Infective Agents/analysis , Chromatography, High Pressure Liquid/methods , Peptaibols/analysis , Trichoderma/chemistry , Amino Acid Sequence , Anti-Infective Agents/metabolism , Limit of Detection , Molecular Sequence Data , Peptaibols/metabolism , Spectrometry, Mass, Electrospray Ionization/methods , Trichoderma/metabolism
4.
J Chromatogr A ; 1376: 18-25, 2015 Jan 09.
Article in English | MEDLINE | ID: mdl-25537172

ABSTRACT

Phthalic acid esters (PEs) were preconcentrated from cleaning products, detergents and cosmetics using ultrasound assisted extraction (UAE) in the presence of acetonitrile, and then submitted to dispersive liquid-liquid microextraction (DLLME). For DLLME, 3mL of acetonitrile extract, 150µL carbon tetrachloride and 10mL aqueous solution were used. The enriched organic phase was evaporated, reconstituted with 25µL acetonitrile and injected into a liquid chromatograph with a mobile phase (acetonitrile:10mM ammonium acetate, pH 4) under gradient elution. Detection was carried out using both diode-array (DAD) and electrospray-ion trap-tandem mass spectrometry (ESI-IT-MS/MS) in the multiple reaction monitoring mode (MRM) of the positive fragment ions. Quantification was carried out using matrix-matched standards. Detection limits were in the range 0.04-0.45ngmL(-1) for the six PEs considered. The recoveries obtained were in the 84-124% range, with RSDs lower than 10%. Thirty three different cleaning products were analyzed. The most frequently found compound was diethyl phthalate.


Subject(s)
Phthalic Acids/analysis , Acetonitriles , Chromatography, Liquid/methods , Cosmetics/analysis , Detergents/analysis , Esters , Limit of Detection , Liquid Phase Microextraction , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry/methods
5.
J Pharm Anal ; 4(5): 339-344, 2014 Oct.
Article in English | MEDLINE | ID: mdl-29403898

ABSTRACT

A new impurity was detected during high performance liquid chromatographic (HPLC) analysis of eslicarbazepine acetate active pharmaceutical ingredient. The structure of unknown impurity was postulated based on liquid chromatography mass spectrometry using electrospray ionization and ion trap analyzer (LC/ESI-IT/MS) analysis. Proposed structure of impurity was unambiguously confirmed by synthesis followed by characterization using 1H, 13C nuclear magnetic resonance spectrometry (NMR), 1H-1H correlation spectroscopy (COSY) and infrared spectroscopy (IR). Based on the spectroscopic and spectrometric data, unknown impurity was characterized as 5-carbamoyl-10,11-dihydro-5H-dibenzo[b,f]azepin-10-yl propionate.

6.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-672114

ABSTRACT

A new impurity was detected during high performance liquid chromatographic (HPLC) analysis of eslicarbazepine acetate active pharmaceutical ingredient. The structure of unknown impurity was postulated based on liquid chromatography mass spectrometry using electrospray ionization and ion trap analyzer (LC/ESI-IT/MS) analysis. Proposed structure of impurity was unambiguously confirmed by synthesis followed by characterization using 1H, 13C nuclear magnetic resonance spectrometry (NMR), 1H-1H correlation spectro-scopy (COSY) and infrared spectroscopy (IR). Based on the spectroscopic and spectrometric data, unknown impurity was characterized as 5-carbamoyl-10,11-dihydro-5H-dibenzo[b,f]azepin-10-yl propionate.

SELECTION OF CITATIONS
SEARCH DETAIL
...