Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 272
Filter
1.
J Lipid Res ; : 100588, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969065

ABSTRACT

Lipoprotein(a) [Lp(a)] is a risk factor for cardiovascular disease. A size polymorphism in the apolipoprotein(a) [apo(a)] gene, determined by the number of Kringle (K) repeats, inversely regulates Lp(a) levels. Non-genetic factors including dietary saturated fat influence Lp(a) levels. However, less is known about the effects of carbohydrates including dietary sugars. In this double-blind, parallel-arm study among 32 overweight/obese adults, we investigated the effect of consuming glucose- or fructose-sweetened beverages providing 25% of energy requirements for 10 weeks on Lp(a) level and assessed the role of the apo(a) size polymorphism. The mean (± SD) age of participants was 54 ± 8 years, 50% were women, and 75% were of European descent. At the end of the 10-week intervention, Lp(a) level was reduced by an average (± SEM) of -13.2% ± 4.3% in all participants (p=0.005); by -15.3% ± 7.8% in the 15 participants who consumed glucose (p=0.07); and by -11.3% ± 4.5% in the 17 participants who consumed fructose (p=0.02), without any significant difference in the effect between the two sugar groups. The relative changes in Lp(a) levels were similar across subgroups of lower vs higher baseline Lp(a) level or carrier vs non-carrier of an atherogenic small (≤22K) apo(a) size. In contrast, LDL-C increased. In conclusion, in older, overweight/obese adults, consuming sugar-sweetened beverages reduced Lp(a) levels by ∼13% independently of apo(a) size variability and the type of sugar consumed. The Lp(a) response was opposite to that of LDL-C and triglyceride concentrations. These findings suggest that metabolic pathways might impact Lp(a) levels.

2.
Bioeng Transl Med ; 9(4): e10659, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39036087

ABSTRACT

The liver plays a key role in the metabolism of lipoproteins, controlling both production and catabolism. To accelerate the development of new lipid-lowering therapies in humans, it is essential to have a relevant in vitro study model available. The current hepatocyte-like cells (HLCs) models derived from hiPSC can be used to model many genetically driven diseases but require further improvement to better recapitulate the complexity of liver functions. Here, we aimed to improve the maturation of HLCs using a three-dimensional (3D) approach using Biomimesys®, a hyaluronic acid-based hydroscaffold in which hiPSCs may directly form aggregates and differentiate toward a functional liver organoid model. After a 28-day differentiation 3D protocol, we showed that many hepatic genes were upregulated in the 3D model (liver organoids) in comparison with the 2D model (HLCs). Liver organoids, grown on Biomimesys®, exhibited an autonomous cell organization, were composed of different cell types and displayed enhanced cytochromes P450 activities compared to HLCs. Regarding the functional capacities of these organoids, we showed that they were able to accumulate lipids (hepatic steatosis), internalize low-density lipoprotein and secrete apolipoprotein B. Interestingly, we showed for the first time that this model was also able to produce apolipoprotein (a), the apolipoprotein (a) specific of Lp(a). This innovative hiPSC-derived liver organoid model may serve as a relevant model for studying human lipopoprotein metabolism, including Lp(a).

3.
Genome Biol ; 25(1): 167, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926899

ABSTRACT

BACKGROUND: Variable number tandem repeats (VNTRs) are highly polymorphic DNA regions harboring many potentially disease-causing variants. However, VNTRs often appear unresolved ("dark") in variation databases due to their repetitive nature. One particularly complex and medically relevant VNTR is the KIV-2 VNTR located in the cardiovascular disease gene LPA which encompasses up to 70% of the coding sequence. RESULTS: Using the highly complex LPA gene as a model, we develop a computational approach to resolve intra-repeat variation in VNTRs from largely available short-read sequencing data. We apply the approach to six protein-coding VNTRs in 2504 samples from the 1000 Genomes Project and developed an optimized method for the LPA KIV-2 VNTR that discriminates the confounding KIV-2 subtypes upfront. This results in an F1-score improvement of up to 2.1-fold compared to previously published strategies. Finally, we analyze the LPA VNTR in > 199,000 UK Biobank samples, detecting > 700 KIV-2 mutations. This approach successfully reveals new strong Lp(a)-lowering effects for KIV-2 variants, with protective effect against coronary artery disease, and also validated previous findings based on tagging SNPs. CONCLUSIONS: Our approach paves the way for reliable variant detection in VNTRs at scale and we show that it is transferable to other dark regions, which will help unlock medical information hidden in VNTRs.


Subject(s)
Cardiovascular Diseases , Minisatellite Repeats , Humans , Cardiovascular Diseases/genetics , Genetic Variation , Sequence Analysis, DNA/methods , Lipoprotein(a)/genetics , Genetic Predisposition to Disease
6.
Atherosclerosis ; 395: 117562, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38714425

ABSTRACT

BACKGROUND AND AIMS: Lipoprotein(a) [Lp(a)] is a causal, genetically determined cardiovascular risk factor. Limited evidence suggests that dietary unsaturated fat may increase serum Lp(a) concentration by 10-15 %. Linoleic acid may increase Lp(a) concentration through its endogenous conversion to arachidonic acid, a process regulated by the fatty acid desaturase (FADS) gene cluster. We aimed to compare the Lp(a) and other lipoprotein trait-modulating effects of dietary alpha-linolenic (ALA) and linoleic acids (LA). Additionally, we examined whether FADS1 rs174550 genotype modifies Lp(a) responses. METHODS: A genotype-based randomized trial was performed in 118 men homozygous for FADS1 rs174550 SNP (TT or CC). After a 4-week run-in period, the participants were randomized to 8-week intervention diets enriched with either Camelina sativa oil (ALA diet) or sunflower oil (LA diet) 30-50 mL/day based on their BMI. Serum lipid profile was measured at baseline and at the end of the intervention. RESULTS: ALA diet lowered serum Lp(a) concentration by 7.3 % (p = 0.003) and LA diet by 9.5 % (p < 0.001) (p = 0.089 for between-diet difference). Both diets led to greater absolute decreases in individuals with higher baseline Lp(a) concentration (p < 0.001). Concentrations of LDL cholesterol (LDL-C), non-HDL-C, remnant-C, and apolipoprotein B were lowered more by the ALA diet (p < 0.01). Lipid or lipoprotein responses were not modified by the FADS1 rs174550 genotype. CONCLUSIONS: A considerable increase in either dietary ALA or LA from vegetable oils has a similar Lp(a)-lowering effect, whereas ALA may lower other major atherogenic lipids and lipoproteins to a greater extent than LA. Genetic differences in endogenous PUFA conversion may not influence serum Lp(a) concentration.


Subject(s)
Delta-5 Fatty Acid Desaturase , Fatty Acid Desaturases , Lipoprotein(a) , alpha-Linolenic Acid , Humans , Lipoprotein(a)/blood , Male , Middle Aged , alpha-Linolenic Acid/administration & dosage , Fatty Acid Desaturases/genetics , Adult , Polymorphism, Single Nucleotide , Atherosclerosis/prevention & control , Atherosclerosis/blood , Atherosclerosis/genetics , Linoleic Acid/blood , Linoleic Acid/administration & dosage , Genotype , Linoleic Acids/blood , Plant Oils/administration & dosage , Lipoproteins/blood , Sunflower Oil
7.
Curr Diab Rep ; 24(7): 167-172, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38805111

ABSTRACT

PURPOSE OF REVIEW: The objective of this manuscript is to review and describe the relationship between Lp(a) and diabetes, exploring both their association and synergy as cardiovascular risk factors, while also describing the current evidence regarding the potential connection between low levels of Lp(a) and the presence of diabetes. RECENT FINDINGS: Epidemiological studies suggest a potential relationship between low to very low levels of Lp(a) and diabetes. Lipoprotein(a), or Lp(a), is an intriguing lipoprotein of genetic origin, yet its biological function remains unknown. Elevated levels of Lp(a) are associated with an increased risk of cardiovascular atherosclerosis, and coexisting diabetes status confers an even higher risk. On the other hand, epidemiological and genetic studies have paradoxically suggested a potential relationship between low to very low levels of Lp(a) and diabetes. While new pharmacological strategies are being developed to reduce Lp(a) levels, the dual aspects of this lipoprotein's behavior need to be elucidated in the near future.


Subject(s)
Cardiovascular Diseases , Heart Disease Risk Factors , Lipoprotein(a) , Humans , Cardiovascular Diseases/etiology , Diabetes Mellitus/epidemiology , Lipoprotein(a)/blood , Risk Factors
9.
Curr Atheroscler Rep ; 26(7): 317-329, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38753254

ABSTRACT

PURPOSE OF REVIEW: Low-density lipoprotein (LDL) poses a risk for atherosclerotic cardiovascular disease (ASCVD). As LDL comprises various subtypes differing in charge, density, and size, understanding their specific impact on ASCVD is crucial. Two highly atherogenic LDL subtypes-electronegative LDL (L5) and Lp(a)-induce vascular cell apoptosis and atherosclerotic changes independent of plasma cholesterol levels, and their mechanisms warrant further investigation. Here, we have compared the roles of L5 and Lp(a) in the development of ASCVD. RECENT FINDINGS: Lp(a) tends to accumulate in artery walls, promoting plaque formation and potentially triggering atherosclerosis progression through prothrombotic or antifibrinolytic effects. High Lp(a) levels correlate with calcific aortic stenosis and atherothrombosis risk. L5 can induce endothelial cell apoptosis and increase vascular permeability, inflammation, and atherogenesis, playing a key role in initiating atherosclerosis. Elevated L5 levels in certain high-risk populations may serve as a distinctive predictor of ASCVD. L5 and Lp(a) are both atherogenic lipoproteins contributing to ASCVD through distinct mechanisms. Lp(a) has garnered attention, but equal consideration should be given to L5.


Subject(s)
Atherosclerosis , Lipoprotein(a) , Humans , Lipoprotein(a)/blood , Lipoprotein(a)/metabolism , Atherosclerosis/metabolism , Atherosclerosis/blood , Lipoproteins, LDL/blood , Lipoproteins, LDL/metabolism , Apoptosis , Animals
10.
Clin Investig Arterioscler ; 36(4): 243-266, 2024.
Article in English, Spanish | MEDLINE | ID: mdl-38599943

ABSTRACT

The irruption of lipoprotein(a) (Lp(a)) in the study of cardiovascular risk factors is perhaps, together with the discovery and use of proprotein convertase subtilisin/kexin type 9 (iPCSK9) inhibitor drugs, the greatest novelty in the field for decades. Lp(a) concentration (especially very high levels) has an undeniable association with certain cardiovascular complications, such as atherosclerotic vascular disease (AVD) and aortic stenosis. However, there are several current limitations to both establishing epidemiological associations and specific pharmacological treatment. Firstly, the measurement of Lp(a) is highly dependent on the test used, mainly because of the characteristics of the molecule. Secondly, Lp(a) concentration is more than 80% genetically determined, so that, unlike other cardiovascular risk factors, it cannot be regulated by lifestyle changes. Finally, although there are many promising clinical trials with specific drugs to reduce Lp(a), currently only iPCSK9 (limited for use because of its cost) significantly reduces Lp(a). However, and in line with other scientific societies, the SEA considers that, with the aim of increasing knowledge about the contribution of Lp(a) to cardiovascular risk, it is relevant to produce a document containing the current status of the subject, recommendations for the control of global cardiovascular risk in people with elevated Lp(a) and recommendations on the therapeutic approach to patients with elevated Lp(a).


Subject(s)
Cardiovascular Diseases , Heart Disease Risk Factors , Lipoprotein(a) , Humans , Lipoprotein(a)/blood , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/etiology , PCSK9 Inhibitors , Spain , Atherosclerosis , Consensus , Arteriosclerosis
11.
J Cardiovasc Dev Dis ; 11(4)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38667744

ABSTRACT

Patients with atherosclerotic disease remain at increased risk of future events despite receiving optimal medical treatment. This residual risk is widely heterogeneous, but lipoprotein particles and their content play a major role in determining future cardiovascular events. Beyond low-density lipoprotein cholesterol (LDL-c), other lipoprotein particles have not demonstrated similar contribution to the progression of atherosclerosis. Statins, ezetimibe, and more recently, proprotein convertase subtilisin kexin 9 (PCSK9) inhibitors and bempedoic acid have confirmed the causal role of LDL-c in the development of atherosclerosis. Data on high-density lipoprotein cholesterol (HDL-c) suggested a possible causal role for atherosclerosis; nonetheless, HDL-c-raising treatments, including cholesteryl-ester transfer protein (CETP) inhibitors and niacin, failed to confirm this relationship. On the other hand, mendelian randomisation revealed that triglycerides are more implicated in the development of atherosclerosis. Although the use of highly purified eicosapentaenoic acid (EPA) was associated with a reduction in the risk of adverse cardiovascular events, this beneficial effect did not correlate with the reduction in triglycerides level and has not been consistent across large phase 3 trials. Moreover, other triglyceride-lowering treatments, such as fibrates, were not associated with a reduction in future cardiovascular risk. Studies assessing agents targeting angiopoietin-like 3 (lipoprotein lipase inhibitor) and apolipoprotein C3 antisense will add further insights into the role of triglycerides in atherosclerosis. Emerging lipid markers such as lipoprotein (a) and cholesterol efflux capacity may have a direct role in the progression of atherosclerosis. Targeting these biomarkers may provide incremental benefits in reducing cardiovascular risk when added to optimal medical treatment. This Review aims to assess available therapies for current lipid biomarkers and provide mechanistic insight into their potential role in reducing future cardiovascular risk.

12.
Am J Prev Cardiol ; 18: 100651, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38646021

ABSTRACT

High levels of lipoprotein(a) [Lp(a)] are causal for atherosclerotic cardiovascular disease (ASCVD). Lp(a) is the most prevalent inherited dyslipidemia and strongest genetic ASCVD risk factor. This risk persists in the presence of at target, guideline-recommended, LDL-C levels and adherence to lifestyle modifications. Epidemiological and genetic evidence supporting its causal role in ASCVD and calcific aortic stenosis continues to accumulate, although various facets regarding Lp(a) biology (genetics, pathophysiology, and expression across race/ethnic groups) are not yet fully understood. The evolving nature of clinical guidelines and consensus statements recommending universal measurements of Lp(a) and the scientific data supporting its role in multiple disease states reinforce the clinical merit to start population screening for Lp(a) now. There is a current gap in the implementation of recommendations for primary and secondary cardiovascular disease (CVD) prevention in those with high Lp(a), in part due to a lack of protocols for management strategies. Importantly, targeted apolipoprotein(a) [apo(a)]-lowering therapies that reduce Lp(a) levels in patients with high Lp(a) are in phase 3 clinical development. This review focuses on the identification and clinical management of patients with high Lp(a). Specifically, we highlight the clinical value of measuring Lp(a) and its use in determining Lp(a)-associated CVD risk by providing actionable guidance, based on scientific knowledge, that can be utilized now to mitigate risk caused by high Lp(a).

14.
J Am Coll Cardiol ; 83(16): 1529-1539, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38530686

ABSTRACT

BACKGROUND: Elevated lipoprotein(a) (Lp[a]) concentrations are associated with increased cardiovascular event risk even in the presence of well-controlled low-density lipoprotein cholesterol levels, but few treatments are documented to reduce this residual risk. OBJECTIVES: The aim of this post hoc analysis of REDUCE-IT (Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial) was to explore the cardiovascular benefit of icosapent ethyl (IPE) across a range of Lp(a) levels. METHODS: A total of 8,179 participants receiving statin therapy with established cardiovascular disease or age ≥50 years with diabetes and ≥1 additional risk factor, fasting triglyceride 1.69 to 5.63 mmol/L, and low-density lipoprotein cholesterol 1.06 to 2.59 mmol/L were randomized to receive 2 g twice daily of IPE or matching placebo. Relationships between continuous baseline Lp(a) mass concentration and risk for first and total (first and subsequent) major adverse cardiovascular events (MACE) were analyzed, along with the effects of IPE on first MACE among those with Lp(a) concentrations ≥50 or <50 mg/dL. RESULTS: Among 7,026 participants (86% of those randomized) with baseline Lp(a) assessments, the median concentration was 11.6 mg/dL (Q1-Q3: 5.0-37.4 mg/dL). Lp(a) had significant relationships with first and total MACE (P < 0.0001), while event reductions with IPE did not vary across the range of Lp(a) (interaction P > 0.10). IPE significantly reduced first MACE in subgroups with concentrations ≥50 and <50 mg/dL. CONCLUSIONS: Baseline Lp(a) concentration was prognostic for MACE among participants with elevated triglyceride levels receiving statin therapy. Importantly, IPE consistently reduced MACE across a range of Lp(a) levels, including among those with clinically relevant elevations.


Subject(s)
Cardiovascular Diseases , Eicosapentaenoic Acid/analogs & derivatives , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Hypertriglyceridemia , Humans , Middle Aged , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Cardiovascular Diseases/drug therapy , Risk Factors , Lipoprotein(a) , Hypertriglyceridemia/drug therapy , Triglycerides , Cholesterol, LDL , Heart Disease Risk Factors
15.
Curr Mol Pharmacol ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38449067

ABSTRACT

Globally, there remains an unwavering increase in the incidence of cvd - from 271 million in 1990 to 523 million in 2019. Among the several modifiable and non-modifiable risk factors of heart disease, dyslipidemia is an important and prevalent risk factor mediated by both genetics and lifestyle factors. Hence, lowering lipid levels, specifically, ldl-c levels (low-density lipoprotein cholesterol), is a key strategy in decreasing the risk of cardiovascular disease. A reduction of 20 mg/dl in ldl-c levels has been found to prevent 2-3 cases of coronary artery disease (cad) for every 1000 individuals. Studies have also found reductions in ldl-c levels to be associated with a mortality benefit. However, ldl-c levels reduction may not eliminate the risk of significant cardiovascular events.

16.
Arch Med Sci Atheroscler Dis ; 9: e26-e32, 2024.
Article in English | MEDLINE | ID: mdl-38434941

ABSTRACT

Introduction: Lipoprotein(a) [Lp(a)] is a strong, genetically determined, pathogenetic factor of atherosclerotic cardiovascular disease (ASCVD). The aim of this post-hoc analysis was to compare the effect of hypolipidemic treatment on Lp(a) levels of patients with mixed hyperlipidemia. Material and methods: We previously randomized patients with mixed hyperlipidemia (low-density lipoprotein [LDL-C] > 160 mg/dl and triglycerides > 200 mg/dl) to rosuvastatin monotherapy 40 mg/day (R group, n = 30) or rosuvastatin 10 mg/day combined with fenofibrate 200 mg/day (RF group, n = 30) or omega-3 fatty acids 2 g/day (RΩ group, n = 30). In the present post-hoc analysis, we included only the patients whose Lp(a) levels were assessed (16, 16 and 15 in the R, RF and RΩ groups, respectively). Lipid profile and Lp(a) were measured at baseline and after 3 months of treatment. Results: Significant reductions in total cholesterol, LDL-C, non-high-density lipoprotein-cholesterol (non-HDL-C) and triglyceride levels were observed in all groups. A significant increase in Lp(a) levels was noted in the R (p = 0.017) and RF (p = 0.029) groups, while no significant difference was seen in the RΩ group (p = NS). Regarding Lp(a) elevations, no differences were found between groups. In the R group, a strong negative correlation between the changes in Lp(a) and LDL-C (r = -0.500, p = 0.049) was observed, while a significant negative correlation between the changes in Lp(a) and triglycerides (r = -0.531, p = 0.034) was noted in the RF group. Conclusions: Rosuvastatin and/or fenofibrate treatment increases Lp(a) levels in patients with mixed hyperlipidemia. Novel therapies should target Lp(a) level reduction to decrease the residual ASCVD risk in patients with mixed hyperlipidemia.

17.
Diabetologia ; 67(6): 974-984, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38376536

ABSTRACT

Dyslipidaemias are major cardiovascular risk factors, especially in people with diabetes. In this area, next-generation therapies targeting circulating lipoparticle metabolism (LDL, VLDL, chylomicrons, HDL) have recently been approved by the European and US medical agencies, including anti- proprotein convertase subtilisin/kexin 9 (PCSK9) antibodies; an siRNA targeting PCSK9; bempedoic acid, which targets ATP citrate lyase; an antisense oligonucleotide targeting apolipoprotein C-III; an anti-angiopoietin-like 3 antibody; and a purified omega-3 fatty acid, icosapent ethyl. Other therapies are in different phases of development. There are several important considerations concerning the link between these new lipid-lowering therapies and diabetes. First, since concerns were first raised in 2008 about an increased risk of new-onset diabetes mellitus (NODM) with intensive statin treatment, each new lipid-lowering therapy is being evaluated for its associated risk of NODM, particularly in individuals with prediabetes (impaired fasting glucose and/or impaired glucose tolerance). Second, people with diabetes represent a large proportion of those at high or very high cardiovascular risk in whom these lipid-lowering drugs are currently, or will be, prescribed. Thus, the efficacy of these drugs in subgroups with diabetes should also be closely considered, as well as any potential effects on glycaemic control. In this review, we describe the efficacy of next-generation therapies targeting lipoprotein metabolism in subgroups of people with diabetes and their effects on glycaemic control in individuals with diabetes and prediabetes and in normoglycaemic individuals.


Subject(s)
Hyperlipidemias , Humans , Hyperlipidemias/drug therapy , Hypolipidemic Agents/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Diabetes Mellitus/drug therapy
18.
Cardiol Ther ; 13(1): 39-67, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38381282

ABSTRACT

Numerous genetic and epidemiologic studies have demonstrated an association between elevated levels of lipoprotein(a) (Lp[a]) and cardiovascular disease. As a result, lowering Lp(a) levels is widely recognized as a promising strategy for reducing the risk of new-onset coronary heart disease, stroke, and heart failure. Lp(a) consists of a low-density lipoprotein-like particle with covalently linked apolipoprotein A (apo[a]) and apolipoprotein B-100, which explains its pro-thrombotic, pro-inflammatory, and pro-atherogenic properties. Lp(a) serum concentrations are genetically determined by the apo(a) isoform, with shorter isoforms having a higher rate of particle synthesis. To date, there are no approved pharmacological therapies that effectively reduce Lp(a) levels. Promising treatment approaches targeting apo(a) expression include RNA-based drugs such as pelacarsen, olpasiran, SLN360, and lepodisiran, which are currently in clinical trials. In this comprehensive review, we provide a detailed overview of RNA-based therapeutic approaches and discuss the recent advances and challenges of RNA therapeutics specifically designed to reduce Lp(a) levels and thus the risk of cardiovascular disease.

19.
Lipids Health Dis ; 23(1): 59, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38414008

ABSTRACT

Cancer cells need constant supplies of lipids to survive and grow. Lipid dependence has been observed in various types of cancer, including high-grade serous ovarian carcinomas (HGSOC), which is a lethal form of gynecological malignancy. ANGPTL3, PCSK9, and Apo CIII are pivotal lipid-modulating factors, and therapeutic antibodies have been developed against each one (Evinacumab, Evolocumab and Volanesorsen, respectively). The roles -if any- of ANGPTL3, PCSK9, and Apo CIII in HGSOC are unclear. Moreover, levels of these lipid-modulating factors have never been reported before in HGSOC. In this study, circulating levels of ANGPTL3, PCSK9, and Apo CIII, along with lipid profiles, are examined to verify whether one or many of these lipid-regulating factors are associated with HGSOC. Methods ELISA kits were used to measure ANGPTL3, PCSK9 and Apo CIII levels in plasma samples from 31 women with HGSOC and 40 women with benign ovarian lesions (BOL) before treatment and surgery. A Roche Modular analytical platform measured lipid panels, Apo B and Lp(a) levels.Results ANGPTL3 levels were higher in women with HGSOC (84 ng/mL, SD: 29 ng/mL, n = 31) than in women with BOL (67 ng/mL, SD: 31 ng/mL, n = 40; HGSOC vs. BOL P = 0.019). Associations between the lipid panel and ANGPTL3, and the inverse relationship between HDL-cholesterol and triglycerides, were present in women with BOL but not with HGSOC. PCSK9 and Apo CIII were not associated with HGSOC.Conclusions In this cohort of 71 women, ANGPTL3 levels were increased in HGSOC patients. The presence of HGSOC disrupted the classic inverse relationship between HDL and triglycerides, as well as the association between the lipid panel and ANGPTL3. These associations were only maintained in cancer-free women. Given the availability of Evinacumab, a therapeutic antibody against ANGPTL3, the current finding prompts an assessment of whether ANGPTL3 inhibition has therapeutic potential in HGSOC.


Subject(s)
Carcinoma , Ovarian Cysts , Ovarian Neoplasms , Humans , Female , Proprotein Convertase 9 , Angiopoietin-like Proteins/genetics , Angiopoietin-Like Protein 3 , Ovarian Neoplasms/drug therapy , Triglycerides , Angiopoietins/genetics
20.
Eur J Prev Cardiol ; 31(6): 732-741, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38300625

ABSTRACT

AIMS: Lipoprotein(a) [Lp(a)] is an atherogenic lipid particle associated with increased risk for coronary heart disease (CHD) events. Coronary artery calcium (CAC) score is a tool to diagnose subclinical atherosclerosis and guide clinical decision-making for primary prevention of CHD. Studies show conflicting results concerning the relationship between Lp(a) and CAC in asymptomatic populations. We conducted a meta-analysis to evaluate the association of Lp(a) and CAC in asymptomatic patients. METHODS AND RESULTS: We systematically searched PubMed, Embase, and Cochrane until April 2023 for studies evaluating the association between Lp(a) and CAC in asymptomatic patients. We evaluated CAC > 0 Agatston units, and CAC ≥ 100. Lp(a) was analysed as a continuous or dichotomous variable. We assessed the association between Lp(a) and CAC with pooled odds ratios (OR) adopting a random-effects model. A total of 23 105 patients from 18 studies were included in the meta-analysis with a mean age of 55.9 years, 46.4% female. Elevated Lp(a) increased the odds of CAC > 0 [OR 1.31; 95% confidence intervals (CI) 1.05-1.64; P = 0.02], CAC ≥100 (OR 1.29; 95% CI 1.01-1.65; P = 0.04; ), and CAC progression (OR 1.43; 95% CI 1.20-1.70; P < 0.01; ). For each increment of 1 mg/dL in Lp(a) there was a 1% in the odds of CAC > 0 (OR 1.01; 95% CI 1.01-1.01; P < 0.01). CONCLUSION: Our findings of this meta-analysis suggest that Lp(a) is positively associated with a higher likelihood of CAC. Higher Lp(a) levels increased the odds of CAC >0. These data support the concept that Lp(a) is atherogenic, although with high heterogeneity and a low level of certainty. PROTOCOL REGISTRATION: CRD42023422034. KEY FINDINGS: Asymptomatic patients with elevated Lp(a) had 31% higher chances of having any coronary calcification (CAC > 0) and 29% higher chances of having more advanced calcification (CAC > 100). It increased the chances of having progression of coronary calcification over time by 43%. For each 1 mg/dL of Lp(a) there was an increment of 1% chance of having coronary calcification.


We conducted a meta-analysis to evaluate the association between Lp(a) and coronary calcification in asymptomatic patients without a known history of coronary artery disease.


Subject(s)
Atherosclerosis , Calcinosis , Coronary Artery Disease , Vascular Calcification , Humans , Female , Middle Aged , Male , Calcium , Coronary Artery Disease/complications , Risk Factors , Coronary Vessels , Lipoprotein(a) , Atherosclerosis/complications , Calcinosis/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...