Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 210
Filter
1.
JCEM Case Rep ; 2(10): luae163, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39309619

ABSTRACT

Osteoporosis in children and young adults is relatively rare. Hereditary causes are often overlooked in the absence of a positive family history. We report a 29-year-old male presenting with recurrent fragility fractures since 6 years of age. Secondary causes, such as celiac disease, inflammatory disorders, and hypogonadism, were ruled out. Family history was negative for any bone disease. Exome sequencing revealed 2 variants of LRP5 gene-intron 5 c.1015 + 1G > A and exon 5 c.892C > T. Although the former variant has been described in literature as a cause of osteoporosis in homozygous state only, it manifested as osteoporosis in our patient, in the heterozygous state, in presence of a second variant of uncertain significance. However, eye involvement, which is classically seen in "osteoporosis-pseudoglioma syndrome" homozygote, was absent in our patient. Genetic analysis of the parents revealed father to be a carrier of intron 5 c.1015 + 1G > A and mother exon 5 c.892C > T variants of the LRP5 gene. However, none of them had osteoporosis on bone densitometry. The patient was subsequently treated with IV zoledronic acid (planned to be administered annually) and showed improvement in bone density by 11% at the spine and 9.5% at the left femur; there were no further fractures over 1 year of follow-up.

2.
Calcif Tissue Int ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39316135

ABSTRACT

Osteoporosis is a skeletal disorder characterized by abnormal bone microarchitecture and low bone mineral density (BMD), responsible for an increased risk of fractures and skeletal fragility. It is a common pathology of the aging population. However, when osteoporosis occurs in children or young adults, it strongly suggests an underlying genetic etiology. Over the past two decades, several genes have been identified as responsible for this particular kind of considered monogenic early-onset osteoporosis (EOOP) or juvenile osteoporosis, the main ones being COL1A1, COL1A2, LRP5, LRP6, WNT1, and more recently PLS3. In this study, the objective was to characterize a large cohort of patients diagnosed with primary osteoporosis and to establish its diagnosis yield. The study included 577 patients diagnosed with primary osteoporosis and its diagnosis yield was established. To this end, next-generation sequencing (NGS) of a panel of 21 genes known to play a role in bone fragility was carried out. A genetic etiology was explained in about 18% of cases, while the others remain unexplained. The most frequently identified gene associated with EOOP is LRP5, which was responsible for 8.2% of the positive results (47 patients). As unexpected, 17 patients (2.9%) had a variant in PLS3 which encodes plastin 3. Alterations of PLS3 are associated with dominant X-linked osteoporosis, an extremely rare disease. Given the rarity of this disease, we focused on it. It was observed that males were more affected than females, but it is noteworthy that three females with a particularly severe phenotype were identified. Of these three, two had a variant in an additional gene involved in EOP, illustrating the probable existence of digenism. We significantly increase the number of variants potentially associated with EOOP, especially in PLS3. The results of our study demonstrate that molecular analysis in EOOP is beneficial and useful.

3.
J Transl Med ; 22(1): 811, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223648

ABSTRACT

BACKGROUND: Mechanical unloading-induced bone loss threatens prolonged spaceflight and human health. Recent studies have confirmed that osteoporosis is associated with a significant reduction in bone microvessels, but the relationship between them and the underlying mechanism under mechanical unloading are still unclear. METHODS: We established a 2D clinostat and hindlimb-unloaded (HLU) mouse model to simulate unloading in vitro and in vivo. Micro-CT scanning was performed to assess changes in the bone microstructure and mass of the tibia. The levels of CD31, Endomucin (EMCN) and histone deacetylase 6 (HDAC6) in tibial microvessels were detected by immunofluorescence (IF) staining. In addition, we established a coculture system of microvascular endothelial cells (MVECs) and osteoblasts, and qRT‒PCR or western blotting was used to detect RNA and protein expression; cell proliferation was detected by CCK‒8 and EdU assays. ChIP was used to detect whether HDAC6 binds to the miRNA promoter region. RESULTS: Bone mass and bone microvessels were simultaneously significantly reduced in HLU mice. Furthermore, MVECs effectively promoted the proliferation and differentiation of osteoblasts under coculture conditions in vitro. Mechanistically, we found that the HDAC6 content was significantly reduced in the bone microvessels of HLU mice and that HDAC6 inhibited the expression of miR-375-3p by reducing histone acetylation in the miR-375 promoter region in MVECs. miR-375-3p was upregulated under unloading and it could inhibit MVEC proliferation by directly targeting low-density lipoprotein-related receptor 5 (LRP5) expression. In addition, silencing HDAC6 promoted the miR-375-3p/LRP5 pathway to suppress MVEC proliferation under mechanical unloading, and regulation of HDAC6/miR-375-3p axis in MVECs could affect osteoblast proliferation under coculture conditions. CONCLUSION: Our study revealed that disuse-induced bone loss may be closely related to a reduction in the number of bone microvessels and that the modulation of MVEC function could improve bone loss induced by unloading. Mechanistically, the HDAC6/miR-375-3p/LRP5 pathway in MVECs might be a promising strategy for the clinical treatment of unloading-induced bone loss.


Subject(s)
Cell Proliferation , Endothelial Cells , Epigenesis, Genetic , Hindlimb Suspension , Histone Deacetylase 6 , MicroRNAs , Microvessels , Osteoblasts , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Endothelial Cells/metabolism , Histone Deacetylase 6/metabolism , Histone Deacetylase 6/genetics , Microvessels/pathology , Osteoblasts/metabolism , Mice, Inbred C57BL , Mice , Coculture Techniques , Cell Differentiation , Male , Bone Resorption/pathology , Base Sequence , Histone Deacetylase Inhibitors/pharmacology
4.
J Vitreoretin Dis ; 8(4): 457-461, 2024.
Article in English | MEDLINE | ID: mdl-39148564

ABSTRACT

Purpose: To describe a patient with familial exudative vitreoretinopathy (FEVR) and the treatment course. Methods: A case was evaluated. Results: A 3-year-old boy presented with severe onset of FEVR, with a subhyaloid hemorrhage in 1 eye and tractional retinal detachment (TRD) in the fellow eye. Aggressive treatment with retinal photocoagulation and repeated injections of intravitreal bevacizumab resulted in stability of the retinal disease. Lens-sparing vitrectomy was performed for the TRD. The treatment effect was durable, and the patient retained useful vision in the better eye at 19 years of age. A subsequent genetic analysis showed 2 novel heterozygous missense mutations in LRP5 and TSPAN12. Conclusions: The presence of 2 novel mutations associated with severe FEVR identified in our patient is in agreement with in vitro studies showing that a more severe reduction in Norrin/ß-catenin signal activity occurs with the combination of 2 mutations.

5.
Arch Toxicol ; 98(10): 3365-3380, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38971901

ABSTRACT

Steroid-induced osteonecrosis of the femoral head (SONFH) is a prevalent form of osteonecrosis in young individuals. More efficacious clinical strategies must be used to prevent and treat this condition. One of the mechanisms through which SONFH operates is the disruption of normal differentiation in bone marrow adipocytes and osteoblasts due to prolonged and extensive use of glucocorticoids (GCs). In vitro, it was observed that atorvastatin (ATO) effectively suppressed the impact of dexamethasone (DEX) on bone marrow mesenchymal stem cells (BMSCs), specifically by augmenting their lipogenic differentiation while impeding their osteogenic differentiation. To investigate the underlying mechanisms further, we conducted transcriptome sequencing of BMSCs subjected to different treatments, leading to the identification of Wnt5a as a crucial gene regulated by ATO. The analyses showed that ATO exhibited the ability to enhance the expression of Wnt5a and modulate the MAPK pathway while regulating the Wnt canonical signaling pathway via the WNT5A/LRP5 pathway. Our experimental findings provide further evidence that the combined treatment of ATO and DEX effectively mitigates the effects of DEX, resulting in the upregulation of osteogenic genes (Runx2, Alpl, Tnfrsf11b, Ctnnb1, Col1a) and the downregulation of adipogenic genes (Pparg, Cebpb, Lpl), meanwhile leading to the upregulation of Wnt5a expression. So, this study offers valuable insights into the potential mechanism by which ATO can be utilized in the prevention of SONFH, thereby holding significant implications for the prevention and treatment of SONFH in clinical settings.


Subject(s)
Atorvastatin , Dexamethasone , Femur Head Necrosis , Glucocorticoids , Mesenchymal Stem Cells , Osteogenesis , Wnt-5a Protein , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Atorvastatin/pharmacology , Animals , Femur Head Necrosis/chemically induced , Femur Head Necrosis/prevention & control , Dexamethasone/pharmacology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Glucocorticoids/pharmacology , Osteogenesis/drug effects , Male , Cell Differentiation/drug effects , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Wnt Signaling Pathway/drug effects , Rats, Sprague-Dawley , Cells, Cultured , Adipogenesis/drug effects , Rats
6.
Ophthalmol Sci ; 4(5): 100514, 2024.
Article in English | MEDLINE | ID: mdl-38881609

ABSTRACT

Purpose: To determine the clinical characteristics of familial exudative vitreoretinopathy (FEVR) associated with or without pathogenic variants of the Norrin/ß-catenin genes. Design: This was a multicenter, cross-sectional, observational, and genetic study. Subjects: Two-hundred eighty-one probands with FEVR were studied. Methods: Whole-exome sequence and/or Sanger sequence was performed for the Norrin/ß-catenin genes, the FZD4, LRP5, TSPAN12, and NDP genes on blood collected from the probands. The clinical symptoms of the probands with or without the pathogenic variants were assessed as well as differences in the inter Norrin/ß-catenin genes. Main Outcome Measures: The phenotype associated with or without pathogenic variants of the Norrin/ß-catenin genes. Results: One-hundred eight probands (38.4%) had 88 different pathogenic or likely pathogenic variants in the genes: 24 with the FZD4, 42 with the LRP5, 10 with the TSPAN12, and 12 with the NDP gene. Compared with the 173 probands without pathogenic variants, the 108 variant-positive probands had characteristics of familial predisposition (63.9% vs. 37.6%, P < 0.0001), progression during infancy (75.0% vs. 53.8%, P = 0.0004), asymmetrical severity between the 2 eyes (50.0% vs. 37.6%, P = 0.0472), and nonsyndromic characteristics (10.2% vs. 17.3%, P = 0.1185). The most frequent stage at which the more severe eye conditions was present was at stage 4 in both groups (40.7% vs. 34.7%). However, the advanced stages of 3 to 5 in the more severe eye were found more frequently in probands with variants than in those without variants (83.3% vs. 58.4%, P < 0.0001). Patients with rhegmatogenous retinal detachments progressed from stage 1 or 2 were found less frequently in the variant-positive probands (8.3% vs. 17.3%, P = 0.0346). Nine probands with NDP variants had features different from probands with typical Norrin/ß-catenin gene variants including the sporadic, symmetrical, and systemic characteristics consistent with Norrie disease. Conclusions: The results showed that the clinical characteristics of FEVR of patients with variants in the Norrin/ß-catenin genes are different from those with other etiologies. We recommend that clinicians who diagnose a child with FEVR perform genetic testing so that the parents can be informed on the prognosis of the vision and general health in the child. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

7.
Int J Mol Sci ; 25(12)2024 06 20.
Article in English | MEDLINE | ID: mdl-38928468

ABSTRACT

Low-density lipoprotein receptor-related protein 5 (LRP5) is a constitutively expressed receptor with observed roles in bone homeostasis, retinal development, and cardiac metabolism. However, the function of LRP5 in the brain remains unexplored. This study investigates LRP5's role in the central nervous system by conducting an extensive analysis using RNA-seq tools and in silico assessments. Two protein-coding Lrp5 transcripts are expressed in mice: full-length Lrp5-201 and a truncated form encoded by Lrp5-202. Wt mice express Lrp5-201 in the liver and brain and do not express the truncated form. Lrp5-/- mice express Lrp5-202 in the liver and brain and do not express Lrp5-201 in the liver. Interestingly, Lrp5-/- mouse brains show full-length Lrp5-201 expression, suggesting that LRP5 has a role in preserving brain function during development. Functional gene enrichment analysis on RNA-seq unveils dysregulated expression of genes associated with neuronal differentiation and synapse formation in the brains of Lrp5-/- mice compared to Wt mice. Furthermore, Gene Set Enrichment Analysis highlights downregulated expression of genes involved in retinol and linoleic acid metabolism in Lrp5-/- mouse brains. Tissue-specific alternative splicing of Lrp5 in Lrp5-/- mice supports that the expression of LRP5 in the brain is needed for the correct synthesis of vitamins and fatty acids, and it is indispensable for correct brain development.


Subject(s)
Alternative Splicing , Brain , Low Density Lipoprotein Receptor-Related Protein-5 , Animals , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Brain/metabolism , Brain/growth & development , Mice , Mice, Knockout , Liver/metabolism , Liver/growth & development , Mice, Inbred C57BL
8.
Bone ; 187: 117172, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38909879

ABSTRACT

Gain-of-function mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) can cause high-bone-mass (HBM) phenotype, with 19 identified mutations so far. The A242T mutation in LRP5 has been found in 9 families, making it one of the most prevalent mutations. However, the correlation between the A242T mutation and HBM phenotype remains unverified in animal models. This study aimed to investigate the bone properties in a new transgenic mouse model carrying the LRP5 A241T missense mutation, equivalent to A242T in humans. Heterozygous Lrp5A241T mice were generated using CRISPR/Cas9 genome editing. Body weight increased with age from 4 to 16 weeks, higher in males than females, with no difference between Lrp5A241T mice and wild-type control. Micro-CT showed slightly longer femur and notably elevated trabecular bone mass of the femur and fifth lumbar spine with higher bone mineral density, bone volume fraction, and trabecular thickness in Lrp5A241T mice compared to wild-type mice. Additionally, increased cortical bone thickness and volume of the femur shaft and skull were observed in Lrp5A241T mice. Three-point bending tests of the tibia demonstrated enhanced bone strength properties in Lrp5A241T mice. Histomorphometry confirmed that the A241T mutation increased bone formation without affecting osteoblast number and reduced resorption activities in vivo. In vitro experiments indicated that the LRP5 A241T mutation enhanced osteogenic capacity of osteoblasts with upregulation of the Wnt signaling pathway, with no significant impact on the resorptive activity of osteoclasts. In summary, mice carrying the LRP5 A241T mutation displayed high bone mass and quality due to enhanced bone formation and reduced bone resorption in vivo, potentially mediated by the augmented osteogenic potential of osteoblasts. Continued investigation into the regulatory mechanisms of its bone metabolism and homeostasis may contribute to the advancement of novel therapeutic strategies for bone disorders.


Subject(s)
Bone Density , Low Density Lipoprotein Receptor-Related Protein-5 , Mice, Transgenic , Phenotype , Animals , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Female , Male , Bone Density/genetics , Osteoblasts/metabolism , Mutation/genetics , Mice , Bone and Bones/metabolism , Bone and Bones/diagnostic imaging , Bone and Bones/pathology , X-Ray Microtomography , Organ Size , Osteogenesis/genetics , Body Weight/genetics , Femur/diagnostic imaging , Femur/pathology , Femur/metabolism , Osteoclasts/metabolism
9.
J Cancer ; 15(10): 3215-3226, 2024.
Article in English | MEDLINE | ID: mdl-38706907

ABSTRACT

The role of LRP5, a critical receptor in the Wnt signaling pathway, remains unexplored in tongue squamous cell carcinoma (TSCC). This study investigates the impact of LRP5 knockdown on the biological behaviors of TSCC cell lines both in vitro and in vivo. Our findings indicate that LRP5 knockdown significantly enhances cell proliferation, migration, and invasion in CAL27 and SCC25 cell lines. RNA-seq analysis reveals compensatory activation of the Akt pathway, with 119 genes significantly upregulated post-LRP5 knockdown. Elevated MMP1 expression suggests its potential involvement in TSCC progression. Western blot analysis demonstrates increased Akt phosphorylation, upregulated proliferation-related PCNA, and downregulated apoptosis-related caspase-3 after LRP5 knockdown. Down-regulation of E-cadherin and ß-Catenin, proteins associated with cell adhesion and invasion, further elucidates the molecular mechanism underlying increased cell migration and invasion. Our study concludes that compensatory Akt pathway activation is essential for the LRP5 knockdown-induced migration and proliferation of CAL27 and SCC25 cells. These results highlight LRP5 as a potential therapeutic target for TSCC. Simultaneous inhibition of Wnt and Akt signaling emerges as a promising approach for TSCC treatment.

10.
Hum Genomics ; 18(1): 53, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802968

ABSTRACT

BACKGROUND: The human lineage has undergone a postcranial skeleton gracilization (i.e. lower bone mass and strength relative to body size) compared to other primates and archaic populations such as the Neanderthals. This gracilization has been traditionally explained by differences in the mechanical load that our ancestors exercised. However, there is growing evidence that gracilization could also be genetically influenced. RESULTS: We have analyzed the LRP5 gene, which is known to be associated with high bone mineral density conditions, from an evolutionary and functional point of view. Taking advantage of the published genomes of archaic Homo populations, our results suggest that this gene has a complex evolutionary history both between archaic and living humans and within living human populations. In particular, we identified the presence of different selective pressures in archaics and extant modern humans, as well as evidence of positive selection in the African and South East Asian populations from the 1000 Genomes Project. Furthermore, we observed a very limited evidence of archaic introgression in this gene (only at three haplotypes of East Asian ancestry out of the 1000 Genomes), compatible with a general erasing of the fingerprint of archaic introgression due to functional differences in archaics compared to extant modern humans. In agreement with this hypothesis, we observed private mutations in the archaic genomes that we experimentally validated as putatively increasing bone mineral density. In particular, four of five archaic missense mutations affecting the first ß-propeller of LRP5 displayed enhanced Wnt pathway activation, of which two also displayed reduced negative regulation. CONCLUSIONS: In summary, these data suggest a genetic component contributing to the understanding of skeletal differences between extant modern humans and archaic Homo populations.


Subject(s)
Evolution, Molecular , Low Density Lipoprotein Receptor-Related Protein-5 , Neanderthals , Humans , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Animals , Neanderthals/genetics , Selection, Genetic/genetics , Hominidae/genetics , Haplotypes/genetics , Bone Density/genetics , Genome, Human/genetics
11.
Osteoporos Int ; 35(8): 1395-1406, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38625381

ABSTRACT

Osteoporosis-pseudoglioma syndrome (OPPG) and LRP5 high bone mass (LRP5-HBM) are two rare bone diseases with opposite clinical symptoms caused by loss-of-function and gain-of-function mutations in LRP5. Bisphosphonates are an effective treatment for OPPG patients. LRP5-HBM has a benign course, and age-related bone loss is found in one LRP5-HBM patient. PURPOSE: Low-density lipoprotein receptor-related protein 5 (LRP5) is involved in the canonical Wnt signaling pathway. The gain-of-function mutation leads to high bone mass (LRP5-HBM), while the loss-of-function mutation leads to osteoporosis-pseudoglioma syndrome (OPPG). In this study, the clinical manifestations, disease-causing mutations, treatment, and follow-up were summarized to improve the understanding of these two diseases. METHODS: Two OPPG patients and four LRP5-HBM patients were included in this study. The clinical characteristics, biochemical and radiological examinations, pathogenic mutations, and structural analysis were summarized. Furthermore, several patients were followed up to observe the treatment effect and disease progress. RESULTS: Congenital blindness, persistent bone pain, low bone mineral density (BMD), and multiple brittle fractures were the main clinical manifestations of OPPG. Complex heterozygous mutations were detected in two OPPG patients. The c.1455G > T mutation in exon 7 was first reported. During the follow-up, BMD of two patients was significantly improved after bisphosphonate treatment. On the contrary, typical clinical features of LRP5-HBM included extremely high BMD without fractures, torus palatinus and normal vision. X-ray showed diffuse osteosclerosis. Two heterozygous missense mutations were detected in four patients. In addition, age-related bone loss was found in one LRP5-HBM patient after 12-year of follow-up. CONCLUSION: This study deepened the understanding of the clinical characteristics, treatment, and follow-up of OPPG and LRP5-HBM; expanded the pathogenic gene spectrum of OPPG; and confirmed that bisphosphonates were effective for OPPG. Additionally, it was found that Ala242Thr mutation could not protect LRP5-HBM patients from age-related bone loss. This phenomenon deserves further study.


Subject(s)
Bone Density Conservation Agents , Bone Density , Diphosphonates , Low Density Lipoprotein Receptor-Related Protein-5 , Mutation , Humans , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Bone Density/physiology , Bone Density/genetics , Female , Bone Density Conservation Agents/therapeutic use , Bone Density Conservation Agents/pharmacology , Male , Diphosphonates/therapeutic use , Diphosphonates/pharmacology , Adult , Follow-Up Studies , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/physiopathology , Osteogenesis Imperfecta/drug therapy , Osteogenesis Imperfecta/complications , Adolescent , Young Adult , Middle Aged , Child
12.
J Biochem Mol Toxicol ; 38(4): e23677, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38528715

ABSTRACT

The study investigated the potential association of the low-density lipoprotein (LDL) genome with endometrial cancer progression based on the Gene Expression Omnibus data set and The Cancer Genome Atlas data set. Differential and weighted gene coexpression network analysis was performed on endometrial cancer transcriptome datasets GSE9750 and GSE106191. The protein-protein interaction network was built using LDL-receptor proteins and the top 50 tumor-associated genes. Low-density lipoprotein-related receptors 5/6 (LRP5/6) in endometrial cancer tissues were correlated with oncogenes, cell cycle-related genes, and immunological checkpoints using Spearman correlation. MethPrimer predicted the LRP5/6 promoter CpG island. LRP2, LRP6, LRP8, LRP12, low-density lipoprotein receptor-related protein-associated protein, and LRP5 were major LDL-receptor-related genes associated with endometrial cancer. LRP5/6 was enriched in various cancer-related pathways and may be a key LDL-receptor-related gene in cancer progression. LRP5/6 may be involved in the proliferation process of endometrial cancer cells by promoting the expression of cell cycle-related genes. LRP5/6 may be involved in the proliferation of endometrial cancer cells by promoting the expression of cell cycle-related genes. LRP5/6 may promote the immune escape of cancer cells by promoting the expression of immune checkpoints, promoting endometrial cancer progression. The MethPrimer database predicted that the LRP5/6 promoter region contained many CpG islands, suggesting that DNA methylation can occur in the LRP5/6 promoter region. LRP5/6 may aggravate endometrial cancer by activating the phosphoinositide 3-kinase/protein kinase B pathway.


Subject(s)
Endometrial Neoplasms , Low Density Lipoprotein Receptor-Related Protein-5 , Humans , Female , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Phosphatidylinositol 3-Kinases , Receptors, LDL , Endometrial Neoplasms/genetics , Lipoproteins, LDL
13.
J Orthop Surg Res ; 19(1): 104, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302983

ABSTRACT

OBJECTIVE: To analyze the relationship between the polymorphism and mutation of rs7125942 and rs3736228 locus in the low-density lipoprotein receptor-related protein 5 (LRP5) genotype and bone mineral density (BMD) in postmenopausal women in Xinjiang, China, to provide a basis for prevention and treatment of the disease. METHODS: According to the results of dual-energy X-ray (DEXA) determination of BMD, the 136 subjects were divided into three groups: Group A: normal bone mass, Group B: osteopenia, Group C: osteoporosis. 1. Age, body, mass index (BMI), and menopause of all subjects were recorded. 2. Fasting blood glucose (FBG), glycosylated hemoglobin (HbA1c), calcium (Ca), phosphorus (P), alkaline phosphatase (ALP), and clinical biochemical data were determined. 3. LRP5 locus polymorphisms were determined by time-of-flight mass spectrometry. RESULTS: 1. Compared with group A, the age, ALP, Cr, and BUN levels in group B and group C were increased, but UA levels were lower (P < 0.05), and Serum P was higher in the group C (P < 0.05). 2. There was no statistically significant difference in the prevalence of diabetes between the three groups (P > 0.05). 3. The ROC curves for different BMD sites such as L1, L2, L3, L4, L total, and femoral neck were 0.929, 0.955, 0.901, 0.914, 0.885, and 0.873 (P < 0.01). 4. At rs7125942 locus, there was statistically significant difference in the distribution of wild-type (CC) and mutant (CG) with the normal bone mass (NBM) group and the abnormal bone mass (ABM) group (P < 0.05). 5. At rs7125942 locus, compared with wild-type (CC), mutant (CG) had lower LDL and FPG in NBM group (P < 0.05), and lower serum ALP in the ABM group (P < 0.05). At rs3736228 locus, the BMD (Femoral neck) of mutant (CT/TT) was lower than that of wild-type (CC) in the NBM group (P < 0.05). 6. Age and menopausal years were negatively correlated with BMD of the femoral neck and L1-4 (P < 0.05), and BMI and TG were positively (P < 0.05), and the results of multiple linear regression analysis showed that age, BMI, and TG were both independent factors affecting BMD (P < 0.05).


Subject(s)
Low Density Lipoprotein Receptor-Related Protein-5 , Osteoporosis, Postmenopausal , Humans , Female , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Postmenopause/genetics , Bone Density/genetics , Polymorphism, Genetic , Mutation , Osteoporosis, Postmenopausal/genetics
14.
JCEM Case Rep ; 2(3): luae021, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38404691

ABSTRACT

A 24-year-old female patient was diagnosed with osteoporosis after presenting with numerous fractures throughout her childhood and adolescence. Risk factors included chronic constipation, severe vitamin D deficiency, and long-term high-dose steroid use for severe eczema. Metabolic bone disorder clinical exome screening (limited panel of metabolic bone disorders and gastrointestinal disorders) was undertaken and revealed a class 4 likely pathogenic variant in the LRP5 gene known to cause osteoporosis. Optimal treatment for patients with this variant is not well defined. A literature review of the condition and potential treatment options is discussed.

15.
J Cell Physiol ; 239(4): e31183, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38348695

ABSTRACT

Osteogenic differentiation is important for fracture healing. Microfibrial-associated glycoprotein 2 (MAGP2) is found to function as a proangiogenic regulator in bone formation; however, its role in osteogenic differentiation during bone repair is not clear. Here, a mouse model of critical-sized femur fracture was constructed, and the adenovirus expressing MAGP2 was delivered into the fracture site. Mice with MAGP2 overexpression exhibited increased bone mineral density and bone volume fraction (BV/TV) at Day 14 postfracture. Within 7 days postfracture, overexpression of MAGP2 increased collagen I and II expression at the fracture callus, with increasing chondrogenesis. MAGP2 inhibited collagen II level but elevated collagen I by 14 days following fracture, accompanied by increased endochondral bone formation. In mouse osteoblast precursor MC3T3-E1 cells, MAGP2 treatment elevated the expression of osteoblastic factors (osterix, BGLAP and collagen I) and enhanced ALP activity and mineralization through activating ß-catenin signaling after osteogenic induction. Besides, MAGP2 could interact with lipoprotein receptor-related protein 5 (LRP5) and upregulated its expression. Promotion of osteogenic differentiation and ß-catenin activation mediated by MAGP2 was partially reversed by LRP5 knockdown. Interestingly, ß-catenin/transcription factor 4 (TCF4) increased MAGP2 expression probably by binding to MAGP2 promoter. These findings suggest that MAGP2 may interact with ß-catenin/TCF4 to enhance ß-catenin/TCF4's function and activate LRP5-activated ß-catenin signaling pathway, thus promoting osteogenic differentiation for fracture repair. mRNA sequencing identified the potential targets of MAGP2, providing novel insights into MAGP2 function and the directions for future research.


Subject(s)
Fractures, Bone , Osteogenesis , Animals , Mice , beta Catenin/genetics , beta Catenin/metabolism , Cell Differentiation/genetics , Collagen/metabolism , Fracture Healing , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Osteoblasts/metabolism , Wnt Signaling Pathway , Male , Mice, Inbred C57BL , Cell Line
16.
Radiol Case Rep ; 19(4): 1325-1328, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38292800

ABSTRACT

Osteopetrosis is a heterogenous group of inheritable disorders which manifests as increased bone density and brittleness. The most common and mildest variant typically presents in adulthood with bone pain and pathologic fractures, including spondylolysis. We present the case of an otherwise healthy, active 17-year-old male with a history of osteopetrosis and 1 year of chronic back pain, found to have multilevel (L1-L4) spondylolysis in the setting of severe diffuse bony sclerosis consistent with osteopetrosis. While single-level spondylolysis is an uncommon complication of osteopetrosis, multilevel spondylolysis in the pediatric population is extremely rare and the genetics of prior cases studies have not been reported. Spondylolysis should be considered as one of the types of fractures that may occur in patients with osteopetrosis.

17.
Mol Immunol ; 166: 29-38, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38218080

ABSTRACT

C1s enzyme (active C1s) is a subunit of the complement C1 complex that cleaves low-density lipoprotein receptor-related proteins 5 and 6, leading to Wnt/ß-catenin pathway activation in some cell lines. Macrophages have two major functional polarization states (the classically activated M1 state and the alternatively activated M2 state) and play an essential role in atherosclerosis. An increasing amount of evidence suggests that canonical Wnt signaling is related to macrophage polarization. In this study, we explored the cytoprotective effects of C1s enzyme in macrophages. The results show that C1s enzyme activates canonical Wnt signaling in macrophages, exacerbates macrophage M2 polarization, and inhibits M1 polarization. Moreover, C1s enzyme reduces foam cell formation and simultaneously enhances efferocytosis. This study reveals a novel function of C1s enzyme in macrophages in the context of atherosclerosis.


Subject(s)
Atherosclerosis , Complement C1s , Macrophages , Wnt Signaling Pathway , Humans , Atherosclerosis/metabolism , beta Catenin/metabolism , Foam Cells/metabolism , Macrophages/metabolism , Complement C1s/metabolism
18.
Exp Cell Res ; 434(1): 113857, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38008278

ABSTRACT

Genetic factors coordinate with environmental factors to drive the pathogenesis of prostate adenocarcinoma (PRAD). SPOP is one of the most mutated genes and LRP5 mediates lipid metabolism that is abnormally altered in PRAD. Here, we investigated the potential cross-talk between SPOP and LRP5 in PRAD. We find a negative correlation between SPOP and LRP5 proteins in PRAD. SPOP knockdown increased LRP5 protein while SPOP overexpression resulted in LRP5 reduction that was fully rescued by proteasome inhibitors. LRP5 intracellular tail has SPOP binding site and the direct interaction between LRP5 and SPOP was confirmed by Co-IP and GST-pulldown. Moreover, LRP5 competed with Daxx for SPOP-mediated degradation, establishing a dynamic balance among SPOP, LRP5 and Daxx. Overexpression of LRP5 tail could shift this balance to enhance Daxx-mediated transcriptional inhibition, and inhibit T cell activity in a co-culture system. Further, we generated human and mouse prostate cancer cell lines expressing SPOP variants (F133V, A227V, R368H). SPOP-F133V and SPOP-A227V have specific effects in up-regulating the protein levels of PD-1 and PD-L1. Consistently, SPOP-F133V and SPOP-A227V show robust inhibitory effects on T cells compared to WT SPOP in co-culture. This is further supported by the mouse syngeneic model showing that SPOP-F133V and SPOP-A227V enhance tumorigenesis of prostate cancer in in-vivo condition. Taken together, our study provides evidence that SPOP-LRP5 crosstalk plays an essential role, and the genetic variants of SPOP differentially modulate the expression and activity of immune checkpoints in prostate cancer.


Subject(s)
Prostatic Neoplasms , Repressor Proteins , Male , Animals , Mice , Humans , Repressor Proteins/genetics , Repressor Proteins/metabolism , B7-H1 Antigen/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Prostatic Neoplasms/pathology , Carcinogenesis/genetics , Cell Transformation, Neoplastic , Mutation , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Molecular Chaperones/genetics , Co-Repressor Proteins/genetics
19.
Int J Environ Health Res ; 34(2): 687-696, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36617395

ABSTRACT

To investigate the potential association between LRP5 rs648438 polymorphism and the risk of skeletal fluorosis (SF) was evaluated in a cross-sectional case-control study conducted in Shanxi, China, in 2019. A total of 973 individuals were enrolled in this study, in which cases and controls were 346 and 627, respectively. SF was diagnosed according to the standard WS/192-2008 (China). The LRP5 rs648438 was detected by the multiple PCR and sequencing. LRP5 rs648438 was found to follow a dominant genetic model using a web-based SNP-STATS software. Logistic regression analysis found that the TC/CC genotype of LRP5 rs648438 might be a protective factor for SF. When stratified by gender, this protective effect of TC/CC genotype in rs648438 was pronounced in males. There was an interaction between gender and rs648438 on risk of SF. Our study suggested that TC/CC genotype of rs648438 might be a protective factor for water-drinking-type skeletal fluorosis, especially in male participants.


Subject(s)
Bone Diseases, Metabolic , Polymorphism, Genetic , Humans , Male , Bone Diseases, Metabolic/genetics , Case-Control Studies , China/epidemiology , Cross-Sectional Studies , Genotype , Polymorphism, Single Nucleotide , Receptors, LDL/genetics
20.
Eur Heart J ; 45(9): 688-703, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38152853

ABSTRACT

BACKGROUND AND AIMS: Anti-hypertensive agents are one of the most frequently used drugs worldwide. However, no blood pressure-lowering strategy is superior to placebo with respect to survival in diabetic hypertensive patients. Previous findings show that Wnt co-receptors LDL receptor-related proteins 5 and 6 (LRP5/6) can directly bind to several G protein-coupled receptors (GPCRs). Because angiotensin II type 1 receptor (AT1R) is the most important GPCR in regulating hypertension, this study examines the possible mechanistic association between LRP5/6 and their binding protein Dickkopf-1 (DKK1) and activation of the AT1R and further hypothesizes that the LRP5/6-GPCR interaction may affect hypertension and potentiate cardiac impairment in the setting of diabetes. METHODS: The roles of serum DKK1 and DKK1-LRP5/6 signalling in diabetic injuries were investigated in human and diabetic mice. RESULTS: Blood pressure up-regulation positively correlated with serum DKK1 elevations in humans. Notably, LRP5/6 physically and functionally interacted with AT1R. The loss of membrane LRP5/6 caused by injection of a recombinant DKK1 protein or conditional LRP5/6 deletions resulted in AT1R activation and hypertension, as well as ß-arrestin1 activation and cardiac impairment, possibly because of multiple GPCR alterations. Importantly, unlike commonly used anti-hypertensive agents, administration of the anti-DKK1 neutralizing antibody effectively prevented diabetic cardiac impairment in mice. CONCLUSIONS: These findings establish a novel DKK1-LRP5/6-GPCR pathway in inducing diabetic injuries and may resolve the long-standing conundrum as to why elevated blood DKK1 has deleterious effects. Thus, monitoring and therapeutic elimination of blood DKK1 may be a promising strategy to attenuate diabetic injuries.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Hypertension , Receptors, LDL , Animals , Humans , Mice , Antihypertensive Agents , Diabetic Cardiomyopathies/prevention & control , Hypertension/prevention & control , Receptors, LDL/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL