Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters











Publication year range
1.
J Environ Sci Health B ; 59(9): 562-570, 2024.
Article in English | MEDLINE | ID: mdl-39072588

ABSTRACT

Liquid smoke is a food additive and cresols are among its chemical constituents, potentially toxic to human health. Thus, the objective of this study was to develop a method to quantify cresols in liquid smoke. First, the liquid-liquid extraction with low temperature purification (LLE-LTP) was validated for cresols in water, as there are no cresol-free liquid smoke samples. Analyzes were performed by gas chromatography coupled to mass spectrometry in full scan mode. LLE-LTP was subsequently applied in five commercial samples of liquid smoke. Validation results showed that the proposed extraction method was selective for cresols, linear in the range of 0.5 to 35 mg L-1, limit of quantification of 0.5 mg L-1, recovery rate between 90% and 104% and relative standard deviation lower than 10%. The quantification of cresols in liquid smoke samples ranged from 3.0 to 38.3 mg L-1 and the concentration of these chemical contaminants in liquid smoke remained constant for at least 21 days at 25 °C.


Subject(s)
Gas Chromatography-Mass Spectrometry , Liquid-Liquid Extraction , Smoke , Liquid-Liquid Extraction/methods , Gas Chromatography-Mass Spectrometry/methods , Smoke/analysis , Cold Temperature
2.
Cell Rep Med ; 5(6): 101593, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38843842

ABSTRACT

Aging compromises brain function leading to cognitive decline. A cyclic ketogenic diet (KD) improves memory in aged mice after long-term administration; however, short-term effects later in life and the molecular mechanisms that govern such changes remain unclear. Here, we explore the impact of a short-term KD treatment starting at elderly stage on brain function of aged mice. Behavioral testing and long-term potentiation (LTP) recordings reveal that KD improves working memory and hippocampal LTP. Furthermore, the synaptosome proteome of aged mice fed a KD long-term evidence changes predominantly at the presynaptic compartment associated to the protein kinase A (PKA) signaling pathway. These findings were corroborated in vivo by western blot analysis, with high BDNF abundance and PKA substrate phosphorylation. Overall, we show that a KD modifies brain function even when it is administered later in life and recapitulates molecular features of long-term administration, including the PKA signaling pathway, thus promoting synaptic plasticity at advanced age.


Subject(s)
Aging , Cyclic AMP-Dependent Protein Kinases , Diet, Ketogenic , Long-Term Potentiation , Memory , Proteome , Signal Transduction , Animals , Cyclic AMP-Dependent Protein Kinases/metabolism , Aging/physiology , Aging/metabolism , Diet, Ketogenic/methods , Proteome/metabolism , Mice , Male , Memory/physiology , Long-Term Potentiation/physiology , Mice, Inbred C57BL , Hippocampus/metabolism , Synapses/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Neuronal Plasticity/physiology , Phosphorylation
3.
Talanta ; 273: 125870, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38460423

ABSTRACT

Pyroxasulfone is a selective, systemic, pre-emergence herbicide which acts to inhibit weeds in potato, coffee, sugar cane, eucalyptus, and soybean plantations, among others. This active ingredient was classified by Brazilian legislation as a very dangerous product for the environment, and to date there are no studies involving the development of extraction methods for monitoring this compound in environmental matrices. Therefore, the objective of this study was to optimize and validate liquid-liquid extraction with low temperature purification followed by a gas chromatography coupled to mass spectrometry analysis to determine this herbicide in honey samples. The results showed that the best extractor phase was acetonitrile and ethyl acetate (6.5 mL:1.5 mL), with recovery rates close to 100% and relative standard deviations below 11%. The validation proved that the extraction method was selective, precise, accurate and linear in the range of 3-225 µg kg-1, reaching a limit of quantification of 3 µg kg-1, with a -25.95% matrix effect. Monitoring on real samples did not reveal episodes of environmental contamination with pyroxasulfone residue.


Subject(s)
Herbicides , Honey , Isoxazoles , Sulfones , Herbicides/analysis , Gas Chromatography-Mass Spectrometry/methods , Temperature , Honey/analysis , Liquid-Liquid Extraction , Chromatography, High Pressure Liquid , Solid Phase Extraction
4.
Article in English | MEDLINE | ID: mdl-37863171

ABSTRACT

Severe mental illnesses (SMI) collectively affect approximately 20% of the global population, as estimated by the World Health Organization (WHO). Despite having diverse etiologies, clinical symptoms, and pharmacotherapies, these diseases share a common pathophysiological characteristic: the misconnection of brain areas involved in reality perception, executive control, and cognition, including the corticolimbic system. Dendritic spines play a crucial role in excitatory neurotransmission within the central nervous system. These small structures exhibit remarkable plasticity, regulated by factors such as neurotransmitter tone, neurotrophic factors, and innate immunity-related molecules, and other mechanisms - all of which are associated with the pathophysiology of SMI. However, studying dendritic spine mechanisms in both healthy and pathological conditions in patients is fraught with technical limitations. This is where animal models related to these diseases become indispensable. They have played a pivotal role in elucidating the significance of dendritic spines in SMI. In this review, the information regarding the potential role of dendritic spines in SMI was summarized, drawing from clinical and animal model reports. Also, the implications of targeting dendritic spine-related molecules for SMI treatment were explored. Specifically, our focus is on major depressive disorder and the neurodevelopmental disorders schizophrenia and autism spectrum disorder. Abundant clinical and basic research has studied the functional and structural plasticity of dendritic spines in these diseases, along with potential pharmacological targets that modulate the dynamics of these structures. These targets may be associated with the clinical efficacy of the pharmacotherapy.


Subject(s)
Autism Spectrum Disorder , Depressive Disorder, Major , Animals , Humans , Dendritic Spines/pathology , Autism Spectrum Disorder/pathology , Depressive Disorder, Major/pathology , Brain/pathology , Synaptic Transmission , Neuronal Plasticity/physiology , Synapses/pathology
5.
J Mass Spectrom ; 59(1): e4997, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38146219

ABSTRACT

Criminal practices in which an individual becomes vulnerable and prone to sexual assault after ingesting drinks spiked with doping substances have become a social concern globally. As forensic protocols require a multi-tiered strategy for chemical evidentiary analysis, the backlog of evidence has become a significant problem in the community. Herein, a fast, sensible, and complementary dual analytical methodology was developed using a single commercial paper substrate for surface-enhanced Raman spectroscopy (SERS) and paper spray mass spectrometry (PS-MS) analysis to identify psychotropic substances added to alcoholic beverages irrefutably. To study and investigate this criminal practice, pharmaceutical formulations containing distinct psychotropic substances (zolpidem, clonazepam, diazepam, and ketamine) were added to drinks typically consumed at parties and festivals (Pilsen beer, açaí Catuaba®, gin tonic, and vodka mixed with Coca-Cola Zero®). A simple liquid-liquid extraction with a low-temperature partitioning (LLE-LTP) procedure was applied to the drinks and effectively minimized matrix effects. As a preliminary analysis, SERS spectra combined with Hierarchical Clustering Analysis (HCA) provided sufficient information to investigate the samples further. The presence of the protonated species for the psychotropic substances in the spiked drinks was readily verified in the mass spectra and confirmed by tandem mass spectrometry. Finally, the results demonstrate the potential of this methodology to be easily implemented into the routine of forensic laboratories and to be further employed at harm reduction tends at parties and festivals to detect contaminated beverages promptly and irrefutably as an efficient tool to prevent such crimes.


Subject(s)
Alcoholic Beverages , Spectrum Analysis, Raman , Alcoholic Beverages/analysis , Psychotropic Drugs/analysis , Tandem Mass Spectrometry/methods , Beverages/analysis
6.
Neurobiol Learn Mem ; 205: 107840, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37805119

ABSTRACT

Environmental enrichment (EE) is known to improve memory and cognition and modulate the impact of aversive stimuli in animals, promoting the development of resilience to stressful situations. Likewise, it is known that EE can modulate synaptic plasticity as is the case of long-term potentiation (LTP). These findings have been described initially in ex vivo preparations, suggesting that the effects of EE are the result of an early modification of the synaptic excitability and transmission. In this regard, it is known that metaplasticity refers to the persistent modification, by previous activity, in the ability to induce synaptic plasticity. Our previous studies have shown that prior training in conditioned taste aversion (CTA) prevents the subsequent induction of LTP in the projection from the basolateral nucleus of the amygdala (Bla) to the insular cortex (IC) in vivo. In addition, we have shown that CTA extinction allows the induction but not the maintenance of IC-LTP of the Bla-IC pathway. Recently, we also showed that prior exposure to environmental enrichment for three weeks reduces the strength of CTA, restoring the brain-derived neurotrophic factor (BDNF) levels in the IC. The present study aimed to analyze the effects of brief exposure to an enriched environment on the strength of aversive memory, as well as on the in vivo IC-LTP. To do so, adult rats were exposed for seven days to an EE, either before CTA training or LTP induction in the Bla-IC pathway. Our results demonstrate that a seven-day exposure to an enriched environment attenuates the aversive response to a strong CTA and allows the induction but not the maintenance of LTP in the insular cortex. These findings provide evidence that metaplastic regulation in a neocortical region takes part in the mechanisms through which brief exposure to enriched environments attenuates an aversive response.


Subject(s)
Insular Cortex , Taste , Animals , Rats , Avoidance Learning/physiology , Cerebral Cortex/physiology , Conditioning, Classical/physiology , Neuronal Plasticity , Taste/physiology
7.
J Environ Sci Health B ; 58(5): 413-425, 2023.
Article in English | MEDLINE | ID: mdl-37309091

ABSTRACT

Dinotefuran is a compound belonging to the third generation of nicotinoid insecticides, and has been effective in combating pests that are resistant to conventional insecticides, such as organophosphates, carbamates, and pyrethroids. This molecule presents high-water solubility (39,830 mg L-1 at 25 °C) compared to other pesticides, which facilitates its drag and leaching to lower soil layers. Therefore, the present study aimed to optimize and validate liquid-liquid extraction with low temperature purification (LLE-LTP) to determine dinotefuran residues in water by high performance liquid chromatography with diode array detection (HPLC-DAD). The results revealed that the analyte recovery ranged from 85.44 to 89.72% with a relative standard deviation <5.8. LLE-LTP was selective, precise, accurate, and linear in the range from 10.0 to 210 µg L-1, and presented limits of detection and quantification of 5.00 and 10.00 µg L-1, respectively. The matrix effect was <14%. The stability study of dinotefuran in water revealed significant stability of this molecule in water in the absence of light (>130 days), and a half-life of 7 days in water with sunlight. LLE-LTP coupled to HPLC-DAD was a simple, easy, and efficient method for extracting and analyzing dinotefuran in water samples.


Subject(s)
Insecticides , Pesticides , Insecticides/analysis , Neonicotinoids , Pesticides/analysis , Chromatography, High Pressure Liquid/methods , Water
9.
Neurosci Lett ; 808: 137292, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37156440

ABSTRACT

Caffeic acid is a polyphenolic compound present in a vast array of dietary components. We previously showed that caffeic acid reduces the burden of brain ischemia joining evidence by others that it can attenuate different brain diseases. However, it is unknown if caffeic acid affects information processing in neuronal networks. Thus, we now used electrophysiological recordings in mouse hippocampal slices to test if caffeic acid directly affected synaptic transmission, plasticity and dysfunction caused by oxygen-glucose deprivation (OGD), an in vitro ischemia model. Caffeic acid (1-10 µM) was devoid of effect on synaptic transmission and paired-pulse facilitation in Schaffer collaterals-CA1 pyramidal synapses. Also, the magnitude of either hippocampal long-term potentiation (LTP) or the subsequent depotentiation were not significantly modified by 10 µM caffeic acid. However, caffeic acid (10 µM) increased the recovery of synaptic transmission upon re-oxygenation following 7 min of OGD. Furthermore, caffeic acid (10 µM) also recovered plasticity after OGD, as heralded by the increased magnitude of LTP after exposure. These findings show that caffeic acid does not directly affect synaptic transmission and plasticity but can indirectly affect other cellular targets to correct synaptic dysfunction. Unraveling the molecular mechanisms of action of caffeic acid may allow the design of hitherto unrecognized novel neuroprotective strategies.


Subject(s)
Hippocampus , Synaptic Transmission , Mice , Animals , Synaptic Transmission/physiology , Long-Term Potentiation/physiology , Ischemia , Neuronal Plasticity/physiology
10.
Food Chem (Oxf) ; 6: 100155, 2023 Jul 30.
Article in English | MEDLINE | ID: mdl-36582744

ABSTRACT

Chronic Non-Communicable Diseases (NCDs) have been considered a global health problem, characterized as diseases of multiple factors, which are developed throughout life, and regardless of genetics as a risk factor of important relevance, the increase in mortality attributed to the disease to environmental factors and the lifestyle one leads. Although the reactive species (ROS/RNS) are necessary for several physiological processes, their overproduction is directly related to the pathogenesis and aggravation of NCDs. In contrast, dietary polyphenols have been widely associated with minimizing oxidative stress and inflammation. In addition to their antioxidant power, polyphenols have also drawn attention for being able to modulate both gene expression and modify epigenetic alterations, suggesting an essential involvement in the prevention and/or development of some pathologies. Therefore, this review briefly explained the mechanisms in the development of some NCDs, followed by a summary of some evidence related to the interaction of polyphenols in oxidative stress, as well as the modulation of epigenetic mechanisms involved in the management of NCDs.

11.
Metabolites ; 12(12)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36557269

ABSTRACT

Volatile organic compounds (VOCs) comprises a broad class of small molecules (up to ~300 g/mol) produced by biological and non-biological sources. VOCs play a vital role in an organism's metabolism during its growth, defense, and reproduction. The well-known 6-pentyl-α-pyrone (6-PP) molecule is an example of a major volatile biosynthesized by Trichoderma atroviride that modulates the expression of PIN auxin-transport proteins in primary roots of Arabidopsis thaliana during their relationship. Their beneficial relation includes lateral root formation, defense induction, and increased plant biomass production. The role of 6-PP has been widely studied due to its relevance in this cross-kingdom relationship. Conventional VOCs measurements are often destructive; samples require further preparation, and the time resolution is low (around hours). Some techniques enable at-line or real-time analyses but are highly selective to defined compounds. Due to these technical constraints, it is difficult to acquire relevant information about the dynamics of VOCs in biological systems. Low-temperature plasma (LTP) ionization allows the analysis of a wide range of VOCs by mass spectrometry (MS). In addition, LTP-MS requires no sample preparation, is solvent-free, and enables the detection of 6-PP faster than conventional analytical methods. Applying static statistical methods such as Principal Component Analysis (PCA) and Discriminant Factorial Analysis (DFA) leads to a loss of information since the biological systems are dynamic. Thus, we applied a time series analysis to find patterns in the signal changes. Our results indicate that the 6-PP signal is constitutively emitted by T. atroviride only; the signal shows high skewness and kurtosis. In A. thaliana grown alone, no signal corresponding to 6-PP is detected above the white noise level. However, during T. atroviride-A. thaliana interaction, the signal performance showed reduced skewness and kurtosis with high autocorrelation. These results suggest that 6-PP is a physiological variable that promotes homeostasis during the plant-fungal relationship. Although the molecular mechanism of this cross-kingdom control is still unknown, our study indicates that 6-PP has to be regulated by A. thaliana during their interaction.

12.
Front Mol Neurosci ; 15: 988790, 2022.
Article in English | MEDLINE | ID: mdl-36277495

ABSTRACT

The ability to learn from experience and consequently adapt our behavior is one of the most fundamental capacities enabled by complex and plastic nervous systems. Next to cellular and systems-level changes, learning and memory formation crucially depends on molecular signaling mechanisms. In particular, the extracellular-signal regulated kinase 1/2 (ERK), historically studied in the context of tumor growth and proliferation, has been shown to affect synaptic transmission, regulation of neuronal gene expression and protein synthesis leading to structural synaptic changes. However, to what extent the effects of ERK are specifically related to memory formation and stabilization, or merely the result of general neuronal activation, remains unknown. Here, we review the signals leading to ERK activation in the nervous system, the subcellular ERK targets associated with learning-related plasticity, and how neurons with activated ERK signaling may contribute to the formation of the memory trace.

15.
Int J Mol Sci ; 23(13)2022 Jun 26.
Article in English | MEDLINE | ID: mdl-35806103

ABSTRACT

In ADHD treatment, methylphenidate (MPH) is the most frequently used medication. The present work provides evidence that MPH restored behavioral impairments and neuroplasticity due to changes in AMPAR subunit composition and distribution, as well as maturation of dendritic spines, in a prenatal nicotine exposure (PNE) ADHD mouse model. PNE animals and controls were given a single oral dose of MPH (1 mg/kg), and their behavior was tested for attention, hyperactivity, and working memory. Long-term potentiation (LTP) was induced and analyzed at the CA3/CA1 synapse in hippocampal slices taken from the same animals tested behaviorally, measuring fEPSPs and whole-cell patch-clamp EPSCs. By applying crosslinking and Western blots, we estimated the LTP effects on AMPAR subunit composition and distribution. The density and types of dendritic spines were quantified by using the Golgi staining method. MPH completely restored the behavioral impairments of PNE mice. Reduced LTP and AMPA-receptor-mediated EPSCs were also restored. EPSC amplitudes were tightly correlated with numbers of GluA1/GluA1 AMPA receptors at the cell surface. Finally, we found a lower density of dendritic spines in hippocampal pyramidal neurons in PNE mice, with a higher fraction of thin-type immature spines and a lower fraction of mushroom mature spines; the latter effect was also reversed by MPH.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Methylphenidate , Animals , Attention Deficit Disorder with Hyperactivity/metabolism , Disease Models, Animal , Female , Hippocampus/metabolism , Methylphenidate/pharmacology , Mice , Neuronal Plasticity , Nicotine/metabolism , Nicotine/pharmacology , Pregnancy , Receptors, AMPA/metabolism
16.
J Environ Sci Health B ; 57(9): 697-709, 2022.
Article in English | MEDLINE | ID: mdl-35861013

ABSTRACT

Florpyrauxifen-benzyl is a systemic herbicide which acts on weeds of common occurrence in rice cultivation areas using flooded or rainfed systems. The Brazilian Health Regulatory Agency (ANVISA) authorized the commercialization of this pesticide, but did not establish guidelines with an extraction and quantification method of residues of this compound as a form of environmental monitoring. Therefore, the present study aimed to optimize and validate the liquid-liquid extraction with low temperature purification (LLE-LTP) to determine florpyrauxifen-benzyl content in water samples by high performance liquid chromatography with diode array detection (HPLC-DAD). The recovery ranged from 95.84 to 105.4% with a relative standard deviation less than 1.5. LLE-LTP was selective, precise, accurate, linear in the range from 4.00 to 150 µg L-1, and the limit of quantification was 4.00 µg L-1. The stability study of the compound in water revealed its degradation in 25 days and DT50 in approximately 5 days. LLE-LTP coupled to HPLC-DAD presented itself as a simple, easy and efficient method of extracting and analyzing it in water samples.


Subject(s)
Herbicides , Pesticides , Water Pollutants, Chemical , Chromatography, High Pressure Liquid/methods , Herbicides/chemistry , Pesticides/analysis , Water , Water Pollutants, Chemical/analysis
17.
Neurobiol Stress ; 17: 100440, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35252485

ABSTRACT

Stress-related disorders display differences at multiple levels according to sex. While most studies have been conducted in male rodents, less is known about comparable outcomes in females. In this study, we found that the chronic restraint stress model (2.5 h/day for 14 days) triggers different somatic responses in male and female adult rats. Chronic restraint produced a loss in sucrose preference and novel location preference in male rats. However, chronic restraint failed to produce loss of sucrose preference in females, while it improved spatial performance. We then characterized the molecular responses associated with these behaviors in the hippocampus, comparing the dorsal and ventral poles. Notably, sex- and hippocampal pole-specific transcriptional signatures were observed, along with a significant concordance between the female ventral and male dorsal profiles. Functional enrichment analysis revealed both shared and specific terms associated with each pole and sex. By looking into signaling pathways that were associated with these terms, we found an ample array of sex differences in the dorsal and, to a lesser extent, in the ventral hippocampus. These differences were mainly present in synaptic TrkB signaling, Akt pathway, and glutamatergic receptors. Unexpectedly, the effects of stress on these pathways were rather minimal and mostly dissociated from the sex-specific behavioral outcomes. Our study suggests that female rats are resilient and males susceptible to the restraint stress exposure in the sucrose preference and object location tests, while the activity of canonical signaling pathways is primarily determined by sex rather than stress in the dorsal and ventral hippocampus.

18.
J Environ Sci Health B ; 57(3): 165-175, 2022.
Article in English | MEDLINE | ID: mdl-35175180

ABSTRACT

Urine is one of the biological matrices most used for detecting human contamination, as it is representative and easily obtained via noninvasive sampling. This study proposes a fast, accurate, and ecological method based on liquid-liquid microextraction with low-temperature partition (µLLE/LTP). It was validated to determine nine pesticides (lindane, alachlor, aldrin, chlorpyrifos, dieldrin, endrin, DDT, bifenthrin, and permethrin) in human urine, in association with gas chromatography coupled with mass spectrometry (GC-MS). The technique was optimized through a factorial design. The best conditions for the simultaneous extraction of the analytes comprised the addition of 600 µL of water and 600 µL of acetonitrile (extracting solvent) to a 500-µL urine sample, followed by vortexing for 60 s. By freezing the samples for 4 h, it was possible to extract the pesticides and perform the extract clean-up simultaneously. The parameters selectivity, linearity, limit of detection (LOD), limit of quantification (LOQ), precision, and accuracy were used to appraise the performance of the method. Good values of selectivity and linearity (R2 > 0.990), LOQ (0.39-1.02 µg L-1), accuracy (88-119% recovery), and precision (%CV ≤ 15%) were obtained. The µLLE/LTP-GC-MS method was applied to authentic urine samples collected from volunteers in Southeast Brazil.


Subject(s)
Chlorpyrifos , Liquid Phase Microextraction , Pesticide Residues , Pesticides , Chlorpyrifos/analysis , Gas Chromatography-Mass Spectrometry/methods , Humans , Pesticide Residues/analysis , Pesticides/analysis
19.
Rev Alerg Mex ; 69 Suppl 1: s38-s45, 2022.
Article in Spanish | MEDLINE | ID: mdl-34998309

ABSTRACT

Pollen-food syndrome (PFS) is characterized by allergic sensitization to proteins of pollens of grasses, weeds, and trees, which produce a type I hypersensitivity reaction that is associated with the intake of plant-derived foods that are usually in raw form. The most frequently-associated protein families are: profilins, PR-10, and ns LTP; however, others such as thaumatins, isoflavones, reductases, and B1,2 glucanases have been documented. The prototype syndrome is birch-fruit-vegetables, and of these, the most common is birch-apple due to the fact that more than 70 % of patients who are sensitized to birch present symptoms associated with the intake of plant-derived foods. The symptoms are restricted to the oral cavity; however, some patients may present systemic symptoms, including anaphylaxis, so it is important to identify the type of protein that is involved since the type of reaction that the patient may present depends on that. In spite of everything, it is considered an entity that may be under diagnosed due to its complex diagnosis and treatment, since the procedure, in most cases, is an elimination diet, because treatment with immunotherapy is not yet available. The purpose of this review is to describe the pathophysiology, as well as the most common pollen-food syndromes.


El síndrome polen-alimento (SPA) se caracteriza por la sensibilización alérgica a proteínas de pólenes de pastos, malezas y árboles, que producen una reacción de hipersensibilidad de tipo I, asociada a la ingesta de alimentos derivados de plantas, usualmente en forma cruda. Las familias de proteínas que más frecuentemente están asociadas son las profilinas, las PR-10 y las ns LTP; sin embargo, se ha documentado otras, como las taumatinas, isoflavonas reductasas y las B1,2 gluconasas. El síndrome prototipo es el abedul-frutas-vegetales, y de ellos el más común es el abedul-manzana, debido a que más de 70 % de los pacientes sensibilizados al abedul presentan síntomas asociados a la ingesta de alimentos derivados de plantas. Los síntomas están restringidos a la cavidad oral; sin embargo, algunos pacientes pueden presentar síntomas sistémicos, incluso anafilaxia, por lo que es importante identificar el tipo de proteína implicada, ya que de eso depende el tipo de reacción que puede presentar el paciente. Pese a todo, se considera una entidad que puede estar subdiagnosticada debido a su valoración y tratamiento complejos, debido a que el procedimiento en la mayor parte de los casos es dieta de eliminación, ya que aún no está disponible el tratamiento con inmunoterapia. El objetivo de esta revisión es describir la fisiopatología, así como los síndromes polen-alimento más comunes.


Subject(s)
Food Hypersensitivity , Allergens , Cross Reactions , Food Hypersensitivity/diagnosis , Fruit , Humans , Plant Proteins , Pollen , Skin Tests
20.
Behav Brain Res ; 417: 113589, 2022 01 24.
Article in English | MEDLINE | ID: mdl-34547342

ABSTRACT

Synaptic plasticity is a key mechanism of neural plasticity involved in learning and memory. A reduced or impaired synaptic plasticity could lead to a deficient learning and memory. On the other hand, besides reducing hipocampal dependent learning and memory, fimbria-fornix lesion affects LTP. However, we have consistently shown that stimulation of the basolateral amygdala (BLA) 15 min after water maze training is able to improve spatial learning and memory in fimbria fornix lesioned rats while also inducing changes in the expression of plasticity-related genes expression in memory associated brain regions like the hippocampus and prefrontal cortex. In this study we test that hypothesis: whether BLA stimulation 15 min after water maze training can improve LTP in the hippocampus of fimbria-fornix lesioned rats. To address this question, we trained fimbria-fornix lesioned rats in water maze for four consecutive days, and the BLA was bilaterally stimulated 15 min after each training session.Our data show that trained fimbria-fornix lesioned rats develop a partially improved LTP in dentated gyrus compared with the non-trained fimbria-fornix lesioned rats. In contrast, dentated gyrus LTP in trained and BLA stimulated fimbria-fornix lesioned rats improved significantly compared to the trained fimbria-fornix lesioned rats, but was not different from that shown by healthy animals. BLA stimulation in non-trained FF lesioned rats did not improve LTP; instead produces a transient synaptic depression. Restoration of the ability to develop LTP by the combination of training and BLA stimulation would be one of the mechanisms involved in ameliorating memory deficits in lesioned animals.


Subject(s)
Basolateral Nuclear Complex/physiology , Dentate Gyrus/physiology , Long-Term Potentiation/physiology , Maze Learning/physiology , Spatial Learning/physiology , Spatial Memory/physiology , Animals , Fornix, Brain/injuries , Male , Neuronal Plasticity/physiology , Prefrontal Cortex/physiology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL