Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Rev. biol. trop ; 72(1): e53238, ene.-dic. 2024. tab, graf
Article in English | SaludCR, LILACS | ID: biblio-1559323

ABSTRACT

Abstract Introduction: Evidence suggests that herbivores, such as peccaries, shape vegetation structure and diversity through predation, trampling, dispersal, and rooting behavior. Objective: To evaluate the impact of peccaries (Dycotiles tajacu) on the understory vegetation of the tropical rainforest in the Nogal-La Selva Local Biological Corridor, Costa Rica, comparing a site with the absence of peccaries to another with the presence of these animals. Methodology: From June to November 2021, 20 experimental exclusions and 20 free access plots, each measuring 2 m2 were used to quantify herbivory, the number of leaf blades, damaged leaves, healthy leaves, sapling height, and fallen biomass at both sites. Results: A higher sapling density was found in the Nogal Reserve, but a lower sapling diversity, while in La Selva there was a higher sapling diversity, but a lower density of seedlings. Herbivory and sapling height in La Selva exceeded those in Nogal. The exclusion of peccaries reduced seedling damage but did not affect the dynamics of fallen biomass. Conclusion: For the design, implementation, and evaluation of the effectiveness of biological corridors, it is crucial to consider plant-animal interactions to enhance the flow of ecological processes through functional and structural connectivity, analyzed from interactions such as those presented in this paper.


Resumen Introducción: Existe evidencia que herbívoros, como los saínos, dan forma a la estructura y diversidad de la vegetación a través del comportamiento de depredación, pisoteo, dispersión y enraizamiento. Objetivo: Evaluar el impacto de los saínos (Dycotiles tajacu) en la vegetación del sotobosque del bosque tropical húmedo en el Corredor Biológico Local Nogal-La Selva, Costa Rica, en un sitio con ausencia y en otro con presencia de saínos. Métodos: De junio a noviembre de 2021 se utilizaron 20 exclusiones experimentales y 20 parcelas de acceso libre de 2 m2, se cuantifico la herbivoría, número de láminas foliares, hojas dañadas, hojas sanas, altura de brinzales y biomasa caída en ambos sitios. Resultados: Se encontró una mayor densidad de brinzales en Reserva Nogal pero una menor diversidad, contrario en La Selva donde se encontró una mayor diversidad de brinzales, pero una menor densidad de plántulas. La herbivoría y la altura de brinzales en La Selva fue mayor que en Nogal. La exclusión de los saínos disminuyó el daño a las plántulas, pero no afectó la dinámica de la biomasa caída. Conclusión: Es necesario contemplar para el diseño, implementación y evaluación de la efectividad de corredores biológicos, las interacciones planta-animal, para potencializar el flujo de procesos ecológicos mediante la conectividad funcional y estructural, analizada a partir de interacciones como las presentadas en este trabajo.


Subject(s)
Animals , Artiodactyla , Forests , Animal Distribution , Tropical Ecosystem , Costa Rica
2.
Am J Primatol ; 86(6): e23616, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38462743

ABSTRACT

Parallel laser photogrammetry (PLP), which consists of attaching two or three parallel laser beams at a known inter-beam distance to a camera, can be used to collect morphological measurements of organisms noninvasively. The lasers project onto the photo being taken, and because the inter-beam distance is known, they act as a scale for image analysis programs like ImageJ. Traditionally, this method has been used to measure larger morphological traits (e.g., limb length, crown-rump length) to serve as proxies for overall body size, whereas applications to smaller anatomical features remain limited. To that end, we used PLP to measure the testes of 18 free-living mantled howler monkeys (Alouatta palliata) at La Selva Biological Station, Costa Rica. We tested whether this method could reliably measure this relatively small and globular morphology, and whether it could detect differences among individuals. We tested reliability in three ways: within-photo (coefficient of variation [CV] = 4.7%), between-photo (CV = 5.5%), and interobserver (intraclass correlation = 0.92). We found an average volume of 36.2 cm3 and a range of 16.4-54.4 cm3, indicating variation in testes size between individuals. Furthermore, these sizes are consistent with a previous study that collected measurements by hand, suggesting that PLP is a useful method for making noninvasive measurements of testes.


Subject(s)
Alouatta , Lasers , Photogrammetry , Testis , Animals , Alouatta/anatomy & histology , Alouatta/physiology , Male , Testis/anatomy & histology , Photogrammetry/methods , Costa Rica , Reproducibility of Results
3.
Am Nat ; 199(4): 576-583, 2022 04.
Article in English | MEDLINE | ID: mdl-35324380

ABSTRACT

AbstractHummingbird flower mites are assumed to monopolize single host plant species owing to sexual selection for unique mating rendezvous sites. We tested the main assumption of the mating rendezvous hypothesis-extreme host specialization-by reconstructing interactions among tropical hummingbird flower mites and their host plants using DNA barcoding and taxonomic identifications. We collected 10,654 mites from 489 flowers. We extracted DNA from 1,928 mite specimens and amplified the cytochrome c oxidase I (CO1) DNA barcode. We analyzed the network structure to assess the degree of generalization or specialization of mites to their host plants. We recorded 18 species of hummingbird flower mites from three genera (Proctolaelaps, Rhinoseius, and Tropicoseius) interacting with 14 species of plants. We found that generalist mites are common, and congeneric mite species often share host plants. Our results challenge the assumption of strict specialization that supports this system as an example of mating rendezvous evolution.


Subject(s)
Mites , Animals , Birds , DNA , DNA Barcoding, Taxonomic , Flowers , Mites/genetics
4.
Ecology ; 102(11): e03489, 2021 11.
Article in English | MEDLINE | ID: mdl-34292601

ABSTRACT

Plants and their soil microbial symbionts influence ecosystem productivity and nutrient cycling, but the controls on these symbioses remain poorly understood. This is particularly true for plants in the Fabaceae family (hereafter legumes), which can associate with both arbuscular mycorrhizal fungi (AMF) and nitrogen (N) -fixing bacteria. Here we report results of the first manipulated field experiment to explore the abiotic and biotic controls of this tripartite symbiosis in Neotropical canopy gaps (hereafter gaps). We grew three species of Neotropical N-fixing legume seedlings under different light (gap-full light, gap-shadecloth, and understory) and soil nitrogen (20 g N·m-2 ·yr-1 vs. 0 g N·m-2 ·yr-1 ) conditions across a lowland tropical forest at La Selva Biological Station, Costa Rica. We harvested the seedlings after 4 months of growth in the field and measured percent AMF root colonization (%AMF), nodule and seeding biomass, and seedling aboveground:belowground biomass ratios. Our expectation was that seedlings in gaps would grow larger and, as a result of higher light, invest more carbon in both AMF and N-fixing bacteria. Indeed, seedlings in gaps had higher total biomass, nodule biomass (a proxy for N-fixing bacteria investment) and rates of AMF root colonization, and the three were significantly positively correlated. However, we only found a significant positive effect of light availability on %AMF when seedlings were fertilized with N. Furthermore, when we statistically controlled for treatment, species, and site effects, we found %AMF and seedling biomass had a negative relationship. This was likely driven by the fact that seedlings invested relatively less in AMF as they increased in biomass (lower %AMF per gram of seedling). Taken together, these results challenge the long-held assumption that high light conditions universally increase carbon investment in AMF and demonstrate that this tripartite symbiosis is influenced by soil nutrient and light conditions.


Subject(s)
Fabaceae , Mycorrhizae , Rhizobium , Ecosystem , Nitrogen , Plant Roots , Soil , Symbiosis
5.
Ecology ; 101(12): e03192, 2020 12.
Article in English | MEDLINE | ID: mdl-32892339

ABSTRACT

Deciphering the ecological roles of plant secondary metabolites requires integrative studies that assess both the allocation patterns of compounds and their bioactivity in ecological interactions. Secondary metabolites have been primarily studied in leaves, but many are unique to fruits and can have numerous potential roles in interactions with both mutualists (seed dispersers) and antagonists (pathogens and predators). We described 10 alkenylphenol compounds from the plant species Piper sancti-felicis (Piperaceae), quantified their patterns of intraplant allocation across tissues and fruit development, and examined their ecological role in fruit interactions. We found that unripe and ripe fruit pulp had the highest concentrations and diversity of alkenylphenols, followed by flowers; leaves and seeds had only a few compounds at detectable concentrations. We observed a nonlinear pattern of alkenylphenol allocation across fruit development, increasing as flowers developed into unripe pulp then decreasing as pulp ripened. This pattern is consistent with the hypothesis that alkenylphenols function to defend fruits from pre-dispersal antagonists and are allocated based on the contribution of the tissue to the plant's fitness, but could also be explained by non-adaptive constraints. To assess the impacts of alkenylphenols in interactions with antagonists and mutualists, we performed fungal bioassays, field observations, and vertebrate feeding experiments. In fungal bioassays, we found that alkenylphenols had a negative effect on the growth of most fungal taxa. In field observations, nocturnal dispersers (bats) removed the majority of infructescences, and diurnal dispersers (birds) removed a larger proportion of unripe infructescences. In feeding experiments, bats exhibited an aversion to alkenylphenols, but birds did not. This observed behavior in bats, combined with our results showing a decrease in alkenylphenols during ripening, suggests that alkenylphenols in fruits represent a trade-off (defending against pathogens but reducing disperser preference). These results provide insight into the ecological significance of a little studied class of secondary metabolites in seed dispersal and fruit defense. More generally, documenting intraplant spatiotemporal allocation patterns in angiosperms and examining mechanisms behind these patterns with ecological experiments is likely to further our understanding of the evolutionary ecology of plant chemical traits.


Subject(s)
Fruit , Seed Dispersal , Animals , Birds , Plant Leaves , Seeds
6.
Appl Plant Sci ; 8(4): e11336, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32351797

ABSTRACT

PREMISE: Over 3000 species of plants and animals release toxic hydrogen cyanide (HCN) gas when their tissues are crushed. To investigate the role of cyanogenesis in Passiflora-herbivore interactions, we developed an inexpensive, rapid, sensitive method for measuring HCN emissions from crushed tissues. METHODS: The method includes crushed tissue confinement in a closed chamber, where cyanogenesis reactions occur, followed by evacuation of gas to a portable HCN meter. Parts per million readings are repeated at 5-min intervals until HCN is depleted. Three versions of the closed reaction chamber apparatus were tested: plastic cup, airtight combination mortar-pestle, and glass desiccator jar. RESULTS: We calibrated the method by comparing with a closed chamber measurement apparatus. The procedure's repeatability was demonstrated with a standard curve using known quantities of cyanogenic glycoside standard. Data collected with this method were also compared with the conventional colorimetric procedure. We processed over 2000 samples using this technique, revealing diverse elements of cyanogenic variation. CONCLUSIONS: These methods produced well-defined data with minimal error. Results illustrated a one to four order-of-magnitude variation at organizational levels ranging from individual leaves to the entire Passiflora community. We now have a promising tool for uncovering the HCN phytochemical landscape in unprecedented detail.

7.
Glob Chang Biol ; 26(9): 5303-5319, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32458420

ABSTRACT

Soil CO2 concentrations and emissions from tropical forests are modulated seasonally by precipitation. However, subseasonal responses to meteorological events (e.g., storms, drought) are less well known. Here, we present the effects of meteorological variability on short-term (hours to months) dynamics of soil CO2 concentrations and emissions in a Neotropical wet forest. We continuously monitored soil temperature, moisture, and CO2 for a three-year period (2015-2017), encompassing normal conditions, floods, a dry El Niño period, and a hurricane. We used a coupled model (Hydrus-1D) for soil water propagation, heat transfer, and diffusive gas transport to explain observed soil moisture, soil temperature, and soil CO2 concentration responses to meteorology, and we estimated soil CO2 efflux with a gradient-flux model. Then, we predicted changes in soil CO2 concentrations and emissions under different warming climate change scenarios. Observed short-term (hourly to daily) soil CO2 concentration responded more to precipitation than to other meteorological variables (including lower pressure during the hurricane). Observed soil CO2 failed to exhibit diel patterns (associated with diel temperature fluctuations in drier climates), except during the drier El Niño period. Climate change scenarios showed enhanced soil CO2 due to warmer conditions, while precipitation played a critical role in moderating the balance between concentrations and emissions. The scenario with increased precipitation (based on a regional model projection) led to increases of +11% in soil CO2 concentrations and +4% in soil CO2 emissions. The scenario with decreased precipitation (based on global circulation model projections) resulted in increases of +4% in soil CO2 concentrations and +18% in soil CO2 emissions, and presented more prominent hot moments in soil CO2 outgassing. These findings suggest that soil CO2 will increase under warmer climate in tropical wet forests, and precipitation patterns will define the intensity of CO2 outgassing hot moments.


Subject(s)
Carbon Dioxide , Soil , Carbon Dioxide/analysis , Climate Change , Droughts , Forests
8.
Zootaxa ; 4755(1): zootaxa.4755.1.5, 2020 Mar 23.
Article in English | MEDLINE | ID: mdl-32230196

ABSTRACT

Telebasis rojinegra sp. nov. was recorded from ponds at La Selva Biological Station and three other sites in the Caribbean lowlands of Costa Rica. The new species appears closely related to T. boomsmae Garrison, 1994 recorded from Mexico, Belize and Costa Rica, T. collopistes Calvert, 1902 ranging from Mexico to Honduras, and T. garrisoni Bick Bick, 1995 from South America, but differs in having straighter and more elongate paraprocts and a half black pattern on the rear of the head. The female mesostigmal plates are also distinct from the above species. Telebasis rojinegra was active on the water primarily during afternoon hours.


Subject(s)
Odonata , Animals , Costa Rica , Female
9.
Oecologia ; 192(3): 591-601, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31989321

ABSTRACT

Leaf-cutter ant nests are biogeochemical hot spots where ants live and import vegetation to grow fungus. Metabolic activity and (in wet tropical forests) soil gas flux to the nest may result in high nest CO2 concentrations if not adequately ventilated. Wind-driven ventilation mitigates high CO2 concentrations in grasslands, but little is known about exchange for forest species faced with prolonged windless conditions. We studied Atta cephalotes nests located under dense canopy (leaf area index > 5) in a wet tropical rainforest in Costa Rica, where wind events are infrequent. We instrumented nests with thermocouples and flow-through CO2 sensing chambers. The results showed that CO2 concentrations exiting leaf-cutter ant nests follow a diel pattern with higher values at night. We developed an efflux model based on pressure differences that evaluated the observed CO2 diel pattern in terms of ventilation by (1) free convection (warm, less dense air rises out the nest more prominently at night) and (2) episodic wind-forced convection events providing occasional supplemental ventilation during daytime. Average greenhouse gas emissions were estimated through nest vents at about 78 kg CO2eq nest-1 year-1. At the ecosystem level, leaf-cutter ant nest vents accounted for 0.2% to 1% of total rainforest soil emissions. In wet, clayey tropical soils, leaf-cutter ant nests act as free convection-driven conduits for exporting CO2 and other greenhouse gases produced within the nest (fungus and ant respiration, refuse decay), and by roots and soil microbes surrounding the nest. This allows A. cephalotes nests to be ventilated without reliable wind conditions.


Subject(s)
Ants , Greenhouse Gases , Animals , Convection , Costa Rica , Ecosystem , Rainforest
10.
Ecol Evol ; 9(3): 1458-1472, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30805174

ABSTRACT

In tropical forest communities, seedling recruitment can be limited by the number of fruit produced by adults. Fruit production tends to be highly unequal among trees of the same species, which may be due to environmental factors. We observed fruit production for ~2,000 trees of 17 species across 3 years in a wet tropical forest in Costa Rica. Fruit production was modeled as a function of tree size, nutrient availability, and neighborhood crowding. Following model selection, tree size and neighborhood crowding predicted both the probability of reproduction and the number of fruit produced. Nutrient availability only predicted only the probability of reproduction. In all species, larger trees were more likely to be reproductive and produce more fruit. In addition, number of fruit was strongly negatively related to presence of larger neighboring trees in 13 species; presence of all neighboring trees had a weak-to-moderate negative influence on reproductive status in 16 species. Among various metrics of soil nutrient availability, only sum of base cations was positively associated with reproductive status, and for only four species. Synthesis Overall, these results suggest that direct influences on fruit production tend to be mediated through tree size and crowding from neighboring trees, rather than soil nutrients. However, we found variation in the effects of neighbors and nutrients among species; mechanistic studies of allocation to fruit production are needed to explain these differences.

11.
Front Microbiol ; 9: 2001, 2018.
Article in English | MEDLINE | ID: mdl-30233511

ABSTRACT

Amphibian skin is a suitable environment for rich communities of microorganisms, both beneficial and detrimental to the host. The amphibian cutaneous microbiota has been hypothesized to play an important role as symbionts, protecting their hosts against disease. Costa Rica has one of the most diverse assemblages of amphibians in the world and we know very little about the microbiota of these tropical animals. For comparison with other studies, we explore the diversity of the skin bacterial communities employing16S rRNA amplicon sequencing of swab samples from twelve species of frogs at La Selva Biological Station in Sarapiquí, Heredia province. The predominant phylum detected in our studies was Proteobacteria, followed by Bacteroidetes and Actinobacteria, with these three phyla representing 89.9% of the total bacterial taxa. At the family level, Sphingobacteriaceae and Comamonadaceae were highly represented among samples. Our results suggest that host species and host family are significant predictors of the variation in microbiota composition. This study helps set the foundation for future research about microbiota composition and resilience to unfavorable conditions, leading to improvement in managing strategies for endangered amphibian species.

12.
Ecology ; 99(8): 1901, 2018 08.
Article in English | MEDLINE | ID: mdl-29800497

ABSTRACT

In lowland tropical rainforest, hundreds of tree species typically occur within mesoscale landscapes (50-500 ha). There is no consensus ecological theory that accounts for the coexistence of so many species with similar morphologies and the same fundamental requirements of light, nutrients, water, and physical space. In part this is due to the limited understanding of post-establishment ecology for the vast majority of tropical tree species. Of even more concern is the lack of understanding of how these trees are responding to on-going atmospheric and climatic changes. Here we present long-term data on the post-establishment ecology of ten species of tropical rainforest trees that span a broad life-history spectrum. The study site was upland (non-swamp) old-growth tropical wet forest at the La Selva Biological Station (N.E. Costa Rica). Focal individuals from established seedlings to mature trees were assessed annually, with an emphasis on accuracy and long-term consistency of the observations. The annual time-step, rare for longterm studies in tropical rainforest, captures the typically abrupt changes in forest structure and light environments, the frequent instances of major physical damage, and the trees' responses to these events and to interannual and long-term climatic variation. With the completion of the study in 2016, the data for survivorship, growth, and microsite conditions span 4,499 individuals and 34 yr. The first ten years of these data were published as an Ecology/Ecological Archives data paper in 2000 (Clark and Clark 2000), with two subsequent update publications (Clark and Clark 2006, 2012). This final update adds the final six years of observations, digitized field comments, and histories of points of measurement on the trees. The metadata now include the scanned original field data-sheets for the entire study and a narrative detailing the annual qa/qc of the data. The data set is unique for its scope (years of continuous annual measurements, number of monitored individuals), the in-depth documentation, and the unrestricted data access. The data have been used to study life history patterns, tree ecology through ontogeny, and effects on tree performance from interannual and long-term climatic and atmospheric change. They have also contributed to numerous remote-sensing studies. No copyright or proprietary restrictions are associated with the use of this data set other than citation of the paper; the authors believe scientific data should be freely available for scientific use. The authors would appreciate notification of when and how data are used, but this is discretionary on the part of the data users and is in no sense mandatory.


Subject(s)
Rainforest , Trees , Costa Rica , Forests , Tropical Climate
13.
Glob Chang Biol ; 24(3): 933-943, 2018 03.
Article in English | MEDLINE | ID: mdl-29284191

ABSTRACT

Tropical secondary forests (TSF) are a global carbon sink of 1.6 Pg C/year. However, TSF carbon uptake is estimated using chronosequence studies that assume differently aged forests can be used to predict change in aboveground biomass density (AGBD) over time. We tested this assumption using two airborne lidar datasets separated by 11.5 years over a Neotropical landscape. Using data from 1998, we predicted canopy height and AGBD within 1.1 and 10.3% of observations in 2009, with higher accuracy for forest height than AGBD and for older TSFs in comparison to younger ones. This result indicates that the space-for-time assumption is robust at the landscape-scale. However, since lidar measurements of secondary tropical forest are rare, we used the 1998 lidar dataset to test how well plot-based studies quantify the mean TSF height and biomass in a landscape. We found that the sample area required to produce estimates of height or AGBD close to the landscape mean is larger than the typical area sampled in secondary forest chronosequence studies. For example, estimating AGBD within 10% of the landscape mean requires more than thirty 0.1 ha plots per age class, and more total area for larger plots. We conclude that under-sampling in ground-based studies may introduce error into estimations of the TSF carbon sink, and that this error can be reduced by more extensive use of lidar measurements.


Subject(s)
Forests , Biomass , Carbon/metabolism , Carbon Sequestration , Databases, Factual , Time Factors
14.
Biotropica ; 49(6): 803-810, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29398713

ABSTRACT

Geographic isolation is the first step in insect herbivore diet specialization. Such specialization is postulated to increase insect fitness, but may simultaneously reduce insect ability to colonize novel hosts. During the Paleocene-Eocene, plants from the order Zingiberales became isolated either in the Paleotropics or in the Neotropics. During the Cretaceous, rolled-leaf beetles diversified in the Neotropics concurrently with Neotropical Zingiberales. Using a community of Costa Rican rolled-leaf beetles and their Zingiberales host plants as study system, we explored if previous geographic isolation precludes insects to expand their diets to exotic hosts. We recorded interactions between rolled-leaf beetles and native Zingiberales by combining DNA barcodes and field records for 7450 beetles feeding on 3202 host plants. To determine phylogenetic patterns of diet expansions, we set 20 field plots including five exotic Zingiberales, recording beetles feeding on these exotic hosts. In the laboratory, using both native and exotic host plants, we reared a subset of insect species that had expanded their diets to the exotic plants. The original plant-herbivore community comprised 24 beetle species feeding on 35 native hosts, representing 103 plant-herbivore interactions. After exotic host plant introduction, 20% of the beetle species expanded their diets to exotic Zingiberales. Insects only established on exotic hosts that belong to the same plant family as their native hosts. Laboratory experiments show that beetles are able to complete development on these novel hosts. In conclusion, rolled-leaf beetles are pre-adapted to expand their diets to novel host plants even after millions of years of geographic isolation.

15.
Ecology ; 97(11): 3176-3183, 2016 11.
Article in English | MEDLINE | ID: mdl-27870051

ABSTRACT

Community ecologists have strived to find mechanisms that mediate the assembly of natural communities. Recent evidence suggests that natural enemies could play an important role in the assembly of hyper-diverse tropical plant systems. Classic ecological theory predicts that in order for coexistence to occur, species differences must be maximized across biologically important niche dimensions. For plant-herbivore interactions, it has been recently suggested that, within a particular community, plant species that maximize the difference in chemical defense profiles compared to neighboring taxa will have a relative competitive advantage. Here we tested the hypothesis that plant chemical diversity can affect local community composition in the hyper-diverse genus Piper at a lowland wet forest location in Costa Rica. We first characterized the chemical composition of 27 of the most locally abundant species of Piper. We then tested whether species with different chemical compositions were more likely to coexist. Finally, we assessed the degree to which Piper phylogenetic relationships are related to differences in secondary chemical composition and community assembly. We found that, on average, co-occurring species were more likely to differ in chemical composition than expected by chance. Contrary to expectations, there was no phylogenetic signal for overall secondary chemical composition. In addition we found that species in local communities were, on average, more phylogenetically closely related than expected by chance, suggesting that functional traits other than those measured here also influence local assembly. We propose that selection by herbivores for divergent chemistries between closely related species facilitates the coexistence of a high diversity of congeneric taxa via apparent competition.


Subject(s)
Ecosystem , Piper/chemistry , Piper/physiology , Phylogeny , Species Specificity
16.
Oecologia ; 181(4): 1199-208, 2016 08.
Article in English | MEDLINE | ID: mdl-27129320

ABSTRACT

Understanding the role of diversity in ecosystem processes and species interactions is a central goal of ecology. For plant-herbivore interactions, it has been hypothesized that when plant species diversity is reduced, loss of plant biomass to herbivores increases. Although long-standing, this hypothesis has received mixed support. Increasing plant chemical diversity with increasing plant taxonomic diversity is likely to be important for plant-herbivore interactions at the community level, but the role of chemical diversity is unexplored. Here we assess the effect of volatile chemical diversity on patterns of herbivore damage in naturally occurring patches of Piper (Piperaceae) shrubs in a Costa Rican lowland wet forest. Volatile chemical diversity negatively affected total, specialist, and generalist herbivore damage. Furthermore, there were differences between the effects of high-volatility and low-volatility chemical diversity on herbivore damage. High-volatility diversity reduced specialist herbivory, while low-volatility diversity reduced generalist herbivory. Our data suggest that, although increased plant diversity is expected to reduce average herbivore damage, this pattern is likely mediated by the diversity of defensive compounds and general classes of anti-herbivore traits, as well as the degree of specialization of the herbivores attacking those plants.


Subject(s)
Biodiversity , Herbivory , Ecosystem , Forests , Plants
17.
Rev. biol. trop ; 62(2): 443-454, Jun.-Aug. 2014. ilus, tab
Article in English | LILACS | ID: lil-715443

ABSTRACT

The existence of monodominant forests on well-drained soils in tropical regions has been widely reported. Such forests most likely result from a combination of both ecological and evolutionary factors. Under conditions of high seed and seedling mortality, vegetative reproduction could create a reproductive advantage leading to forest dominance, and profoundly affect the distribution of genetic variation in a clonal species. We investigated these effects in a low diversity forest site in Northeastern Costa Rica dominated by the species Pentaclethra macroloba, which sprouts from the root mass of fallen trees and from snapped trunks. We examined the population structure of juvenile P. macroloba growing in different soil types and across an elevational gradient. Using seven molecular markers, we genotyped 173 juvenile P. macroloba from 18 plots (six plots in seasonally inundated swamps, and 12 plots in upland non-swamp) spanning 50-300m in elevation at La Selva Biological Station and the adjacent Reserva Ecológica Bijagual in Northeastern Costa Rica. We answered two specific questions: (1) How extensive is clonal reproduction? and (2) what is the distribution of genetic diversity and structure?. We found that clonal reproduction occurred exclusively within inundated swamp areas. However, there was no significant difference between genetic diversity measures in swamp and non-swamp plots, which were both generally low when compared with other tropical forest species. Genetic structure was significant across all plots (F ST=0.109). However, genetic structure among swamp plots (F ST=0.128) was higher than among non-swamp upland plots (F ST=0.093). Additionally, spatial autocorrelation among individuals within non-swamp upland plots was significant from the 25 to 100m spatial scale, but not within swamp plots. The degree of overall genetic structure we found in P. macroloba is high for a tropical forest tree. The incidence of clonal reproduction is a contributing factor in genetic differentiation, but the high structure among plots without clonal reproduction indicates that other factors contribute as well.


La existencia de bosques monodominantes sobre suelos bien drenados en regiones tropicales ha sido ampliamente reportada. Investigaciones recientes han sugerido que tales bosques son probablemente resultado de una combinación de factores ecológicos y evolutivos. Bajo condiciones de alta mortalidad de semillas y plántulas, la reproducción vegetativa podría crear una ventaja reproductiva llevando a la dominancia del bosque, pero también podría afectar profundamente la distribución de la variación genética en especies clonales. Investigamos estos efectos en un sitio de bosque con baja diversidad de especies en el Noreste de Costa Rica que es ampliamente dominado por la especie Pentaclethra macroloba, la cual retoña de la masa de raíces de árboles caídos y de troncos partidos. Examinamos la estructura poblacional de individuos juveniles de P. macroloba creciendo en diferentes tipos de suelo y a través de un gradiente de altitud. Utilizamos siete marcadores moleculares, genotipamos 173 Pentaclethra macroloba de 18 parcelas (seis en ciénagas y 12 en ambientes no cenagosos) ubicados en un gradiente de elevación entre 50-300m en las reservas adyacentes: Reserva Biológica Bijagual y Estación Biológica La Selva, en el centro de Costa Rica. Abordamos dos preguntas específicas: (1) ¿Qué tan extensa es la reproducción clonal? y (2) ¿Cuál es la distribución de diversidad y estructura genética? Encontramos que la reproducción clonal ocurrió exclusivamente dentro de áreas cenagosas inundadas. La estructura genética fue significativa en todas las parcelas (F ST=0.109). Observamos una estructura genética más alta entre poblaciones juveniles dentro de las ciénagas (F ST=0.128) comparada con poblaciones no cenagosas en parcelas a mayor altura (F ST=0.093), con mayor autocorrelación espacial en sitios no cenagosos en el intervalo entre 25 y 100m. La presencia de reproducción clonal no afectó significativamente las medidas de diversidad entre las dos áreas, que fueron generalmente bajas comparadas con otras especies de bosque tropical. El alto grado de estructura genética en general es novedoso para un árbol de bosque tropical. La incidencia de reproducción clonal es un factor que contribuye en la diferenciación genética, pero la alta estructura en parcelas sin reproducción clonal indica que otros factores están contribuyendo también.


Subject(s)
Fabaceae/genetics , Genetic Structures/genetics , Costa Rica , Fabaceae/classification , Fabaceae/physiology , Reproduction/genetics , Reproduction/physiology
18.
Glob Chang Biol ; 19(11): 3423-34, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23824759

ABSTRACT

Tropical rainforests have experienced episodes of severe heat and drought in recent decades, and climate models project a warmer and potentially drier tropical climate over this century. However, likely responses of tropical rainforests are poorly understood due to a lack of frequent long-term measurements of forest structure and dynamics. We analyzed a 12-year record (1999-2010) of 47 817 annual measurements of canopy height to characterize the response of an old-growth Neotropical rainforest to the severe heat and drought associated with the 1997-1998 El Niño. Well-drained soils on slopes and plateaus experienced a threefold increase in the fraction of the landscape in gaps (≤2 m) and a reduction in the fraction in high canopy (>15 m) causing distributions of canopy height to depart from equilibrium for a period of 2-3 years. In contrast, forests on low-lying alluvial terraces remained in equilibrium and were nearly half as likely to experience upper canopy (>15 m) disturbance over the 12 years of observation. Variation in forest response across topographic positions suggests that tropical rainforests are more sensitive to moisture deficits than high temperature and that topography likely structures landscape-level variation in the severity of drought impacts.


Subject(s)
Trees/growth & development , Costa Rica , Droughts , Temperature , Tropical Climate
19.
Rev. biol. trop ; 61(2): 531-537, Jun. 2013. ilus, graf, tab
Article in English | LILACS | ID: lil-675448

ABSTRACT

Most research on bioluminescent fungi is concentrated on their taxonomic relationships, while the basics of their natural history and ecological relationships are poorly understood. In this study, we compared the distribution of bioluminescent fungi between old-growth and secondary forest as related to four different soil types at the tropical rainforest of La Selva Biological Station in Costa Rica. The study was conducted during the wet season of 2009. Bioluminescent fungi were sought following eight different transects distributed evenly in old-growth and secondary forests across four different soil types, covering an area of 9 420m². We found fungi in four different substrates: litter, fallen branches, dead trunks, and roots, for a total of 61 samples. Correspondence analysis showed that the occurrence of fungi and soil types were related (inertia=0.21, p=0.071). We found a significant relationship between the presence of fungi and the distribution of soil types (X²=18.89, df=9, p=0.026). We found only three samples with fruiting bodies, two of which had Mycena and the other had one fungus of the order Xylariales (possibly Hypoxylon sp., Kretzschmariella sp., Xylaria sp.). Future work will concentrate on exploring other aspects of their ecology, such as their dispersal and substrate preference. This information will facilitate field identification and will foster more research on the distribution, seasonality, reproductive phenology and ecological requirements of this group of Fungi.


La mayoría de las investigaciones sobre los hongos bioluminiscentes se ha centrado en relaciones taxonómicas. Los aspectos básicos de la historia natural y relaciones ecológicas de este grupo son poco conocidos. En este estudio, comparamos la distribución de hongos bioluminiscentes entre el bosque primario y el secundario en la Estación Biológica La Selva, Costa Rica en relación con cuatro tipos de suelo. El estudio se realizó durante la estación lluviosa del 2009. Se buscaron hongos bioluminiscentes en ocho transectos distribuidos de manera uniforme en el bosque primario y secundario y en cuatro tipos de suelo, cubriendo un área de 9 420m². Se encontraron hongos en cuatro sustratos: arena, ramas caídas, troncos muertos, y raíces muertas, para un total de 61 muestras. Se encontró una relación significativa entre la presencia de hongos y la distribución de los tipos de suelo (x²=18.89, gl=9, p=0.026). Sólo se encontraron tres muestras con cuerpos fructíferos, dos de ellos del género Mycena, mientras que el otro presentaba un hongo del orden Xylariales (posiblemente Hypoxylon sp. Kretzschmariella sp. Xylaria sp.). Futuras líneas de investigación deben concentrarse en aspectos básicos de la ecología del grupo, tales como su dispersión y preferencia de sustrato. Esta información fomentará una mayor investigación sobre la distribución, la estacionalidad y fenología reproductiva, y los requerimientos ecológicos de este grupo de hongos.


Subject(s)
Agaricales , Trees , Xylariales , Agaricales/classification , Costa Rica , Luminescence , Population Density , Rain , Seasons , Tropical Climate , Xylariales/classification
20.
Rev. biol. trop ; 61(2): 887-895, Jun. 2013. ilus, graf
Article in English | LILACS | ID: lil-675475

ABSTRACT

Predation is one of the major selective agents influencing evolution of color patterns. Cryptic color patterns decrease detection probability by predators, but their concealing function depends on the background against which patterns are seen; therefore, habitat use and color patterns are tightly linked. in many anole species, females exhibit variation in dorsal color patterns; the drab and perhaps cryptic colors of the patterns suggest a predator avoidance function behind this polymorphism. We tested whether these different color patterns experience different predation rates depending on their micro- habitat. We expected each pattern to form at least one optimal combination with a typically used micro-habitat that would result in lower predation compared to other morphs in the same micro-habitat. We tested this hypothesis for anoles at La Selva, Costa Rica, using clay models resembling a common species at this site: Norops humilis. The first experiment tested for variation in predation on various substrates. We included leaf litter, live leaves, and two size classes of woody stems, using 44 models for each pattern substrate combination. A second experiment tested effects of perch height (10 and 60cm) and diameter (<2cm and >5cm), with 50 models for each pattern perch combination. We found differences in predation rates between the morphs depending on their micro-habitat. Specifically, the striped morph had a significant advantage over the others on green leaves. in the second experiment, striped morphs showed significantly lower predation on low than on high perches, irrespective of perch diameter. Reticulated models had an advantage over other morphs on thin stems for the first experiment, where models were placed about 60cm high. Diameter did not have a significant effect on predation for reticulated morphs when height classes were combined. Dotted models did not experience an advantage over the other morphs in any of the treatments. in leaf litter and on thick perches no morph had any advantage over another, and leaf litter predation rates were generally low. These results support a role for predation in maintaining multiple female morphs within small Costa Rican anoles, such as N. humilis.


En los animales, los patrones dorsales de coloración a menudo se asocian con la protección contra la depredación. Con el fin de analizar el papel que tienen los micro-hábitat en la depredación de lagartijas hembras que presentan variaciones en los patrones de coloración dorsal (colores grises, crípticos), se realizó en la Estación Biológica La Selva, Costa Rica un estudio con el objetivo de comprobar si los patrones de diferentes colores provocan cambios en las tasas de depredación en función de a su micro-hábitat; se esperaba que cada patrón formara una combinación óptima utilizando el micro-habitat y que permitiera de esta manera reducir los niveles de depredación. Para evidenciar esta hipótesis se utilizaron modelos de arcilla que asemejan a la especie Norops humilis propia del lugar. Se realizaron dos estudios, el primero analizó modelos colocados en cuatro sustratos diferentes: hojarasca, hojas vivas y dos clases de tamaño de tallos leñosos, los cuales representaban cada hábitat donde es posible observar esta especie. Un segundo experimento estudió el efecto de la altura y el diámetro de la percha en la depredación, para ello se colocaron los modelos sobre tallos de diferentes alturas y diámetros. Fue posible observar en el primer experimento que el morfo rayado tuvo una ventaja significativa sobre los demás morfos en las hojas verdes y que los modelos reticulados tuvieron una ventaja sobre otros morfos en tallos delgados. El segundo estudio mostró que los morfos rayados tienen una tasa de depredación baja en perchas altas, independientemente del diámetro de la percha. Fue posible comprobar que los morfos punteados no experimentaron ventaja sobre otros morfos en ninguno de los dos estudios.


Subject(s)
Animals , Female , Ecosystem , Predatory Behavior , Reptiles/anatomy & histology , Skin Pigmentation , Costa Rica , Population Density , Reptiles/classification , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...