Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Foods ; 13(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38890984

ABSTRACT

The objective of this study was to develop a dried apple snack enriched with probiotics, evaluate its viability using Refractance Window (RWTM) drying, and compare it with conventional hot air drying (CD) and freeze-drying (FD). Apple slices were impregnated with Lacticaseibacillus rhamnosus and dried at 45 °C using RWTM and CD and FD. Total polyphenol content (TPC), color (∆E*), texture, and viable cell count were measured, and samples were stored for 28 days at 4 °C. Vacuum impregnation allowed for a probiotic inoculation of 8.53 log CFU/gdb. Retention values of 6.30, 6.67, and 7.20 log CFU/gdb were observed for CD, RWTM, and FD, respectively; the population in CD, RWTM remained while FD showed a decrease of one order of magnitude during storage. Comparing RWTM with FD, ∆E* was not significantly different (p < 0.05) and RWTM presented lower hardness values and higher crispness than FD, but the RWTM-dried apple slices had the highest TPC retention (41.3%). Microstructural analysis showed that RWTM produced a smoother surface, facilitating uniform moisture diffusion and lower mass transfer resistance. The effective moisture diffusion coefficient was higher in RWTM than in CD, resulting in shorter drying times. As a consequence, RWTM produced dried apple snacks enriched with probiotics, with color and TPC retention comparable to FD.

2.
Food Technol Biotechnol ; 62(1): 72-77, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38601960

ABSTRACT

Research background: Açaí berry is rich in antioxidant compounds and is therefore closely associated with beneficial health effects. In this study, we aim to investigate the potential of using Lacticaseibacillus rhamnosus HN001 as a probiotic culture on açaí flan. Experimental approach: The chemical composition, physicochemical and microbiological characteristics, and sensory acceptance during refrigerated storage (5 °C for 42 days) of flan were investigated. In addition, the consumer perception of the product was evaluated using word association when consumers were shown a photo of the product with or without the added ingredients accompanied with a brief description of the product. Results and conclusions: The flan had a suitable chemical composition, mainly carbohydrates and proteins, probiotic viability reached 8 log CFU/g in the product and 4 log CFU/g after gastrointestinal simulation, typical açaí coloration, significant antioxidant activity and high sensory acceptability. The information about the ingredients and properties of the products increased the health value and positive feelings of the consumers towards the product. Novelty and scientific contribution: Açaí flan has proven to be a suitable carrier for L. rhamnosus HN001 as a probiotic culture, further enhancing the characteristic beneficial properties of the fruit. Therefore, combining this information with marketing strategies that inform consumers about the benefits of the product can further improve its acceptance. As far as we know, this is the first study on açaí flan with added probiotic culture.

3.
Microbes Infect ; 26(4): 105311, 2024.
Article in English | MEDLINE | ID: mdl-38342337

ABSTRACT

We evaluated whether viable and non-viable Lacticaseibacillus rhamnosus CRL1505 (Lr05V or Lr05NV, respectively) was able to improve emergency myelopoiesis induced by Streptococcus pneumoniae (Sp) infection. Adult Swiss-mice were orally treated with Lr05V or Lr05NV during five consecutive days. The Lr05V and Lr05NV groups and untreated control group received an intraperitoneal dose of cyclophosphamide (Cy-150 mg/kg). Then, the mice were nasally challenged with Sp (107 UFC/mice) on day 3 post-Cy injection. After the pneumococcal challenge, the innate and myelopoietic responses were evaluated. The control group showed a high susceptibility to pneumococcal infection, an impaired innate immune response and a decrease of hematopoietic stem cells (HSCs: Lin-Sca-1+c-Kit+), and myeloid multipotent precursors (MMPs: Gr-1+Ly6G+Ly6C-) in bone marrow (BM). However, lactobacilli treatments were able to significantly increase blood neutrophils and peroxidase-positive cells, while improving cytokine production and phagocytic activity of alveolar macrophages. This, in turn, led to an early Sp lung clearance compared to the control group. Furthermore, Lr05V was more effective than Lr05NV to increase growth factors in BM, which allowed an early HSCs and MMPs recovery with respect to the control group. Both Lr05V and Lr05NV were able to improve BM emergency myelopiesis and protection against respiratory pathogens in mice undergoing chemotherapy.


Subject(s)
Immunocompromised Host , Lacticaseibacillus rhamnosus , Myelopoiesis , Probiotics , Streptococcus pneumoniae , Animals , Mice , Myelopoiesis/drug effects , Lacticaseibacillus rhamnosus/immunology , Probiotics/administration & dosage , Probiotics/pharmacology , Streptococcus pneumoniae/immunology , Pneumococcal Infections/immunology , Pneumococcal Infections/microbiology , Immunity, Innate , Disease Models, Animal , Cytokines/metabolism , Cyclophosphamide/pharmacology , Neutrophils/immunology , Male
4.
Int J Mol Sci ; 24(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38069229

ABSTRACT

Lacticaseibacillus rhamnosus CRL1505 beneficially modulates the inflammation-coagulation response during respiratory viral infections. This study evaluated the capacity of the peptidoglycan obtained from the CRL1505 strain (PG-Lr1505) to modulate the immuno-coagulative response triggered by the viral pathogen-associated molecular pattern poly(I:C) in the respiratory tract. Adult BALB/c mice were nasally treated with PG-Lr1505 for two days. Treated and untreated control mice were then nasally challenged with poly(I:C). Mice received three doses of poly(I:C) with a 24 h rest period between each administration. The immuno-coagulative response was studied after the last administration of poly(I:C). The challenge with poly(I:C) significantly increased blood and respiratory pro-inflammatory mediators, decreased prothrombin activity (PT), and increased von Willebrand factor (vWF) levels in plasma. Furthermore, tissue factor (TF), tissue factor pathway inhibitor (TFPI), and thrombomodulin (TM) expressions were increased in the lungs. PG-Lr1505-treated mice showed significant modulation of hemostatic parameters in plasma (PT in %, Control = 71.3 ± 3.8, PG-Lr1505 = 94.0 ± 4.0, p < 0.01) and lungs. Moreover, PG-Lr1505-treated mice demonstrated reduced TF in F4/80 cells from lungs, higher pro-inflammatory mediators, and increased IL-10 compared to poly(I:C) control mice (IL-10 in pg/mL, Control = 379.1 ± 12.1, PG-Lr1505 = 483.9 ± 11.3, p < 0.0001). These changes induced by PG-Lr1505 correlated with a significant reduction in lung tissue damage. Complementary in vitro studies using Raw 264.7 cells confirmed the beneficial effect of PG-Lr1505 on poly(I:C)-induced inflammation, since increased IL-10 expression, as well as reduced damage, production of inflammatory mediators, and hemostatic parameter expressions were observed. In addition, protease-activated receptor-1 (PAR1) activation in lungs and Raw 264.7 cells was observed after TLR3 stimulation, which was differentially modulated by PG-Lr1505. The peptidoglycan from L. rhamnosus CRL1505 is able to regulate inflammation, the procoagulant state, and PAR1 activation in mice and macrophages in the context of the activation of TLR3 signaling pathways, contributing to a beneficial modulation of inflammation-hemostasis crosstalk.


Subject(s)
Hemostatics , Lacticaseibacillus rhamnosus , Animals , Mice , Interleukin-10 , Peptidoglycan/pharmacology , Cytokines/metabolism , Receptor, PAR-1 , Toll-Like Receptor 3 , Lung/metabolism , Inflammation , Inflammation Mediators
5.
Mol Divers ; 2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37658910

ABSTRACT

Listeria monocytogenes is an important human and animal pathogen able to cause an infection named listeriosis and is mainly transmitted through contaminated food. Among its virulence traits, the ability to form biofilms and to survive in harsh environments stand out and lead to the persistence of L. monocytogenes for long periods in food processing environments. Virulence and biofilm formation are phenotypes regulated by quorum sensing (QS) and, therefore, the control of L. monocytogenes through an anti-QS strategy is promising. This study aimed to identify, by in silico approaches, proteins secreted by lactic acid bacteria (LAB) potentially able to interfere with the agr QS system of L. monocytogenes. The genome mining of Lacticaseibacillus rhamnosus GG and Lactobacillus acidophilus NCFM revealed 151 predicted secreted proteins. Concomitantly, the three-dimensional (3D) structures of AgrB and AgrC proteins of L. monocytogenes were modeled and validated, and their active sites were predicted. Through protein-protein docking and molecular dynamic, Serine-type D-Ala-D-Ala carboxypeptidase and L,D-transpeptidase, potentially secreted by L. rhamnosus GG and L. acidophilus NCFM, respectively, were identified with high affinity to AgrB and AgrC proteins, respectively. By inhibiting the translocation of the cyclic autoinducer peptide (cyclic AIP) via AgrB, and its recognition in the active site of AgrC, these LAB proteins could disrupt L. monocytogenes communication by impairing the agr QS system. The application of the QS inhibitors predicted in this study can emerge as a promising strategy in controlling L. monocytogenes in food processing environment and as an adjunct to antibiotic therapy for the treatment of listeriosis.

6.
World J Microbiol Biotechnol ; 39(7): 182, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37145244

ABSTRACT

Lacticaseibacillus rhamnosus CRL1505 can be used in functional products as a probiotic powder (dried live cells) or as a postbiotic intracellular extract containing inorganic polyphosphate as a functional biopolymer. Thus, the aim of this work was to optimize the production of Lr-CRL1505 depending on the target of the functional product (probiotic or postbiotic). For this purpose, the effect of culture parameters (pH, growth phase) on cell viability, heat tolerance and polyphosphate accumulation by Lacticaseibacillus rhamnosus CRL1505 was evaluated. Fermentations at free pH produced less biomass (0.6 log units) than at controlled pH while the growth phase affected both polyphosphate accumulation and cell heat tolerance. Exponential phase cultures showed 4-15 times greater survival rate against heat shock and 49-62% increased polyphosphate level, compared with the stationary phase. Results obtained allowed setting the appropriate culture conditions for the production of this strain according to its potential application, i.e., as live probiotic cells in powder form or postbiotic. In the first case, running fermentations at pH 5.5 and harvesting the cells at the exponential phase are the best conditions for obtaining a high live biomass yield capable of overcoming heat stress. Whereas the postbiotic formulations production requires fermentations at free pH and harvesting the cells in exponential phase to increase the intracellular polyphosphate level as a first step.


Subject(s)
Lacticaseibacillus rhamnosus , Probiotics , Thermotolerance , Lacticaseibacillus , Polyphosphates , Powders
7.
Probiotics Antimicrob Proteins ; 15(2): 338-350, 2023 04.
Article in English | MEDLINE | ID: mdl-34524605

ABSTRACT

Intestinal mucositis (IM) is a common side effect resulting from cancer treatment. However, the management so far has not been very effective. In the last years, the role of the gut microbiota in the development and severity of mucositis has been studied. Therefore, the use of probiotics and paraprobiotics could have a potential therapeutic effect on IM. The aim of our study was to investigate the impact of the administration of Lacticaseibacillus rhamnosus (L. rhamnosus) CGMCC1.3724 and the paraprobiotic on IM in mice. For 13 days, male Balb/c mice were divided into six groups: control (CTL) and mucositis (MUC)/0.1 mL of saline; CTL LrV and MUC LrV/0.1 mL of 108 CFU of viable Lr; CTL LrI and MUC LrI/0.1 mL of 108 CFU of inactivated Lr. On the 10th day, mice from the MUC, MUC LrV, and MUC LrI groups received an intraperitoneal injection (300 mg/kg) of 5-fluorouracil to induce mucositis. The results showed that the administration of the chemotherapeutic agent increased the weight loss and intestinal permeability of the animals in the MUC and MUC LrV groups. However, administration of paraprobiotic reduced weight loss and maintained PI at physiological levels. The paraprobiotic also preserved the villi and intestinal crypts, reduced the inflammatory infiltrate, and increased the mucus secretion, Muc2 gene expression, and Treg cells frequency.


Subject(s)
Lacticaseibacillus rhamnosus , Mucositis , Probiotics , Male , Animals , Mice , Mucositis/chemically induced , Mucositis/prevention & control , Mucositis/drug therapy , Lacticaseibacillus , Disease Models, Animal , Probiotics/pharmacology , Intestinal Mucosa , Weight Loss
8.
Microorganisms ; 10(11)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36363777

ABSTRACT

Previously, we demonstrated that the non-viable strain Lacticaseibacillus rhamnosus CRL1505 (NV1505) or its purified peptidoglycan (PG1505) differentially modulated the respiratory innate antiviral immune response triggered by Toll-like receptor (TLR)-3 activation in infant mice, improving the resistance to primary respiratory syncytial virus (RSV) infection and secondary pneumococcal pneumonia. In this work, we evaluated the effect of other non-viable L. rhamnosus strains and their peptidoglycans on the respiratory immune response and their impact on primary and secondary respiratory infections. In addition, the duration of the protective effect induced by NV1505 and PG1505 as well as their ability to protect against different Streptococcus pneumoniae serotypes were evaluated. Our results showed that among the five selected L. rhamnosus strains (CRL1505, CRL498, CRL576, UCO25A and IBL027), NV1505 and NVIBL027 improved the protection against viral and pneumococcal infections by modulating the respiratory immune response. Of note, only the PG1505 presented immunomodulatory activities when compared with the other purified peptidoglycans. Studies on alveolar macrophages showed that NV1505 and PG1505 differentially modulated the expression of IL-6, IFN-γ, IFN-ß, TNF-α, OAS1, RNAseL and IL-27 genes in response to RSV infection, and IL-6, IFN-γ, IL-1ß, TNF-α, CCL2, CXCL2, CXCL10 and IL-27 in response to pneumococcal challenge. Furthermore, we demonstrated that NV1505 and PG1505 treatments protected mice against secondary pneumococcal pneumonia produced by different serotypes of S. pneumoniae until 30 days after stimulation with poly(I:C). This work advances the characterization of the protective effect of NV1505 and PG1505 by demonstrating that they increase resistance against the pneumococcal serotypes 3, 6B, 14 and 19F, with an effect that lasts up to 30 days after the primary viral inflammation. The results also confirm that the immunomodulatory properties of NV1505 and PG1505 are unique and are not shared by other members of this species, and suggest the existence of a capacity to stimulate trained immunity in alveolar macrophages.

9.
Heliyon ; 8(9): e10733, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36177233

ABSTRACT

This work aimed to evaluate the effect of the addition 5°Bx Mexican honeysuckle (Justicia spicigera) extract (JSE) in spray dried encapsulates of whole and skimmed unfermented and fermented cow's milk with Lacticaseibacillus rhamnosus (LR). All samples were spray dried at 160 °C. Samples were analyzed in physical properties (moisture content, water activity (a w ), L∗, a∗, b∗, Hue, Chroma color parameters, particle size), LR content, and bioactive compounds (total anthocyanins (TA), total phenolic content (TPC), and antioxidant capacity (AC) using the DPPH assay). Results showed that the load of LR was in the range 6.79-7.44 Log10 (CFU/mL) cycles after fermentation, lower values were obtained when JSE was added before fermentation. In addition, LR remains after drying in fermented samples but decrease about 1 Log10 (CFU/mL) cycle. LR was 4.46 Log10 (CFU/mL) in the fermented skimmed milk-J. spicigera extract powder. All powders had a w and moisture content below 0.295 and 6.51%, respectively. Color of powders depended on the moment of addition of JSE and fermentation. Powders from fermented milk were pale brownish/orangey/red (Hue = 44.91-59.7) and unfermented and J. spicigera extract-maltodextrin solution (12% w/v) powders were purple (Hue = 314.52-326.68). Higher particle sizes (52.3-104.7 µm) were obtained with whole milk fermented and unfermented powders. On the contrary, skimmed milk and JSE without milk protein had values in the range 15.56-44.0 µm. TPC in powders were higher (16.96-33.81 mg GAE/g powder db) compared with TA (0.27-0.64 mg Peonidin-3,5-diglucoside/g powder db). TPC increased with fermentation and remain after spray drying. The AC and TPCs were highly correlated and had antioxidant capacity of 10.18 mg TE/g powder db. The principal component analysis showed that the type of milk and fermentation separate the powders in four groups, depending on their physical and antioxidant properties. Encapsulated pigments could be used in formulations in the food industry to increase bioactive compounds and pigments in foods.

10.
Microorganisms ; 10(6)2022 May 31.
Article in English | MEDLINE | ID: mdl-35744660

ABSTRACT

Mutualistic bacteria have different forms of interaction with the host. In contrast to the invasion of pathogenic bacteria, naturally occurring internalization of commensal bacteria has not been studied in depth. Three in vitro methods, gentamicin protection, flow cytometry and confocal laser scanning microscopy, have been implemented to accurately assess the internalization of two lactobacillus strains-Lacticaseibacillus paracasei BL23 and Lacticaseibacillus rhamnosus GG-in Caco-2 and T84 intestinal epithelial cells (IECs) under a variety of physiological conditions and with specific inhibitors. First and most interesting, internalization occurred at a variable rate that depends on the bacterial strain and IEC line, and the most efficient was BL23 internalization by T84 and, second, efficient internalization required active IEC proliferation, as it improved naturally at the early confluence stages and by stimulation with epidermal growth factor (EGF). IFN-γ is bound to innate immune responses and autolysis; this cytokine had a significant effect on internalization, as shown by flow cytometry, but increased internalization was not perceived in all conditions, possibly because it was also stimulating autolysis and, as a consequence, the viability of bacteria after uptake could be affected. Bacterial uptake required actin polymerization, as shown by cytochalasin D inhibition, and it was partially bound to clathrin and caveolin dependent endocytosis. It also showed partial inhibition by ML7 indicating the involvement of cholesterol lipid rafts and myosin light chain kinase (MLCK) activation, at least in the LGG uptake by Caco-2. Most interestingly, bacteria remained viable inside the IEC for as long as 72 h without damaging the epithelial cells, and paracellular transcytosis was observed. These results stressed the fact that internalization of commensal and mutualistic bacteria is a natural, nonpathogenic process that may be relevant in crosstalk processes between the intestinal populations and the host, and future studies could determine its connection to processes such as commensal tolerance, resilience of microbial populations or transorganic bacterial migration.

11.
Front Immunol ; 11: 568636, 2020.
Article in English | MEDLINE | ID: mdl-33133080

ABSTRACT

The oral administration of Lacticaseibacillus rhamnosus CRL1505 differentially modulates the respiratory innate antiviral immune response triggered by Toll-like receptor 3 (TLR3) activation in infant mice, improving the resistance to Respiratory Syncytial Virus (RSV) infection. In this work, by using macrophages depletion experiments and a detailed study of their production of cytokines and antiviral factors we clearly demonstrated the key role of this immune cell population in the improvement of both viral elimination and the protection against lung tissue damage induced by the CRL1505 strain. Orally administered L. rhamnosus CRL1505 activated alveolar macrophages and enhanced their ability to produce type I interferons (IFNs) and IFN-γ in response to RSV infection. Moreover, an increased expression of IFNAR1, Mx2, OAS1, OAS2, RNAseL, and IFITM3 was observed in alveolar macrophages after the oral treatment with L. rhamnosus CRL1505, which was consistent with the enhanced RSV clearance. The depletion of alveolar macrophages by the time of L. rhamnosus CRL1505 administration abolished the ability of infant mice to produce increased levels of IL-10 in response to RSV infection. However, no improvement in IL-10 production was observed when primary cultures of alveolar macrophages obtained from CRL1505-treated mice were analyzed. Of note, alveolar macrophages from the CRL1505 group had an increased production of IL-6 and IL-27 suggesting that these cells may play an important role in limiting inflammation and protecting lung function during RSV infection, by increasing the maturation and activation of Treg cells and their subsequent production of IL-10. In addition, we provided evidence of the important role of CD4+ cells and IFN-γ in the activation of alveolar macrophages highlighting a putative pathway through which the intestinal and respiratory mucosa are communicated under the influence of L. rhamnosus CRL1505.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Lacticaseibacillus rhamnosus , Macrophages, Alveolar/immunology , Probiotics/pharmacology , Respiratory Syncytial Virus Infections/immunology , Administration, Oral , Animals , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Chlorocebus aethiops , Cytokines/immunology , Intestinal Mucosa/immunology , Mice, Inbred BALB C , Poly I-C/pharmacology , Respiratory Mucosa/immunology , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL