Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 781
Filter
1.
Bull Exp Biol Med ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38960954

ABSTRACT

A cultural microbiological study of the vaginal microbiota of patients of reproductive age was carried out to isolate the species Lactobacillus iners with subsequent study of phenotypic features. The presence of two phenotypically different species variants was found in patients with bacterial vaginosis.

2.
Front Microbiol ; 15: 1408624, 2024.
Article in English | MEDLINE | ID: mdl-38962125

ABSTRACT

Introduction: Levilactobacillus brevis CRL 2013, a plant-derived lactic acid bacterium (LAB) with immunomodulatory properties, has emerged as an efficient producer of γ-aminobutyric acid (GABA). Notably, not all LAB possess the ability to produce GABA, highlighting the importance of specific genetic and environmental conditions for GABA synthesis. This study aimed to elucidate the intriguing GABA-producing machinery of L. brevis CRL 2013 and support its potential for safe application through comprehensive genome analysis. Methods: A comprehensive genome analysis of L. brevis CRL 2013 was performed to identify the presence of antibiotic resistance genes, virulence markers, and genes associated with the glutamate decarboxylase system, which is essential for GABA biosynthesis. Then, an optimized chemically defined culture medium (CDM) was supplemented with monosodium glutamate (MSG) and yeast extract (YE) to analyze their influence on GABA production. Proteomic and transcriptional analyses were conducted to assess changes in protein and gene expression related to GABA production. Results: The absence of antibiotic resistance genes and virulence markers in the genome of L. brevis CRL 2013 supports its safety for potential probiotic applications. Genes encoding the glutamate decarboxylase system, including two gad genes (gadA and gadB) and the glutamate antiporter gene (gadC), were identified. The gadB gene is located adjacent to gadC, while gadA resides separately on the chromosome. The transcriptional regulator gadR was found upstream of gadC, with transcriptional analyses demonstrating cotranscription of gadR with gadC. Although MSG supplementation alone did not activate GABA synthesis, the addition of YE significantly enhanced GABA production in the optimized CDM containing glutamate. Proteomic analysis revealed minimal differences between MSG-supplemented and non-supplemented CDM cultures, whereas YE supplementation resulted in significant proteomic changes, including upregulation of GadB. Transcriptional analysis confirmed increased expression of gadB and gadR upon YE supplementation, supporting its role in activating GABA production. Conclusion: These findings provide valuable insights into the influence of nutrient composition on GABA production. Furthermore, they unveil the potential of L. brevis CRL 2013 as a safe, nonpathogenic strain with valuable biotechnological traits which can be further leveraged for its probiotic potential in the food industry.

3.
Microb Cell Fact ; 23(1): 195, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971787

ABSTRACT

This study explores a sustainable approach for synthesizing silver nanocomposites (AgNCs) with enhanced antimicrobial and bioactivity using safe Lactobacillus strains and a whey-based medium (WBM). WBM effectively supported the growth of Lactobacillus delbrueckii and Lactobacillus acidophilus, triggering a stress response that led to AgNCs formation. The synthesized AgNCs were characterized using advanced spectroscopic and imaging techniques such as UV‒visible, Fourier transform infrared (FT-IR) spectroscopy, transmission electron (TEM), and scanning electron microscopy with energy dispersive X-ray analysis (SEM-Edx). Lb acidophilus-synthesized AgNCs in WBM (had DLS size average 817.2-974.3 ± PDI = 0.441 nm with an average of metal core size 13.32 ± 3.55 nm) exhibited significant antimicrobial activity against a broad spectrum of pathogens, including bacteria such as Escherichia coli (16.47 ± 2.19 nm), Bacillus cereus (15.31 ± 0.43 nm), Clostridium perfringens (25.95 ± 0.03 mm), Enterococcus faecalis (32.34 ± 0.07 mm), Listeria monocytogenes (23.33 ± 0.05 mm), methicillin-resistant Staphylococcus aureus (MRSA) (13.20 ± 1.76 mm), and filamentous fungi such as Aspergillus brasiliensis (33.46 ± 0.01 mm). In addition, Lb acidophilus-synthesized AgNCs in WBM exhibit remarkable free radical scavenging abilities, suggesting their potential as bioavailable antioxidants. These findings highlight the dual functionality of these biogenic AgNCs, making them promising candidates for applications in both medicine and nutrition.


Subject(s)
Microbial Sensitivity Tests , Nanocomposites , Silver , Whey , Nanocomposites/chemistry , Silver/chemistry , Silver/pharmacology , Whey/chemistry , Whey/metabolism , Lactobacillus acidophilus/drug effects , Lactobacillus acidophilus/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/biosynthesis , Metal Nanoparticles/chemistry , Lactobacillus/metabolism , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Spectroscopy, Fourier Transform Infrared
4.
Sci Total Environ ; 946: 174267, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936730

ABSTRACT

Nano-plastics (NPs) have emerged as prevalent contaminants in aquatic ecosystems, gaining significant research interest. Nonetheless, limited research has addressed the toxicity mechanisms associated with PS-NPs (polystyrene nanoplastics) of varying particle sizes. In this investigation, genotoxicity, growth patterns, hepatopancreatic damage, and intestinal flora alterations in freshwater shrimp Neocaridina palmata (Shen 1948), subjected to 35 days PS-NPs exposure (two size PS-NPs: 75 nm and 200 nm were used for this experiment, and five concentrations were set: 0 mg/L, 0.5 mg/L, 2.5 mg/L, 5 mg/L, and 10 mg/L concentrations PS-NP concentrations were examined using RNA sequencing, histopathological analyses, enzyme activity assessments, and 16S rRNA sequencing. Noteworthy variations in differentially expressed genes (DEGs) were identified across groups exposed to different PS-NPs sizes. We observed that PS-NPs predominantly instigated cellular component-related processes and induced apoptosis and oxidative stress across tissues via the mitochondrial pathway. Although the 200 nm-PS-NPs are stronger than the 75 nm-PS-NPs in terms of fluorescence intensity, 75 nm-PS-NPs are more likely to promote apoptosis than 200 nm-PS-NPs. PS-NPs impeded standard energy provision in N. palmata, potentially contributing to decreased body length and weight. Moreover, PS-NPs inflicted damage on intestinal epithelial and hepatopancreatic tissues and significantly modified intestinal microbial community structures. Specifically, PS-NPs-induced intestinal damage was marked by a decline in some probiotics (notably Lactobacilli) and a surge in pathogenic bacteria. Moreover, supplementing N. palmata with Lactobacilli appeared ameliorate oxidative stress and strengthen energy metabolism. Our findings provided valuable insights into crustacean toxicity mechanisms when subjected to PS-NPs and the potential risks that different PS-NPs sizes posed to terrestrial ecosystems.

5.
Front Cell Infect Microbiol ; 14: 1403782, 2024.
Article in English | MEDLINE | ID: mdl-38912205

ABSTRACT

Introduction: We assessed the in vitro anti-chlamydial activity of fresh vaginal secretions, deciphering the microbial and metabolic components able to counteract Chlamydia trachomatis viability. Methods: Forty vaginal samples were collected from a group of reproductive-aged women and their anti-chlamydial activity was evaluated by inhibition experiments. Each sample underwent 16S rRNA metabarcoding sequencing to determine the bacterial composition, as well as 1H-NMR spectroscopy to detect and quantify the presence of vaginal metabolites. Results: Samples characterized by a high anti-chlamydial activity were enriched in Lactobacillus, especially Lactobacillus crispatus and Lactobacillus iners, while not-active samples exhibited a significant reduction of lactobacilli, along with higher relative abundances of Streptococcus and Olegusella. Lactobacillus gasseri showed an opposite behavior compared to L. crispatus, being more prevalent in not-active vaginal samples. Higher concentrations of several amino acids (i.e., isoleucine, leucine, and aspartate; positively correlated to the abundance of L. crispatus and L. jensenii) lactate, and 4-aminobutyrate were the most significant metabolic fingerprints of highly active samples. Acetate and formate concentrations, on the other hand, were related to the abundances of a group of anaerobic opportunistic bacteria (including Prevotella, Dialister, Olegusella, Peptostreptococcus, Peptoniphilus, Finegoldia and Anaerococcus). Finally, glucose, correlated to Streptococcus, Lachnospira and Alloscardovia genera, emerged as a key molecule of the vaginal environment: indeed, the anti-chlamydial effect of vaginal fluids decreased as glucose concentrations increased. Discussion: These findings could pave the way for novel strategies in the prevention and treatment of chlamydial urogenital infections, such as lactobacilli probiotic formulations or lactobacilli-derived postbiotics.


Subject(s)
Chlamydia trachomatis , Lactobacillus , RNA, Ribosomal, 16S , Vagina , Female , Humans , Vagina/microbiology , RNA, Ribosomal, 16S/genetics , Lactobacillus/isolation & purification , Lactobacillus/genetics , Lactobacillus/metabolism , Chlamydia trachomatis/isolation & purification , Adult , Streptococcus/isolation & purification , Young Adult , Lactobacillus crispatus/isolation & purification , Chlamydia Infections/microbiology
6.
Microbiol Spectr ; : e0349723, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916329

ABSTRACT

Bacteria are involved in numerous interactions during infection and among host-associated microbial populations. Salmonella enterica serovar Typhimurium is a foodborne pathogen of great importance as well as a model organism to study interactions within a microbial community. In this study, we found that S. Typhimurium becomes tolerant to azithromycin when co-cultured with lactobacilli strains. Similarly, acidified media, from cell-free supernatant of lactobacilli cultures for instance, also induced the tolerance of S. Typhimurium to azithromycin. The addition of membrane disruptors restored the normal sensitivity to azithromycin in acidified media, but not when lactobacilli were present. These results suggested that the acidification of the media led to modification in envelope homeostasis, but that a different mechanism promoted the tolerance to azithromycin in the presence of lactobacilli strains. To further understand how lactobacilli strains modify the sensitivity of S. Typhimurium to azithromycin, a high-throughput assay was performed using the single-gene deletion collection of the S. Typhimurium (1) in co-culture with Lacticaseibacillus rhamnosus and (2) in sterile acidic conditions (pH 5.5 media only). As expected, both screens identified genes involved in envelope homeostasis and membrane permeability. Our results also suggest that changes in the metabolism of S. Typhimurium induce the tolerance observed in the presence of L. rhamnosus. Our results thus highlight two different mechanisms by which lactobacilli induce the tolerance of S. Typhimurium to azithromycin.IMPORTANCEThis study provides valuable insights into the intricate interactions between bacteria during infections and within host-associated microbial communities. Specifically, it sheds light on the significant role of lactobacilli in inducing antibiotic tolerance in Salmonella enterica serovar Typhimurium, a critical foodborne pathogen and model organism for microbial community studies. The findings not only uncover the mechanisms underlying this antibiotic tolerance but also reveal two distinct pathways through which strains of lactobacilli might influence Salmonella's response to antibiotics. Understanding these mechanisms has the potential to enhance our knowledge of bacterial infections and may have implications for the development of strategies to combat antibiotic resistance in pathogens, such as Salmonella. Furthermore, our results underscore the necessity to explore beyond the direct antimicrobial effects of antibiotics, emphasizing the broader microbial community context.

7.
Microbiol Spectr ; 12(7): e0352423, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38860826

ABSTRACT

Gluten possesses unique properties that render it only partially digestible. Consequently, it exerts detrimental effects on a part of the worldwide population who are afflicted with celiac disease (1%) or related disorders (5%), particularly due to the potential for cross-contamination even when adhering to a gluten-free diet (GFD). Finding solutions to break down gluten during digestion has a high nutritional and social impact. Here, a randomized double-blind placebo-controlled in vivo challenge investigated the gluten-degrading activity of a novel probiotic preparation comprising lactobacilli and their cytoplasmic extracts, Bacillus sp., and bacterial protease. In our clinical trial, we collected feces from 70 healthy volunteers at specific time intervals. Probiotic/placebo administration lasted 32 days, followed by 10 days of wash-out. After preliminary GFD to eliminate residual gluten from feces, increasing amounts of gluten (50 mg-10 g) were administered, each one for 4 consecutive days. Compared to placebo, the feces of volunteers fed with probiotics showed much lower amounts of residual gluten, mainly with increased intakes. Probiotics also regulate the intestinal microbial communities, improving the abundance of genera pivotal to maintaining homeostasis. Quantitative PCR confirmed that all probiotics persisted during the intervention, some also during wash-out. Probiotics promoted a fecal metabolome with potential immunomodulating activity, mainly related to derivatives of branched-chain amino acids and short-chain fatty acids. IMPORTANCE: The untapped potential of gluten-degrading bacteria and their application in addressing the recognized limitations of gluten-related disorder management and the ongoing risk of cross-contamination even when people follow a gluten-free diet (GFD) emphasizes the significance of the work. Because gluten, a common protein found in many cereals, must be strictly avoided to stop autoimmune reactions and related health problems, celiac disease and gluten sensitivity present difficult hurdles. However, because of the hidden presence of gluten in many food products and the constant danger of cross-contamination during food preparation and processing, total avoidance is frequently challenging. Our study presents a novel probiotic preparation suitable for people suffering from gluten-related disorders during GFD and for healthy individuals because it enhances gluten digestion and promotes gut microbiota functionality.


Subject(s)
Feces , Gastrointestinal Microbiome , Glutens , Probiotics , Humans , Probiotics/administration & dosage , Glutens/metabolism , Gastrointestinal Microbiome/drug effects , Feces/microbiology , Feces/chemistry , Double-Blind Method , Adult , Male , Female , Lactobacillus/metabolism , Celiac Disease/microbiology , Celiac Disease/metabolism , Celiac Disease/diet therapy , Diet, Gluten-Free , Bacillus/metabolism , Middle Aged , Young Adult
8.
J Pharm Bioallied Sci ; 16(Suppl 2): S1764-S1770, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882794

ABSTRACT

Probiotics, like lactobacilli and bifidobacteria, benefit health by populating the digestive system, which houses numerous microbial species. Studies demonstrate their ability to inhibit biofilm formation, crucial in preventing oral conditions like dental caries. Our research evaluated a probiotic strain's anti-biofilm efficacy against oral pathogens in 45 individuals' saliva, alongside its biofilm-forming potential. Analysis revealed significant biofilm inhibition in 36 samples. Comparisons based on age, gender, and geography further supported these findings. We propose further exploration of probiotics tailored to specific demographics to enhance oral health outcomes, suggesting a promising avenue for preventing oral microbial diseases.

9.
Article in English | MEDLINE | ID: mdl-38836988

ABSTRACT

Different lactobacilli are probiotics for their beneficial effects that confer to the host. Recently, some of these effects were associated with released metabolic products/constituents (postbiotics). In the present study, the potential immunomodulatory capacity of the probiotic Lactobacillus gasseri OLL2809 cell-free supernatant (sup) was investigated in murine bone marrow-derived dendritic cells (DCs). Bacteria induced significantly higher expression of all examined cytokines than those induced by the stimulatory lipopolysaccharide (LPS) itself. On the contrary, sup only induced the anti-inflammatory IL-10 similarly to LPS, whereas IL-12 and IL-6 secretions were stimulated at a lower level. Moreover, sup reduced the surface expression of the analyzed co-stimulatory markers CD40, CD80, and CD86. Treatments of sup with different digestive enzymes indicated the proteinaceous nature of these immunomodulatory metabolites. Western blot and immunoadsorption analyzes revealed cross-reactivity of sup with the surface-layer proteins (SLPs) isolated from OLL2809. Therefore, we directly tested the ability of OLL2809 SLPs to stimulate specifically cytokine expression in iDCs. Interestingly, we found that all tested cytokines were induced by SLPs and in a dose-dependent manner. In conclusion, our results highlighted distinct immune properties between L. gasseri OLL2809 and its metabolites, supporting the concept that bacterial viability is not an essential prerequisite to exert immunomodulatory effects.

10.
Proc Natl Acad Sci U S A ; 121(24): e2401686121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38838019

ABSTRACT

S-layers are crystalline arrays found on bacterial and archaeal cells. Lactobacillus is a diverse family of bacteria known especially for potential gut health benefits. This study focuses on the S-layer proteins from Lactobacillus acidophilus and Lactobacillus amylovorus common in the mammalian gut. Atomic resolution structures of Lactobacillus S-layer proteins SlpA and SlpX exhibit domain swapping, and the obtained assembly model of the main S-layer protein SlpA aligns well with prior electron microscopy and mutagenesis data. The S-layer's pore size suggests a protective role, with charged areas aiding adhesion. A highly similar domain organization and interaction network are observed across the Lactobacillus genus. Interaction studies revealed conserved binding areas specific for attachment to teichoic acids. The structure of the SlpA S-layer and the suggested incorporation of SlpX as well as its interaction with teichoic acids lay the foundation for deciphering its role in immune responses and for developing effective treatments for a variety of infectious and bacteria-mediated inflammation processes, opening opportunities for targeted engineering of the S-layer or lactobacilli bacteria in general.


Subject(s)
Membrane Glycoproteins , Teichoic Acids , Teichoic Acids/metabolism , Teichoic Acids/chemistry , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/chemistry , Lactobacillus/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Models, Molecular , Lactobacillus acidophilus/metabolism , Lactobacillus acidophilus/genetics
11.
Article in English | MEDLINE | ID: mdl-38941060

ABSTRACT

To study how indigenous or probiotic-introduced lactobacilli affect the sensitivity (estimated as the proportion of surviving, apoptotic, and nonapoptotic deaths) of vaginal epithelial cells obtained from HPV-negative and HPV-positive patients to oxidative damage. The tendency to resist oxidative damage in vaginal epithelial cells of 147 HPV-positive and 59 HPV-negative patients with physiological or suboptimal levels of Lactobacillus was evaluated. Adaptation of cell to curb the oxidative damage in 146 HPV positive and 41 HPV negative with probiotic (Lacticaseibacillus rhamnosus Lcr35) supplementation and without was studied. Resistance of epithelial cells to damage was measured by the ratio of surviving, apoptotic, and dead nonapoptotic cells after three times of hydrogen peroxide treatment using a kit containing annexin V-fluorescein in combination with propidium iodide. If uninfected epithelial cells were in an environment with a physiological level of lactobacilli for significant duration, then these cells were more resilient to damage, and if they lost their viability, it was mainly due to apoptosis. Probiotic therapy also increased the resistance of uninfected epithelial cells to damage. HPV-infected epithelial cells were less resistant to damage at normal levels of lactobacilli compared with Lactobacillus deficiency. In HPV-positive patients with Lactobacillus deficiency, probiotic therapy decreased the resistance of infected epithelial cells to damage; the increase in cell death was mainly due to apoptosis.

12.
Front Biosci (Elite Ed) ; 16(2): 11, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38939910

ABSTRACT

BACKGROUND: Flaxseed mucilage (FSM) is one of the healthy components of flaxseed. FSM is an example of a material that can be used in the food, cosmetic, and pharmaceutical industries due to its rheological properties. FSM consists mainly of two polysaccharides, arabinoxylan, and rhamnogalacturonan I, and it also contains protein components and minerals. The prospect of using FSM in food is due to its gelling, water binding, emulsifying, and foaming properties. In addition, valuable natural sources of phenolic compounds such as lignans, phenolic acids, flavonoids, phenylpropanoids, and tannins are partially extracted from flaxseed in FSM. These antioxidant components have pharmacological properties, including anti-diabetic, anti-hypertensive, immunomodulatory, anti-inflammatory and neuroprotective properties. A combination of FSM and lactobacilli in dairy foods can improve their functional properties. This study aimed to develop dairy products by adding of FSM and using two lactic acid bacteria (LAB). FSM (0.2%) was used as an ingredient to improve both the texture and antioxidant properties of the product. METHODS: Skim milk was fermented with 0.2% flaxseed mucilage using Lactobacillus delbrueckii subs. bulgaricus and the probiotic Lactiplantibacillus plantarum AG9. The finished fermented milk products were stored at 4 °C for 14 days. Quantitative chemical, textural, and antioxidant analyses were carried out. RESULTS: Adding 0.2% FSM to the dairy product stimulated the synthesis of lactic acid. FSM increased the viscosity and water-holding capacity of L. bulgaricus or L. bulgaricus/L. plantarum AG9 fermented milk products. Combining these starter strains with FSM promoted the formation of a hard, elastic, resilient casein matrix in the product. When only L. plantarum AG9 was used for the fermentation, the dairy product had a high syneresis and a low viscosity and firmness; such a product is inferior in textural characteristics to the variant with commercial L. bulgaricus. The addition of FSM improved the textural properties of this variant. The use of L. plantarum AG9 and FSM makes it possible to obtain a fermented milk product with the highest content of polyphenolic compounds, which have the highest antioxidant properties and stimulate lipase and α-glucosidase inhibitor synthesis. Combining of L. bulgaricus and L. plantarum AG9 in the starter (20% of the total mass of the starter) and adding of 0.2% FSM is the optimal combination for obtaining a dairy product with high textural and antioxidant properties. CONCLUSIONS: The physicochemical properties (viscosity, syneresis, water holding capacity, texture) and antioxidant properties of fermented milk were improved. In the future, as part of the work to investigate the functional properties of dairy products with FSM, studies will be conducted using in in vivo models.


Subject(s)
Flax , Lactobacillus delbrueckii , Plant Mucilage , Flax/chemistry , Lactobacillus delbrueckii/metabolism , Plant Mucilage/chemistry , Lactobacillus plantarum/metabolism , Antioxidants/chemistry , Antioxidants/analysis , Cultured Milk Products/microbiology , Cultured Milk Products/analysis , Animals , Milk/chemistry , Fermentation
13.
Animals (Basel) ; 14(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38929398

ABSTRACT

Probiotics are a potential strategy for salmonellosis control. A defined pig microbiota (DPM) mixture of nine bacterial strains previously exhibited probiotic and anti-Salmonella properties in vitro. Therefore, we evaluated its gut colonization ability and protection effect against S. typhimurium LT2-induced infection in the gnotobiotic piglet model. The DPM mixture successfully colonized the piglet gut and was stable and safe until the end of the experiment. The colon was inhabited by about 9 log CFU g-1 with a significant representation of bifidobacteria and lactobacilli compared to ileal levels around 7-8 log CFU g-1. Spore-forming clostridia and bacilli seemed to inhabit the environment only temporarily. The bacterial consortium contributed to the colonization of the gut at an entire length. The amplicon profile analysis supported the cultivation trend with a considerable representation of lactobacilli with bacilli in the ileum and bifidobacteria with clostridia in the colon. Although there was no significant Salmonella-positive elimination, it seems that the administered bacteria conferred the protection of infected piglets because of the slowed delayed infection manifestation without translocations of Salmonella cells to the blood circulation. Due to its colonization stability and potential protective anti-Salmonella traits, the DPM mixture has promising potential in pig production applications. However, advanced immunological tests are needed.

14.
Lett Appl Microbiol ; 77(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38806242

ABSTRACT

Recently, an increasing number of studies have investigated the mechanism of action of lactobacilli in the treatment of non-alcoholic fatty liver disease. Using four computational tools (NormFinder, geNorm, Delta Ct, and BestKeeper), six potential reference genes (RGs) were analyzed in the human liver cell line HepG2 cultivated 24 h in the presence of two strains of heat-killed lactobacilli, Limosilactobacillus reuteri E and Lactiplantibacillus plantarum KG4, respectively, in different cultivation media [Dulbecco´s Modified Eagle´s Medium (DMEM) high glucose or Roswell Park Memorial Institute (RPMI)]. The analysis revealed that the suitability of RG was similar between the two lactobacilli but quite different between the two media. The commonly used RGs, 18S rRNA and glyceraldehyde-3-phosphate dehydrogenase were the most unstable in DMEM high glucose. Normalization of the mRNA expression of the target gene encoding sterol regulatory element-binding protein 1c (SREBP-1c) to different RGs resulted in different expression profiles. This demonstrates that validation of candidate RGs under specific experimental conditions is crucial for the correct interpretation of quantitative polymerase chain reaction data. In addition, the choice of media has a profound impact on the effect of lactobacilli on lipogenesis at the gene expression level, as shown by the transcription factor SREBP-1c.


Subject(s)
Culture Media , Humans , Culture Media/chemistry , Hep G2 Cells , Lactobacillus/genetics , Real-Time Polymerase Chain Reaction , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Reference Standards , Gene Expression Profiling
15.
Front Biosci (Landmark Ed) ; 29(5): 180, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38812316

ABSTRACT

BACKGROUND: The epithelia of the intestine perform various functions, playing a crucial role in providing a physical barrier and an innate immune defense against infections. By generating a "three-dimensional" (3D) model of cell co-cultures using the IPEC-J2 cell line and porcine blood monocyte-derived macrophages (MDMs), we are getting closer to mimicking the porcine intestine ex vivo.Methods: The effect of Limosilactobacillus reuteri B1/1 and Limosilactobacillus fermentum CCM 7158 (indicator strain) on the relative gene expression of interleukins (IL-1ß, IL-6, IL-8, IL-18 and IL-10), genes encoding receptors for TLR4 and TLR2, tight junction proteins such as claudin-1 (CLDN1), occludin (OCLN) and important antimicrobial proteins such as lumican (LUM) and olfactomedin-4 (OLMF-4) was monitored in this model. RESULTS: The results obtained from this pilot study point to the immunomodulatory potential of newly isolated L. reuteri B1/1, as it was able to suppress the enhanced pro-inflammatory response to lipopolysaccharide (LPS) challenge in both cell types. L. reuteri B1/1 was even able to up-regulate the mRNA levels of genes encoding antimicrobial proteins LUM and OLFM-4 and to increase tight junction (TJ)-related genes CLDN1 and OCLN, which were significantly down-regulated in LPS-induced IPEC-J2 cells. Conversely, L. fermentum CCM 7158, chosen as an indicator lactic acid bacteria (LAB) strain, increased the mRNA levels of the investigated pro-inflammatory cytokines (IL-18, IL-6, and IL-1ß) in MDMs when LPS was simultaneously applied to basally deposited macrophages. Although L. fermentum CCM 7158 induced the production of pro-inflammatory cytokines, synchronous up-regulation of the anti-inflammatory cytokine IL-10 was detected in both LAB strains used in both cell cultures. CONCLUSIONS: The obtained results suggest that the recently isolated LAB strain L. reuteri B1/1 has the potential to alleviate epithelial disruption caused by LPS and to influence the production of antimicrobial molecules by enterocytes.


Subject(s)
Cytokines , Limosilactobacillus reuteri , Animals , Cytokines/metabolism , Cytokines/genetics , Swine , Limosilactobacillus reuteri/metabolism , Cell Line , Macrophages/metabolism , Macrophages/immunology , Antimicrobial Peptides/metabolism , Antimicrobial Peptides/genetics , Coculture Techniques
16.
J Tradit Complement Med ; 14(3): 237-255, 2024 May.
Article in English | MEDLINE | ID: mdl-38707924

ABSTRACT

This review aims to argue how using probiotics can improve anxiety and depressive behaviour without adverse effects, also exploring the impact of postbiotics on it. Specifically, probiotics have drawn more attention as effective alternative treatments, considering the rising cost of antidepressant and anti-anxiety drugs and the high risk of side effects. Depression and anxiety disorders are among the most common mental illnesses in the world's population, characterised by low mood, poor general interest, and cognitive or motor dysfunction. Thus, this study analysed published literature on anxiety, depression, and probiotic supplementation from PubMed and Scopus, focusing on the last twenty years. This study focused on the effect of probiotics on mental health as they have drawn more attention because of their extensive clinical applications and positive impact on various diseases. Numerous studies have demonstrated how the gut microbiota might be critical for mood regulation and how probiotics can affect host health by regulating the gut-brain axis. By comparing the different works analysed, it was possible to identify a strategy by which they are selected and employed and, at the same time, to assess how the effect of probiotics can be optimised using postbiotics, an innovation to improve mental well-being in humans.

17.
Heliyon ; 10(9): e30495, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38765070

ABSTRACT

Vaginitis, characterized by pathogenic invasion and a deficiency in beneficial lactobacilli, has recognized lactobacilli supplementation as a novel therapeutic strategy. However, due to individual differences in vaginal microbiota, identifying universally effective Lactobacillus strains is challenging. Traditional methodologies for probiotic selection, which heavily depend on extensive in vitro experiments, are both time-intensive and laborious. The aim of this study was to pinpoint possible vaginal probiotic candidates based on whole-genome screening. We sequenced the genomes of 98 previously isolated Lactobacillus strains, annotating their genes involved in probiotic metabolite biosynthesis, adherence, acid/bile tolerance, and antibiotic resistance. A scoring system was used to assess the strains based on their genomic profiles. The highest-scoring strains underwent further in vitro evaluation. Consequently, two strains, Lactobacillus crispatus LG55-27 and Lactobacillus gasseri TM13-16, displayed an outstanding ability to produce d-lactate and adhere to human vaginal epithelial cells. They also showed higher antimicrobial activity against Gardnerella vaginalis, Escherichia coli, Candida albicans, Staphylococcus aureus, and Pseudomonas aeruginosa compared to reference Lactobacillus strains. Their resilience to acid and bile environments highlights the potential for oral supplementation. Oral and vaginal administration of these two strains were tested in a bacterial vaginosis (BV) rat model at various doses. Results indicated that combined vaginal administration of these strains at 1 × 106 CFU/day significantly mitigated BV in rats. This research offers a probiotic dosage guideline for vaginitis therapy, underscoring an efficient screening process for probiotics using genome sequencing, in vitro testing, and in vivo BV model experimentation.

18.
Int J Paediatr Dent ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38803013

ABSTRACT

BACKGROUND: Lysosomal storage diseases (LSDs), a group of inborn errors of metabolism, include various subtypes, for example, mucopolysaccharidosis (MPS) and Gaucher disease (GD). Besides the physical/mental disabilities, they suffer from several oral deteriorations. AIM: To evaluate the oral health status of Egyptian children with LSD. DESIGN: Thirty LSD children and thirty non-LSD children were enrolled for this study according to the inclusion and exclusion criteria. Dental indices were used to assess caries prevalence and periodontal status. Saliva samples were collected from all enrolled children to estimate interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), and protein levels as well as Streptococcus mutans and Lactobacilli colony counts. RESULTS: Children with MPS and GD showed non-significant differences in decayed, missing, or filled teeth (DMFT) scores (p = .115). Scores of dmft showed a significant increase in MPS, but not in GD children (p = .020, p = .127). Children with LSD showed significantly increased Modified Gingival Index (MGI), Plaque Index (PI), Oral Hygiene Index (OHI-s) scores (p < .001) and salivary IL-6 and TNF-α (p = .007, p = .001, p < .0001, p = .002, respectively) and salivary total proteins (p = .001) levels. Unexpectedly, non-significant differences were observed in salivary Streptococcus mutans or Lactobacilli counts in children with MPS and GD (p = .058, p = .420, p = .502, p = .053, respectively). CONCLUSION: To our knowledge, this is the first article that evaluates Egyptian children with LSD. We demonstrated high caries prevalence in primary teeth, not permanent teeth, in children with MPS and poor gingival/hygiene status in children with MPS and GD, which triggered a state of inflammation. The daily supplement intake prevented oral bacterial growth. The most probable cause of oral alterations is decreased salivary flow rate, as deduced from a significantly increased salivary protein.

19.
Biochemistry (Mosc) ; 89(Suppl 1): S71-S89, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38621745

ABSTRACT

The problem of antibiotic resistance is currently very acute. Numerous research and development of new antibacterial drugs are being carried out that could help cope with various infectious agents. One of the promising directions for the search for new antibacterial drugs is the search among the probiotic strains present in the human gastrointestinal tract. This review is devoted to characteristics of one of these probiotic strains that have been studied to date: Limosilactobacillus reuteri. The review discusses its properties, synthesis of various compounds, as well as role of this strain in modulating various systems of the human body. The review also examines key characteristics of one of the most harmful among the currently known pathogenic organisms, Klebsiella, which is significantly resistant to antibiotics existing in medical practice, and also poses a great threat of nosocomial infections. Discussion of characteristics of the two strains, which have opposite effects on human health, may help in creation of new effective antibacterial drugs without significant side effects.


Subject(s)
Lactobacillus , Limosilactobacillus reuteri , Humans , Klebsiella , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
20.
Fish Shellfish Immunol ; 149: 109547, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38593522

ABSTRACT

Heat-killed probiotics offer an alternative approach to enhance growth and disease resistance in farmed fish. In this study, we isolated Lactiplantibacillus plantarum VSG3 from the gut of Labeo rohita to investigate the effects of heat-killed L. plantarum (HK-LP) on the health and growth performance of Cyprinus carpio fingerlings. Different concentrations of HK-LP (0, 50, 100, 200, 300, and 400 mg/kg) were administered to the fish, followed by a challenge with Aeromonas hydrophila after 8 weeks of feeding. Notably, the LP200 group exhibited significantly improved percentage weight gain and specific growth rate, accompanied by the lowest feed conversion ratio. Post-challenge survival rates were considerably enhanced in the LP200 group, reaching 60.65%. Moreover, serum analysis indicated significantly higher levels of total protein and albumin in the LP200 group than in the control group. Although HK-LP had no substantial impact on certain serum parameters (glucose, total cholesterol, cortisol, and alanine aminotransferase), aspartate aminotransferase levels were considerably low in the LP200 group. Intestinal protease and trypsin activities significantly increased in the LP200 group, while no significant changes were observed in lipase and amylase activities post-pathogen challenge. Serum immunological indices, including lysozyme, alternative complement pathway, and phagocytic activity, improved considerably in the LP200 group. Additionally, serum antioxidant enzyme activities (superoxide dismutase [SOD], glutathione peroxidase [GPx], catalase [CAT], and myeloperoxidase) were significantly elevated in the LP200 group, while malondialdehyde level was reduced. Gene expression analysis in liver tissue indicated strong upregulation of antioxidant-related genes (SOD, CAT, nuclear factor erythroid 2 [NFE2]-related factor 2 [Nrf2], Kelch-like ECH-associated protein 1[Keap1]) in the LP100 and LP200 groups. Pro-inflammatory cytokines (IL-1ß and TNF-α) were considerably downregulated in the kidneys of the LP200 post-challenged fish, although the anti-inflammatory cytokine IL-10 showed an increased expression. Quadratic regression analysis identified the optimal dietary HK-LP level for maximizing growth and immune performance (200.381-270.003 mg/kg). In summary, our findings underscore the potential of HK-LP as a valuable dietary supplement for enhancing carp aquaculture, particularly at the appropriate concentration.


Subject(s)
Aeromonas hydrophila , Animal Feed , Antioxidants , Carps , Diet , Fish Diseases , Gram-Negative Bacterial Infections , Probiotics , Animals , Probiotics/administration & dosage , Probiotics/pharmacology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Carps/immunology , Carps/growth & development , Animal Feed/analysis , Fish Diseases/immunology , Diet/veterinary , Aeromonas hydrophila/physiology , Antioxidants/metabolism , Immunity, Innate , Lactobacillus plantarum/chemistry , Hot Temperature , Gene Expression , Dietary Supplements/analysis , Random Allocation , Disease Resistance
SELECTION OF CITATIONS
SEARCH DETAIL
...