Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.166
Filter
1.
J Environ Manage ; 366: 121813, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39018854

ABSTRACT

For many years, the Weihe River Basin (WRB) has struggled to achieve a balance between ecological protection and economic growth. Constructing an Ecological Security Pattern (ESP) is extremely important for ensuring ecological security (ES). This study employed a coupling of multi-objective programming (MOP) and the patch-generating land use simulation (PLUS) model to project land use change (LUCC) in 2040 across three scenarios. Leveraging circuit theory, we generated ecological corridors and identified key ecological nodes, enabling a comparative analysis of ESPs within the WRB. The main results showed that: (1) The Ecological Protection (EP) scenario showed the highest proportions of forestland, grassland, and water, indicating an optimal ecological environment. Conversely, the Economic Development (ED) scenario features the greatest proportion of construction land, particularly evident in the rapid urban expansion. The Natural Development (ND) scenario exhibits a more balanced change, aligning closely with historical trends. (2) The ecological source areas in the EP scenario is 13,856.70 km2, with the largest and most intact patch area. The ecological source patches that have been identified in the ED scenario exhibit fragmentation and dispersion, encompassing a total area of 8018.82 km2. The ecological source areas in the ND scenario is most similar to the actual situation in 2020, encompassing 8474.99 km2. (3) The EP scenario demonstrates minimal landscape fragmentation. The ED scenario presents a more intricate corridor pattern, hindering species and energy flow efficiency. The ND scenario is more similar to the actual distribution in 2020. Protecting and restoring key ecological nodes, and ensuring the integrity and connectivity of ecological sources are crucial for ESP optimization in various scenarios. Combining all results, we categorize the WRB's spatial pattern into "three zones, three belts, and one center" and offer strategic suggestions for ecological preservation, promoting sustainable local ecological and socioeconomic development.

2.
Article in English | MEDLINE | ID: mdl-38961449

ABSTRACT

Woody plants are encroaching across terrestrial ecosystems globally, and this has dramatic effects on how these systems function and the livelihoods of producers who rely on the land to support livestock production. Consequently, the removal of woody plants is promoted widely in the belief that it will reinstate former grasslands or open savanna. Despite this popular management approach to encroachment, we still have a relatively poor understanding of the effects of removal on society, and of alternative management practices that could balance the competing needs of pastoral production, biodiversity conservation and cultural values. This information is essential for maintaining both ecological and societal benefits in encroached systems under predicted future climate changes. In this review, we provide a comprehensive synthesis of the social-ecological perspectives of woody encroachment based on recent studies and global meta-analyses by assessing the ecological impacts of encroachment and its effects on sustainable development goals (SDGs) when woody plants are retained and when they are removed. We propose a working definition of woody encroachment based on species- and community-level characteristics; such a definition is needed to evaluate accurately the effects of encroachment. We show that encroachment is a natural process of succession rather than a sign of degradation, with encroachment resulting in an overall 8% increase in ecosystem multifunctionality. Removing woody plants can increase herbaceous plant richness, biomass and cover, but at the expense of biocrust cover. The effectiveness of woody plant removal depends on plant identity, and where, when and how they are removed. Under current management practices, either removal or retention of woody plants can induce trade-offs among ecosystem services, with no management practice maximising all SDGs [e.g. SDG2 (end hunger), SDG13 (climate change), SDG 15 (combat desertification)]. Given that encroachment of woody plants is likely to increase under future predicted hotter and drier climates, alternative management options such as carbon farming and ecotourism could be effective land uses for areas affected by encroachment.

3.
PeerJ ; 12: e17563, 2024.
Article in English | MEDLINE | ID: mdl-38948225

ABSTRACT

Changes in land cover directly affect biodiversity. Here, we assessed land-cover change in Cuba in the past 35 years and analyzed how this change may affect the distribution of Omphalea plants and Urania boisduvalii moths. We analyzed the vegetation cover of the Cuban archipelago for 1985 and 2020. We used Google Earth Engine to classify two satellite image compositions into seven cover types: forest and shrubs, mangrove, soil without vegetation cover, wetlands, pine forest, agriculture, and water bodies. We considered four different areas for quantifications of land-cover change: (1) Cuban archipelago, (2) protected areas, (3) areas of potential distribution of Omphalea, and (4) areas of potential distribution of the plant within the protected areas. We found that "forest and shrubs", which is cover type in which Omphalea populations have been reported, has increased significantly in Cuba in the past 35 years, and that most of the gained forest and shrub areas were agricultural land in the past. This same pattern was observed in the areas of potential distribution of Omphalea; whereas almost all cover types were mostly stable inside the protected areas. The transformation of agricultural areas into forest and shrubs could represent an interesting opportunity for biodiversity conservation in Cuba. Other detailed studies about biodiversity composition in areas of forest and shrubs gain would greatly benefit our understanding of the value of such areas for conservation.


Subject(s)
Agriculture , Biodiversity , Conservation of Natural Resources , Cuba , Animals , Moths/physiology , Forests
4.
Glob Chang Biol ; 30(7): e17411, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39001641

ABSTRACT

Humans have substantially transformed the global land surface, resulting in the decline in variation in biotic communities across scales, a phenomenon known as "biological homogenization." However, different biota are affected by biological homogenization to varying degrees, but this variation and the underlying mechanisms remain little studied, particularly in soil systems. To address this topic, we used metabarcoding to investigate the biogeography of soil protists and their prey/hosts (prokaryotes, fungi, and meso- and macrofauna) in three human land-use ecosystem types (farmlands, residential areas, and parks) and natural forest ecosystems across subtropical and temperate regions in China. Our results showed that the degree of community homogenization largely differed between taxa and functional groups of soil protists, and was strongly and positively linked to their colonization ability of human land-use systems. Removal analysis showed that the introduction of widespread, generalist taxa (OTUs, operational taxonomic units) rather than the loss of narrow-ranged, specialist OTUs was the major cause of biological homogenization. This increase in generalist OTUs seemingly alleviated the negative impact of land use on specialist taxa, but carried the risk of losing functional diversity. Finally, homogenization of prey/host biota and environmental conditions were also important drivers of biological homogenization in human land-use systems, with their importance being more pronounced in phagotrophic than parasitic and phototrophic protists. Overall, our study showed that the variation in biological homogenization strongly depends on the colonization ability of taxa in human land-use systems, but is also affected by the homogenization of resources and environmental conditions. Importantly, biological homogenization is not the major cause of the decline in the diversity of soil protists, and conservation and study efforts should target at taxa highly sensitive to local extinction, such as parasites.


Subject(s)
Biodiversity , Soil , China , Soil/chemistry , Ecosystem , Soil Microbiology , Human Activities , Humans , Fungi , Forests
5.
Sci Rep ; 14(1): 15984, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987401

ABSTRACT

Land-use change is the main driver of carbon storage change in terrestrial ecosystems. Currently, domestic and international studies mainly focus on the impact of carbon storage changes on climate, while studies on the impact of land-use changes on carbon storage in complex terrestrial ecosystems are few. The Jialing River Basin (JRB), with a total area of ~ 160,000 km2, diverse topography, and elevation differences exceeding 5 km, is an ideal case for understanding the complex interactions between land-use change and carbon storage dynamics. Taking the JRB as our study area, we analyzed land-use changes from 2000 to 2020. Subsequently, we simulated land-use patterns for business-as-usual (BAU), cropland protection (CP), and ecological priority (EP) scenarios in 2035 using the PLUS model. Additionally, we assessed carbon storage using the InVEST model. This approach helps us to accurately understand the carbon change processes in regional complex terrestrial ecosystems and to formulate scientifically informed land-use policies. The results revealed the following: (1) Cropland was the most dominant land-use type (LUT) in the region, and it was the only LUT experiencing net reduction, with 92.22% of newly designated construction land originating from cropland. (2) In the JRB, total carbon storage steadily decreased after 2005, with significant spatial heterogeneity. This pattern was marked by higher carbon storage levels in the north and lower levels in the south, with a distinct demarcation line. The conversion of cropland to construction land is the main factor driving the reduction in carbon storage. (3) Compared with the BAU and EP scenarios, the CP scenario demonstrated a smaller reduction in cropland area, a smaller addition to construction land area, and a lower depletion in the JRB total carbon storage from 2020 to 2035. This study demonstrates the effectiveness of the PLUS and InVEST models in analyzing complex ecosystems and offers data support for quantitatively assessing regional ecosystem services. Strict adherence to the cropland replenishment task mandated by the Chinese government is crucial to increase cropland areas in the JRB and consequently enhance the carbon sequestration capacity of its ecosystem. Such efforts are vital for ensuring the food and ecological security of the JRB, particularly in the pursuit of the "dual-carbon" objective.

6.
Environ Res ; 259: 119559, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38969316

ABSTRACT

Anthropogenic activities significantly impact river ecosystem nutrient fluxes and microbial metabolism. Here, we examined the seasonal and spatial variation of sediments physicochemical parameters and the associated microbiome in the Pengxi river, a representative tributary of Three Gorges Reservoir, in response to seasonal impoundment and land use change by human activities. Results revealed that seasonal impoundment and land use change enhanced total organic carbon (TOC), total nitrogen (TN) and ammonium nitrogen (NH4+-N) concentration in the sediment, but have different effects on sediment microbiome. Sediment microbiota showed higher similarity during the seasonal high-water level (HWL) in consecutive two years. The abundant phyla Acidobacteria, Gemmatimonadetes, Cyanobacteria, Actinobacteria and Planctomycetes significantly increased as water level increased. Along the changes in bacterial taxa, we also observed changes in predicted carbon fixation functions and nitrogen-related functions, including the significantly higher levels of Calvin cycle, 4HB/3HP cycle, 3HP cycle and assimilatory nitrate reduction, while significantly lower level of denitrification. Though land use change significantly increased TOC, TN and NH4+-N concentration, its effects on spatial variation of bacterial community composition and predicted functions was not significant. The finding indicates that TGR hydrologic changes and land use change have different influences on the carbon and nitrogen fluxes and their associated microbiome in TGR sediments. A focus of future research will be on assessing on carbon and nitrogen flux balance and the associated carbon and nitrogen microbial cycling in TGR sediment.

7.
Conserv Biol ; : e14326, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949049

ABSTRACT

Effects of anthropogenic activities, including climate change, are modifying fire regimes, and the dynamic nature of these modifications requires identification of general patterns of organisms' responses to fire. This is a challenging task because of the high complexity of factors involved (including climate, geography, land use, and species-specific ecology). We aimed to describe the responses of the reptile community to fire across a range of environmental and fire-history conditions in the western Mediterranean Basin. We sampled 8 sites that spanned 4 Mediterranean countries. We recorded 6064 reptile sightings of 36 species in 1620 transects and modeled 3 community metrics (total number of individuals, species richness, and Shannon diversity) as responses to environmental and fire-history variables. Reptile community composition was also analyzed. Habitat type (natural vs. afforestation), fire age class (time since the last fire), rainfall, and temperature were important factors in explaining these metrics. The total number of individuals varied according to fire age class, reaching a peak at 15-40 years after the last fire. Species richness and Shannon diversity were more stable during postfire years. The 3 community metrics were higher under postfire conditions than in unburned forest plots. This pattern was particularly prevalent in afforested plots, indicating that the negative effect of fire on reptiles was lower than the negative effect of afforestation. Community composition varied by fire age class, indicating the existence of early- and late-successional species (xeric and saxicolous vs. mesic reptiles, respectively). Species richness was 46% higher in areas with a single fire age class relative to those with a mixture of fire age classes, which indicates pyrodiverse landscapes promoted reptile diversity. An expected shift to more frequent fires will bias fire age distribution toward a predominance of early stages, and this will be harmful to reptile communities.


Respuestas de reptiles al fuego en la Cuenca Mediterránea occidental Resumen Los efectos de actividades antropogénicas, incluyendo el cambio climático, están modificando los regímenes de fuego, y la naturaleza dinámica de estas modificaciones requiere la identificación de patrones generales de las respuestas de los organismos al fuego. Esta es una tarea desafiante debido a la gran complejidad de los factores involucrados (incluyendo clima, geografía, uso de suelo y la ecología de cada especie). Nuestro objetivo fue describir las respuestas de la comunidad de reptiles al fuego bajo diversas condiciones ambientales e historias de fuego en la Cuenca Mediterránea occidental. Muestreamos ocho sitios en cuatro países mediterráneos. Registramos 6064 avistamientos de reptiles de 36 especies en 1620 transectos y modelamos tres métricas comunitarias (número total de individuos, riqueza de especies y diversidad de Shannon) como respuestas a las variables ambientales y de historia de fuego. También analizamos la composición de la comunidad de reptiles. El tipo de hábitat (natural versus forestación), la clase de edad del fuego (tiempo transcurrido desde el último incendio), la precipitación pluvial y la temperatura fueron factores importantes en la explicación de estas métricas. El número total de individuos varió de acuerdo con la clase de edad del fuego, alcanzando un pico a los 15­40 años después del último incendio. La riqueza de especies y la diversidad de Shannon fueron más estables durante los años posteriores a incendios. Las tres métricas de la comunidad fueron más altas bajo condiciones post incendio que en las parcelas sin historial de fuego. Este patrón fue particularmente prevalente en parcelas forestadas, lo cual indica que el efecto negativo del fuego sobre los reptiles fue menor que el efecto negativo de la forestación. La composición de la comunidad varió por clase de edad del fuego, indicando la existencia de especies sucesionales tempranas y tardías (reptiles xéricos y saxícolas, respectivamente). La riqueza de especie fue 46% mas alta en áreas con una sola clase de edad del fuego que en aquellas con una mezcla de clases de edad del fuego, lo cual indica que los paisajes pirodiversos promovieron la diversidad de reptiles. Un cambio esperado hacia incendios más frecuentes sesgará la distribución de la edad del fuego hacia una predominancia de etapas tempranas, y esto será perjudicial para las comunidades de reptiles.

8.
Ecol Evol ; 14(7): e11654, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38979000

ABSTRACT

Past forest use often has a long-term negative impact on the recovery of the original plant composition of semi-natural grasslands, which is known as a legacy effect. This study investigates the impact of seed dispersal limitations on the restoration of grassland plant diversity on ski slopes with past forest use, highlighting the negative legacy effect on biodiversity recovery. Focusing on ski areas, our research contrasts the vegetation on ski slopes originally created on semi-natural grasslands such as pasture (pasture slopes) and constructed by clearing secondary forests or conifer plantations (forest slopes). We examined species richness and diversity, considering seed dispersal modes, grassland management history, and seed source proximity. We reveal that the proximity to species-rich grassland sources is pivotal for the restoration of native grassland vegetation. Particularly, wind-dispersed species show significant recovery on slopes with sustained management for more than 70 years and those with neighboring species-rich grasslands, suggesting that both the duration of management and the proximity to seed sources are critical for overcoming the legacy effects of past forest use. Meanwhile, gravity-dispersed species failed to recover their richness and diversity regardless of both the duration of management and the proximity to seed source grasslands, which their diversity recovered where seed sources neighbored. Our findings emphasize the importance of considering seed dispersal limitation and management history in the restoration and conservation of grasslands and their biodiversity, particularly in landscapes experiencing past human intervention.

9.
J Environ Manage ; 366: 121622, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38972185

ABSTRACT

Land-use land-cover (LULC) change contributes to major ecological impacts, particularly in areas undergoing land abandonment, inducing modifications on habitat structure and species distributions. Alternative land-use policies are potential solutions to alleviate the negative impacts of contemporary tendencies of LULC change on biodiversity. This work analyzes these tendencies in the Montesinho Natural Park (Portugal), an area representative of European abandoned mountain rural areas. We built ecological niche models for 226 species of vertebrates (amphibians, reptiles, birds, and mammals) and vascular plants, using a consensus modelling approach available in the R package 'biomod2'. We projected the models to contemporary (2018) and future (2050) LULC scenarios, under four scenarios aiming to secure relevant ecosystem services and biodiversity conservation for 2050: an afforestation and a rewilding scenario, focused on climate-smart management strategies, and a farmland and an agroforestry recovery scenario, based on re-establishing human traditional activities. We quantified the influences of these scenarios on biodiversity through species habitat suitability changes for 2018-2050. We analyzed how these management strategies could influence indices of functional diversity (functional richness, functional evenness and functional dispersion) within the park. Habitat suitability changes revealed complementary patterns among scenarios. Afforestation and rewilding scenarios benefited more species adapted to habitats with low human influence, such as forests and open woodlands. The highest functional richness and dispersion was predicted for rewilding scenarios, which could improve landscape restoration and provide opportunities for the expansion and recolonization of forest areas by native species. The recovery of traditional farming and agroforestry activities results in the lowest values of functional richness, but these strategies contribute to complex landscape matrices with diversified habitats and resources. Moreover, this strategy could offer opportunities for fire suppression and increase landscape fire resistance. An integrative approach reconciling rewilding initiatives with the recovery of extensive agricultural and agroforestry activities is potentially an harmonious strategy for supporting the provision of ecosystem services while securing biodiversity conservation and functional diversity within the natural park.

10.
Proc Natl Acad Sci U S A ; 121(28): e2318029121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38950360

ABSTRACT

Indonesia has experienced rapid primary forest loss, second only to Brazil in modern history. We examined the fates of Indonesian deforested areas, immediately after clearing and over time, to quantify deforestation drivers in Indonesia. Using time-series satellite data, we tracked degradation and clearing events in intact and degraded natural forests from 1991 to 2020, as well as land use trajectories after forest loss. While an estimated 7.8 Mha (SE = 0.4) of forest cleared during this period had been planted with oil palms by 2020, another 8.8 Mha (SE = 0.4) remained unused. Of the 28.4 Mha (SE = 0.7) deforested, over half were either initially left idle or experienced crop failure before a land use could be detected, and 44% remained unused for 5 y or more. A majority (54%) of these areas were cleared mechanically (not by escaped fires), and in cases where idle lands were eventually converted to productive uses, oil palm plantations were by far the most common outcome. The apparent deliberate creation of idle deforested land in Indonesia and subsequent conversion of idle areas to oil palm plantations indicates that speculation and land banking for palm oil substantially contribute to forest loss, although failed plantations could also contribute to this dynamic. We also found that in Sumatra, few lowland forests remained, suggesting that a lack of remaining forest appropriate for palm oil production, together with an extensive area of banked deforested land, may partially explain slowing forest loss in Indonesia in recent years.


Subject(s)
Conservation of Natural Resources , Forests , Indonesia , Trees/growth & development , Agriculture
11.
Sci Total Environ ; 948: 174611, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992356

ABSTRACT

Air pollution induced by fine particulate matter with diameter ≤ 2.5 µm (PM2.5) poses a significant challenge for global air quality management. Understanding how factors such as climate change, land use and land cover change (LULCC), and changing emissions interact to impact PM2.5 remains limited. To address this gap, we employed the Community Earth System Model and examined both the individual and combined effects of these factors on global surface PM2.5 in 2010 and projected scenarios for 2050 under different Shared Socioeconomic Pathways (SSPs). Our results reveal biomass-burning and anthropogenic emissions as the primary drivers of surface PM2.5 across all SSPs. Less polluted regions like the US and Europe are expected to experience substantial PM2.5 reduction in all future scenarios, reaching up to ~5 µg m-3 (70 %) in SSP1. However, heavily polluted regions like India and China may experience varied outcomes, with a potential decrease in SSP1 and increase under SSP3. Eastern China witness ~20 % rise in PM2.5 under SSP3, while northern India may experience ~70 % increase under same scenario. Depending on the region, climate change alone is expected to change PM2.5 up to ±5 µg m-3, while the influence of LULCC appears even weaker. The modest changes in PM2.5 attributable to LULCC and climate change are associated with aerosol chemistry and meteorological effects, including biogenic volatile organic compound emissions, SO2 oxidation, and NH4NO3 formation. Despite their comparatively minor role, LULCC and climate change can still significantly shape future air quality in specific regions, potentially counteracting the benefits of emission control initiatives. This study underscores the pivotal role of changes in anthropogenic emissions in shaping future PM2.5 across all SSP scenarios. Thus, addressing all contributing factors, with a primary focus on reducing anthropogenic emissions, is crucial for achieving sustainable reduction in surface PM2.5 levels and meeting sustainable pollution mitigation goals.

12.
Sci China Life Sci ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39028374

ABSTRACT

Climate and land-use changes are predicted to impact biodiversity, threatening ecosystem services and functions. However, their combined effects on the functional diversity of mammals at the regional scale remain unclear, especially at the beta level. Here, we use projected climate and land-use changes in China to investigate their potential effects on the alpha and beta functional diversities of terrestrial mammals under low- and high-emission scenarios. In the current projection, we showed strong positive spatial correlations between functional richness and species richness. Functional evenness (FEve), functional specialization (FSpe), and functional originality (FOri) decreased with species richness, and functional divergence (FDiv) increased first and then plateaued. Functional beta diversity was dominated by its nestedness component, in contrast to the taxonomic facet. Potential changes in species richness are more strongly influenced by land-use change under the low-emission scenario, while under the high-emission scenario, they are more strongly influenced by climate change. Changes in functional richness (FRic) were inconsistent with those in species richness, with a magnitude of decreases greater than predicted from species richness. Moreover, mammal assemblages showed potential functional differentiation (FD) across the country, and the trends exceeded those towards taxonomic differentiation (TD). Our findings help us understand the processes underlying biodiversity responses to global changes on multiple facets and provide new insight for conservation plans.

13.
PeerJ Comput Sci ; 10: e2003, 2024.
Article in English | MEDLINE | ID: mdl-38855218

ABSTRACT

Land use and land cover (LULC) classification is becoming faster and more accurate thanks to new deep learning algorithms. Moreover, new high spectral- and spatial-resolution datasets offer opportunities to classify land cover with greater accuracy and class specificity. However, deploying deep learning algorithms to characterize present-day, modern land cover based on state-of-the-art data is insufficient for understanding trends in land cover change and identifying changes in and drivers of ecological and social variables of interest. These identifications require characterizing past land cover, for which imagery is often lower-quality. We applied a deep learning pipeline to classify land cover from historical, low-quality RGB aerial imagery, using a case study of Vancouver, Canada. We deployed an atrous convolutional neural network from DeepLabv3+ (which has previously shown to outperform other networks) and trained it on modern Maxar satellite imagery using a modern land cover classification. We fine-tuned the resultant model using a small dataset of manually annotated and augmented historical imagery. This final model accurately predicted historical land cover classification at rates similar to other studies that used high-quality imagery. These predictions indicate that Vancouver has lost vegetative cover from 1995-2021, including a decrease in conifer cover, an increase in pavement cover, and an overall decrease in tree and grass cover. Our workflow may be harnessed to understand historical land cover and identify land cover change in other regions and at other times.

14.
Ecol Evol ; 14(6): e11494, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38855315

ABSTRACT

Land-use change is one the greatest threats to biodiversity and is projected to increase in magnitude in the coming years, stressing the importance of better understanding how land-use change may affect vital ecosystem services, such as pollination. Past studies on the impact of land-use change have largely focused on only one aspect of the pollination process (e.g., pollinator composition, pollinator visitation, and pollen transfer), potentially misrepresenting the full complexity of land-use effects on pollination services. Evaluating the impacts across multiple components of the pollination process can also help pinpoint the underlying mechanisms driving land-use change effects. This study evaluates how land-use change affects multiple aspects of the pollination process in common milkweed populations, including pollinator community composition, pollinator visitation rate, pollen removal, and pollen deposition. Overall, land-use change altered floral visitor composition, with small bees having a larger presence in developed areas. Insect visitation rate and pollen removal were also higher in more developed areas, perhaps suggesting a positive impact of land-use change. However, pollen deposition did not differ between developed and undeveloped sites. Our findings highlight the complexity evaluating land-use change effects on pollination, as these likely depend on the specific aspect of pollination evaluated and on the of the intensity of disturbance. Our study stresses the importance of evaluating multiple components of the pollination process in order to fully understand overall effects and mechanisms underlying land-use change effects on this vital ecosystem service.

15.
Huan Jing Ke Xue ; 45(6): 3260-3269, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897749

ABSTRACT

It is important to study the impact of land use change on terrestrial ecosystem carbon stocks in urban agglomerations for the optimization of land use structure and sustainable development in urban agglomerations. Based on the patch-generating land use simulation (PLUS) model and integrated valuation of ecosystem services and trade-offs (InVEST) model, a simulation was developed that predicted the land use change and carbon stock of the Guanzhong Plain urban agglomeration in 2040 under different scenarios and further analyzed the impact of land use change on carbon stock. The results showed that:① The land use types of the Guanzhong Plain urban agglomeration were mainly cultivated land, forest land, and grassland, which accounted for more than 90 % of the total study area. ② From 2000 to 2020, the carbon stock in the Guanzhong Plain showed a continuous downward trend, with cropland, woodland, and grassland being the main sources of carbon stock in the Guanzhong Plain, and the overall carbon stock declined by 15.12×106 t, with the spatial distribution presenting the distribution characteristics of "high in the north and south and low in the middle." ③ By 2040, the carbon stock would decrease the most under the urban development scenario, with a total reduction of 27.08×106 t, and the least under the ecological development scenario, with a total reduction of 4.14×106t. The research results can provide data support for the high-quality development and rational land use planning of the Guanzhong Plain urban agglomeration.

16.
Huan Jing Ke Xue ; 45(6): 3329-3340, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897755

ABSTRACT

With rapid urbanization and human activities exacerbating threats to the degradation of various ecosystem services in modern urban agglomerations, the exploration of the state of ecological security at the scale of urban agglomerations is of great significance. This study considered the Lanzhou-Xining Urban Agglomeration as the research area, based on the land use data in 2000, 2005, 2010, 2015, and 2020. At the same time, the landscape ecological risk index was introduced. The land use change characteristics of the Lanzhou-Xining Urban Agglomeration were analyzed by using the land use transfer matrix, the value per unit area equivalent factor method, and the bivariate spatial autocorrelation analysis method to elucidate the impacts of the changes in the ecological risk index induced by the land use transition on the value of ecosystem services. This study analyzed the land use change characteristics of the Lanzhou-Xining Urban Agglomeration and elucidated the impacts of changes in the ecological risk index on the value of ecosystem services caused by land use transformation. The results showed that:① During the period from 2000 to 2020, the land use types of the Lanzhou-Xining Urban Agglomeration were mainly dominated by grassland, cropland, and forest land. The construction land area had expanded significantly mainly from cropland and grassland, and the six land use types had strong cross-transformation. The total area of land use change was 6 646.05 km2. ② In terms of spatial changes, the spatial pattern of ecosystem service value in the Lanzhou-Xining Urban Agglomeration had not undergone obvious transformation. However, the regional variability was significant, generally showing the distribution characteristics of high in the northwest and low in the southeast. ③From the perspective of temporal change, the value of ecosystem services in the Lanzhou-Xining Urban Agglomeration showed an upward trend, with the total flow of value increasing from 186.459 billion yuan to 192.156 billion yuan, with a total value-added of 5.697 billion yuan. ④ There was a rising trend in the overall ecological risk index of the Lanzhou-Xining Urban Agglomeration over the past 20 years. Low ecological risk areas and lower ecological risk areas dominated the ecological risk areas. There was a significant positive correlation between the value of ecosystem services and the ecological risk index. This study aimed to reveal the understanding of the impacts of land-use practices on ecosystem service values and ecological risks, to provide important references for regional ecological risk management and land-use policy formulation, and thus to promote the high-quality development of the ecological environment in the Yellow River Basin.

17.
Landsc Ecol ; 39(7): 120, 2024.
Article in English | MEDLINE | ID: mdl-38911969

ABSTRACT

Context: Anthropogenic landscape change is an important driver shaping our environment. Historical landscape analysis contributes to the monitoring and understanding of these change processes. Such analyses are often focused on specific spatial scales and single research methods, thus covering only limited aspects of landscape change. Objectives: Here, we aim to assess the potential of combining the analysis of historical aerial imagery and local stakeholder interviews for landscape change studies using a standardized mapping and interviewing approach. Methods: We compared six agricultural landscapes across Europe and mapped land-cover using historical aerial imagery (starting between 1930 and 1980, depending on data availability, until recent years) with an object-based image analysis and random forest classification. For local perspectives of landscape change, we conducted oral history interviews (OHIs) with (almost) retired farmers. Comparing recorded landscape changes from both approaches provided insight into advantages of combining these two methods. Results: Object-based analysis enabled the identification of high-resolution land-cover dynamics, with scale enlargement and cropland/grassland expansion being the most commonly recurring trends across European landscapes. Perceived landscape changes identified in the OHIs included changes in farm management, landscape structure, and infrastructure. Farmers also reported drivers and personal values associated with landscape change. Combining the two historical landscape analysis tools resulted in a qualitative and quantitative understanding of changes in land-cover, land use, and land management. Conclusions: Comparing physical land-cover change with local farmer perspectives is key to a comprehensive understanding of landscape change. There are different ways the two methods can be combined, leading to different venues for science and policy making. Supplementary Information: The online version contains supplementary material available at 10.1007/s10980-024-01914-z.

18.
Sci Total Environ ; 944: 174011, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-38880140

ABSTRACT

The extensive conversion of coastal wetlands into agricultural and aquaculture areas has significant repercussions on soil nutrient balance. However, how coastal conversion specifically influences the dynamics and stoichiometry of topsoil carbon (C), nitrogen (N), and phosphorus (P) remains limited due to the considerable spatial variability and a lack of comprehensive field data. Here, we investigated the concentration and distribution of total C (TC), N (TN) and P (TP), along with their stoichiometric balance in four distinct coastal landscapes, including natural marshes and tidal flats, as well as converted agricultural croplands and ponds. The results revealed that converted croplands and ponds exhibited significantly higher concentrations of soil C, N and P, particularly in comparison to tidal flats. Furthermore, croplands and ponds have higher topsoil C stocks than tidal flats, but little difference or even lose stored C compared to marshes. Cropland soils showed considerably higher levels of available N (NH4+-N and NO3--N) and available P compared to those in natural marshes and tidal flats. The distribution of soil TC, TN, and TP demonstrated greater spatial heterogeneity in natural marshes and tidal flats, while the converted areas were more uniform and became hotspots for N and P accumulation. Coastal conversion altered soil C:N:P stoichiometry, with cropland soils exhibiting a lower N:P ratio (2.9 ± 1.1), indicating that long-term application of N and P fertilizers could decrease the N:P ratio, as P is more retained in the soil than N. Furthermore, it was observed that the dynamics of C, N and P, as well as their stoichiometry, are closely linked to soil physicochemical properties, especially soil organic matter and texture. These findings highlight that coastal conversion and associated management practices markedly affected soil C, N and P dynamics in a representative wetland area of the subtropical regions, leading to a reshaping of their stoichiometric balances, particularly in the topsoil layer.

19.
Sci Rep ; 14(1): 14686, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38918459

ABSTRACT

Yuxi, located in China's central plateau of Yunnan, is grappling with ecological and environmental challenges as it continues to develop its economy. While ecological quality assessment serves as the foundation for ecological protection, it is pivotal to have reliable and long-term methods for assessing the ecological status to support informed decision-making in ecological protection. Reliable and long-term methods for assessing ecological status in order to facilitate informed decision-making in ecological protection are applied. This study utilized Landsat data to reconstruct four indices (greenness, wetness, dryness, and heat) during the vegetation growth in Yuxi from 2000 to 2020 that employs Harmonic Analysis of Time Series (HANTS) method. Subsequently, the annual Remote Sensing Ecological Index (RSEI) was computed by using the reconstructed indices to evaluate ecological quality in Yuxi. Additionally, spatiotemporal patterns and determinants of Yuxi's ecological quality are unveiled through Sen's slope estimator and Mann-Kendall test (Sen + MK) trend analysis, spatial auto-correlation analysis, and geographical detectors applied to year-by-year RSEI data. The findings in the paper indicate that the accuracy of the RSEI is significantly influenced by the vegetation season, suggesting that constructing the RSEI model with data from the vegetation growth season is crucial. Moreover, the HANTS optimization method effectively enhances the ecological indices used in the RSEI model, leading to smoother and more continuous filling of missing data. The difference between the reconstructed RSEI and the original RSEI falls within the range of - 0.15 to 0.15. Yuxi has an average RSEI of 0.54 to emphasis a moderate level of comprehensive ecological quality. Compared with river valley plains, the ecological quality of mountainous areas is higher, and the ecological quality of Yuxi presents a distinct center-edge pattern. From 2000 to 2020, Yuxi's ecological quality exhibited fluctuations, with a slight overall improvement. Land use patterns, particularly in forestry land and impervious surfaces, are identified as the main drivers of these changes. The research offers valuable insights for scientific decision-making related to sustainable development and ecological protection.


Subject(s)
Seasons , China , Remote Sensing Technology , Environmental Monitoring/methods , Spatio-Temporal Analysis , Ecosystem , Conservation of Natural Resources/methods , Plant Development , Ecology/methods
20.
Proc Biol Sci ; 291(2024): 20232771, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38864334

ABSTRACT

Land use change alters floral resource availability, thereby contributing to declines in important pollinators. However, the severity of land use impact varies by species, influenced by factors such as dispersal ability and resource specialization, both of which can correlate with body size. Here. we test whether floral resource availability in the surrounding landscape (the 'matrix') influences bee species' abundance in isolated remnant woodlands, and whether this effect varies with body size. We sampled quantitative flower-visitation networks within woodland remnants and quantified floral energy resources (nectar and pollen calories) available to each bee species both within the woodland and the matrix. Bee abundance in woodland increased with floral energy resources in the surrounding matrix, with strongest effects on larger-bodied species. Our findings suggest important but size-dependent effects of declining matrix floral resources on the persistence of bees in remnant woodlands, highlighting the need to incorporate landscape-level floral resources in conservation planning for pollinators in threatened natural habitats.


Subject(s)
Bees , Body Size , Energy Metabolism , Forests , Pollination , Population Density , Bees/anatomy & histology , Bees/metabolism , Plant Nectar/metabolism , Biodiversity , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...