Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
J Environ Manage ; 358: 120889, 2024 May.
Article in English | MEDLINE | ID: mdl-38652993

ABSTRACT

Evaluating soil quality (SQ) resulting from land management use impact is important for soil carbon (C) monitoring, land sustainability and suitability. However, the data in less developed regions of Africa like Nigeria is scarce, limiting our understanding at global scale. The study evaluated land management use on soil quality in Ebonyi State, Nigeria, a representative region of Africa. Soil samples were collected in 2021 and resampled in 2022 from regions including five land use managements (FS = forest soil; GLS = grass land soil; ACS = alley cropping Soil; SDS = sewage dump-soils; CCS = continuously cultivated soil). Soil physical and chemical properties were analyzed and discussed. The results shows that soil physical properties (bulk density, hydraulic conductivity, aggregate stability) were significantly (P < 0.05) influenced by land use management. Moderate to high bulk density, very low hydraulic conductivity (HC), and low aggregate stability were observed across land management, suggesting potential inhibition to root penetration, poor aeration, and water infiltration. Improved land management practices such as planting of cover crops either for re-grassing or addition of crop residues could be adopted as conservative options for increasing soil quality and encourage additional soil C. Soil pH decreased with the increase in soil depth in all land uses for both years. A higher soil pH of 6.78 (slightly acidic) was seen in SDS and lower mean 6.0 (moderately acidic) was obtained in CCS at 0-20 cm in 2021. The average mean nitrogen content was rated "very high" (0.81 g kg-1 and 0.69 g kg-1) in 2021 and 2022 respectively, suggesting nitrogen might not be a limiting factor for plant growth in the region. During the 2021 and 2022 study periods, the overall average mean C stock were 12.71 g kg-1 and 15.87 g kg-1 respectively suggesting 3.1 g kg-1 C stock increment in 2022. Soil inorganic C also increased by 9.86 g cm-2 in 2022. The study provided crucial information about how land management use affected soil physico-chemical properties including C stock and suggested that C stock could be improved by adopting appropriate land management use practices. The results fill a data gap in under-studied regions, but also facilitate potential land management practices.


Subject(s)
Carbon , Soil , Soil/chemistry , Nigeria , Carbon/analysis , Agriculture , Conservation of Natural Resources
2.
J Environ Manage ; 353: 120262, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38330840

ABSTRACT

Land reclamation is a widely adopted method for managing land shortage and promoting coastal economic development globally. However, its impacts on biodiversity vary based on distinct reclamation histories and land use management strategies in different regions. This study aims to examine the effects of reclamation history and land use types at different spatial scales on anuran communities in coastal reclaimed land, which are an important taxon in the coastal ecosystem. We used visual and acoustic encounter methods to survey anurans in 2016 and 2017 across 20 1-km radius coastal land reclamation landscapes with different reclamation histories (10, 20, and 60 y after reclamation) in Nanhui Dongtan of Shanghai, an important coastal land reclamation region along the Yangtze River Estuary. Landscape variables (farmlands, woodlands, and impermeable surface covers, and the landscape Shannon diversity index) at four different spatial scales (250 m, 500 m, 750 m and 1000 m) and water salinity in each landscape were measured. Our findings reveal differences in anuran communities between study sites with 10, 20, and 60 years of reclamation history. Abundances of the ornamented pygmy frog (Microhyla fissipes) and Beijing gold-striped pond frog (Pelophylax plancyi) in landscapes with a 10-year reclamation history were significantly lower compared to those with histories of 20 and 60 years. Zhoushan toad (Bufo gargarizans) abundance was significantly negatively related to farmland cover at the 1000 m scale and impermeable surface cover at the 250 m scale; Hong Kong rice-paddy frog (Fejervarya multistriata) abundance was significantly positively related to farmland cover at the 1000 m scale; ornamented pygmy frog abundance was positively related to farmland cover at the 1000 m scale; and Beijing gold-striped pond frog abundance was significantly positively and negatively related to the landscape Shannon diversity index at the 1000 m scale and to water salinity, respectively. Amphibians quickly migrated and colonized coastal reclaimed land from older natural lands. However, two anuran species with specific habitat requirements tended to avoid areas with shorter reclamation histories. The single-species models revealed different responses to various land uses at the various scales, which indicated that land use management was important to amphibian conservation in coastal reclamation regions.


Subject(s)
Biodiversity , Ecosystem , Animals , China , Anura , Water , Conservation of Natural Resources/methods
3.
Glob Chang Biol ; 30(1): e17036, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273524

ABSTRACT

Mountain agroecosystems in Latin America provide multiple ecosystem functions (EFs) and products from global to local scales, particularly for the rural communities who depend on them. Agroforestry has been proposed as a climate-smart farming strategy throughout much of the region to help conserve biodiversity and enhance multiple EFs, especially in mountainous regions. However, large-scale synthesis on the potential of agroforestry across Latin America is lacking. To understand the potential impacts of agroforestry at the continental level, we conducted a meta-analysis examining the effects of agroforestry on biological activity and diversity (BIAD) and multiple EFs across mountain agroecosystems of Latin America. A total of 78 studies were selected based on a formalized literature search in the Web of Science. We analysed differences between (i) silvoarable systems versus cropland, (ii) silvopastoral systems versus pastureland, and (iii) agroforestry versus forest systems, based on response ratios. Response ratios were further used to understand how climate type, precipitation and soil properties (texture) influence key EFs (carbon sequestration, nutrient provision, erosion control, yield production) and BIAD in agroforestry systems. Results revealed that BIAD and EFs related to carbon sequestration and nutrient provisioning were generally higher in agroforestry systems (silvopastoral and silvoarable) compared to croplands and pasturelands without trees. However, the impacts of agroforestry systems on crop yields varied depending on the system considered (i.e., coffee vs. cereals), while forest systems generally provided greater levels of BIAD and EFs than agroforestry systems. Further analysis demonstrated that the impacts of agroforestry systems on BIAD and EFs depend greatly on climate type, soil, and precipitation. For example, silvoarable systems appear to generate the greatest benefits in arid or tropical climates, on sandier soils, and under lower precipitation regimes. Overall, our findings highlight the widespread potential of agroforestry systems to BIAD and multiple EFs across montane regions of Latin America.


Subject(s)
Ecosystem , Soil , Latin America , Agriculture/methods , Biodiversity
4.
Environ Monit Assess ; 195(8): 931, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37432584

ABSTRACT

Changes in land use have been occurring in a continuous and disorderly way in recent decades due to rapid population growth and the growing demand for food. These constant changes result in a series of harmful effects to the environment, especially to water resources, significantly changing their availability and quality. This study aims to evaluate the degradation potential of watersheds through an evaluation of some environmental indicators using arithmetic means to construct an index called in this research "index of potential environmental degradation" (IPED). To form the IPED, the hydrographic sub-basins of the Sorocabuçu River, located in the central west of the State of São Paulo, Brazil, comprised the study area. The results showed that most hydrographic sub-basins, that is, eight units, present degradation values ranging from moderate to very high, resulting mainly from low conservation values of forests plus a use destined to the planting of temporary cultures depending on good physical conditions. On the other hand, only one sub-basin showed a low degradation value. The methodology used for the development of the IPED is easy to apply and an effective tool for environmental analyses. It may contribute to studies and forms of planning and land use management aiming the conservation of water resources and protected areas and reduction of degradation.


Subject(s)
Environmental Indicators , Water Resources , Brazil , Environmental Monitoring , Water
5.
J Environ Manage ; 342: 118324, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37311342

ABSTRACT

The present study aims to support the Mapping and Assessment of Ecosystems and their Services (MAES) implementation in Greece, by synthesizing an indicator that could be used for abiotic attribute assessments and specifically for geodiversity. Such an indicator can be used not only for reporting obligations under EU initiatives but also for identifying "conservation hotspots". Such areas, characterized by rich geodiversity, are important for supporting biodiversity and other ecosystem services. In addition, identification and mapping of threats to those areas, due to natural or anthropogenic processes, can be used for the introduction or reformation of protective environmental legislation. The geodiversity indicator has been compiled using geological, geomorphological, climatic, pedological and hydrological data layers, while threats to geodiversity have been produced by integrating the sub-indices of erosion, protection level, land degradation, mineral and/or ore extraction activity, and the concentration of wildfire ignition sites. Finally, a bivariate map highlights geodiversity "hotspots" in Greece, which were found to correspond in most cases with locations of rich geodiversity and poor protection from adverse natural or human induced processes, mainly due to the lack of protective legislation. The study's outcomes provide a baseline for scientifically informed decisions for conservation, management and spatial planning, while simultaneously complying with EU and national legislation and strategies for nature conservation and integrated development.


Subject(s)
Ecosystem , Wildfires , Humans , Greece , Conservation of Natural Resources , Biodiversity
6.
Bioscience ; 73(2): 134-148, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36896142

ABSTRACT

Ecosystem restoration is an important means to address global sustainability challenges. However, scientific and policy discourse often overlooks the social processes that influence the equity and effectiveness of restoration interventions. In the present article, we outline how social processes that are critical to restoration equity and effectiveness can be better incorporated in restoration science and policy. Drawing from existing case studies, we show how projects that align with local people's preferences and are implemented through inclusive governance are more likely to lead to improved social, ecological, and environmental outcomes. To underscore the importance of social considerations in restoration, we overlay existing global restoration priority maps, population, and the Human Development Index (HDI) to show that approximately 1.4 billion people, disproportionately belonging to groups with low HDI, live in areas identified by previous studies as being of high restoration priority. We conclude with five action points for science and policy to promote equity-centered restoration.

7.
Article in English | MEDLINE | ID: mdl-36498433

ABSTRACT

Food security is crucial to world peace. Economic development has posed a great threat to the protection of cultivated land. Considering 20 cities in the lower Yellow River (AALYR) as the study area, this study explored the spatial evolution of cultivated land pressure (CLP) and economic development from 1998 to 2018, revealing the spatiotemporal coupling characteristics of the CLP index and economic development. The main results are as follows: we discerned that CLP and economic development have an obvious spatiotemporal consistency during 1998-2018. The CLP showed a spatial pattern of overall stability, as well as local changes. Most prefecture-level cities experienced decreased significantly in CLP and improvements in food security. Overall, there were regional differences in the coupling relationships between CLP and economic development in the study area. The explanatory power of the proportion of secondary and tertiary industries were significantly higher than other driving factors. Therefore, while developing the economy rapidly, we should also protect cultivated land resources and improve the coordination level between them, which is essential to guarantee food security and a steady economic development.


Subject(s)
Economic Development , Rivers , Cities , Industry , China , Conservation of Natural Resources
8.
Article in English | MEDLINE | ID: mdl-36231245

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are widespread in the environment and pose a serious threat to the soil ecosystem. In order to better understand the health risks for residents exposed to PAH-contaminated soil, 173 surface soil samples were collected in Shanxi Province, China, to detect the levels of 16 priority PAHs. The spatial distribution patterns of PAHs were explored using interpolation and spatial clustering analysis, and the probable sources of soil PAHs were identified for different land-use covers. The results indicate that the soil Σ16 PAH concentration ranged from 22.12 to 1337.82 ng g-1, with a mean of 224.21 ng g-1. The soils were weakly to moderately contaminated by high molecular weight PAHs (3-5 ring) and the Taiyuan-Linfen Basin was the most polluted areas. In addition, the concentration of soil PAHs on construction land was higher than that on other land-use covers. Key sources of soil PAHs were related to industrial activities dominated by coal burning, coking, and heavy traffic. Based on the exposure risk assessment of PAHs, more than 10% of the area was revealed to be likely to suffer from high carcinogenic risks for children. The study maps the high-risk distribution of soil PAHs in Shanxi Province and provides PAH pollution reduction strategies for policy makers to prevent adverse health risks to residents.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Child , China , Coal/analysis , Ecosystem , Environmental Monitoring/methods , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Risk Assessment , Soil , Soil Pollutants/analysis
9.
J Environ Manage ; 323: 116269, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36126601

ABSTRACT

Climate change is a major constraint on the sustainability of the humid tropics, maintaining ecosystem services, food production, and social functioning. Humid tropics play an essential role in C storage and greenhouse gas (GHG) emission reduction. Unfortunately, unplanned economic exploration, human occupation, and lack of knowledge of techniques to maintain ecosystem services negatively affect the humid tropics. In this study, we focused on the mechanisms of GHG emissions, C storage, and their mitigation strategies. This review indicated technologies that can be adopted by farmers in humid tropics to maintain or increase their capacity to store C stocks and reduce GHG emissions. The adoption of climate-smart agriculture technologies and the regulation of ecosystem services markets will accelerate the progress of preserving the humid tropics. Improved management practices, such as proper N fertilizer management and the introduction of N2-fixing legumes, can increase soil C sequestration, providing economic and environmental trade-offs associated with these management strategies. Public and private investments toward knowledge dissemination and technology adoption regarding GHG emissions reduction and soil C storage are needed to allow humid tropics to maintain their critical function of generating environmental and societal benefits.


Subject(s)
Greenhouse Gases , Agriculture , Brazil , Carbon , Carbon Sequestration , Ecosystem , Fertilizers , Grassland , Greenhouse Effect , Greenhouse Gases/analysis , Humans , Soil
10.
Agron Sustain Dev ; 42(4): 56, 2022.
Article in English | MEDLINE | ID: mdl-35722061

ABSTRACT

Millions of people rely on nature-rich farming systems for their subsistence and income. The contributions of nature to these systems are varied and key to their sustainability in the long term. Yet, agricultural stakeholders are often unaware or undervalue the relevance of those contributions, which can affect decisions concerning land management. There is limited knowledge on how farming practices and especially those that build more strongly on nature, including agroecological practices, may shape farmers' livelihoods and well-being. We aim to determine the effect that farmer perception of contributions from nature, socioeconomic conditions, and farming practices, have on outcomes related to food security and human well-being. We conducted 467 household surveys in an agricultural growth corridor in rural Tanzania, which is also essential for nature conservation due to its high biodiversity and its strategic location between several protected areas encompassing wetland, forest, and grassland habitats. Results show that implementing more agroecological practices at farm scale has a positive effect on farmer well-being in the study landscape. Results also indicate that higher awareness of benefits from nature, as well as engagement with agricultural extension services, are associated with higher number of agroecological practices applied in the farm. This research confirms the relevance of capacity-building initiatives to scale up the uptake of agroecological practices in the tropics. It also shows, using empirical evidence, that farming practices taking advantage of nature's contributions to people can positively affect food security and human well-being, even when those practices complement conventional ones, such as the use of synthetic inputs. Understanding the impact of agroecological farming on the well-being of smallholder farmers in the tropics paves the way for policy and program development that ensures global food demands are met in a sustainable way without compromising the well-being of some of the world's most vulnerable people.

11.
J Environ Manage ; 306: 114432, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35026718

ABSTRACT

Socioeconomic development, leading to significant changes in land-use patterns, has further influenced the output of regional nonpoint-source (NPS) pollution. Multiple uncertainties exist in the processes of land-use changes and NPS pollution export. These uncertainties can deeply affect the management of regional land-use patterns and control of NPS pollution. In this research, an integrated land-use prediction and optimization (ILUPO) model based on system dynamics, export coefficient, interval linear programming, and fuzzy parameter programming models was proposed. The ILUPO model can provide future land-use patterns and NPS pollution loads, and also help optimize the patterns under multiple pollution reduction scenarios. Interval and fuzzy uncertainties in the processes of land-use changes and NPS pollution output can be effectively addressed. The developed model was applied to a water source area in the central part of northern Guangdong Province in South China. For the prediction period 2020-2030 under the high-speed development scenario, results show that cropland area would decrease, while grassland and waterbody areas would increase. In contrast, these three types of land-use would show opposite variation trends under the low-speed development scenario. Construction land area would decrease, while forestland area would increase under both the low-speed and high-speed development scenarios. Variation of the predicted land-use patterns would lead to an increase of total nitrogen loads under each of the scenario, while the total phosphorus loads would show relatively complex variation trends. Regional land-use patterns should be further optimized to mitigate NPS pollution. However, the pollution loads in the study area cannot be reduced by >5% through land-use adjustment. Because cropland would still be the critical source of NPS pollution after optimization, strictly controlling the areas of cropland would be important for the management of such pollution in the research area. In addition, certain areas of grassland and waterbody would need to be converted into cropland and construction land to balance the economic benefit of the system and NPS pollution control. Multiple results obtained from the model under different scenarios of pollution reduction targets and α-cut levels can provide decision-making supports for the local policy makers. The developed ILUPO model can yield insights useful for the planning and adjustment of regional land-use patterns while considering NPS pollution control under conditions of uncertainty.


Subject(s)
Non-Point Source Pollution , Water Pollutants, Chemical , China , Environmental Monitoring , Models, Theoretical , Nitrogen/analysis , Phosphorus/analysis , Rivers , Uncertainty , Water Pollutants, Chemical/analysis
12.
Ambio ; 51(3): 785-798, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34136994

ABSTRACT

East African ecosystems have been shaped by long-term socio-ecological-environmental interactions. Although much previous work on human-environment interrelationships have emphasised the negative impacts of human interventions, a growing body of work shows that there have also often been strong beneficial connections between people and ecosystems, especially in savanna environments. However, limited information and understanding of past interactions between humans and ecosystems of periods longer than a century hampers effective management of contemporary environments. Here, we present a late Holocene study of pollen, fern spore, fungal spore, and charcoal analyses from radiocarbon-dated sediment sequences and assess this record against archaeological and historical data to describe socio-ecological changes on the Laikipia Plateau in Rift Valley Province, Kenya. The results suggest a landscape characterised by closed forests between 2268 years before present (cal year BP) and 1615 cal year BP when there was a significant change to a more open woodland/grassland mosaic that continues to prevail across the study area. Increased amounts of charcoal in the sediment are observed for this same period, becoming particularly common from around 900 cal year BP associated with fungal spores commonly linked to the presence of herbivores. It is likely these trends reflect changes in land use management as pastoral populations improved and extended pasture, using fire to eradicate disease-prone habitats. Implications for contemporary land use management are discussed in the light of these findings.


Subject(s)
Ecosystem , Fires , Charcoal , Forests , Humans , Kenya
13.
Sci Total Environ ; 805: 150256, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-34537693

ABSTRACT

Iron (Fe) is an important element in aquatic ecosystems worldwide because it is intimately tied with multiple abiotic and biotic phenomena. Here, we give a survey of manifold influences of Fe, and the key factors affecting it in the boreal catchments and their waters. It includes the perspectives of biogeochemistry, hydrology, ecology, and river basin management. We emphasize views on the dynamics and impacts of different forms of Fe in riverine environments, including organic colloids and particles, as well as inorganic fractions. We also provide perspectives for land use management in boreal catchments and suggest guidelines for decision making and water management. Based on our survey, the main emphases of water protection and management programs should be (i) prevention of Fe mobilization from soil layers by avoiding unnecessary land-use activities and minimizing soil disturbance in high-risk areas; (ii) disconnecting Fe-rich ground water discharge from directly reaching watercourses; and (iii) decreasing transport of Fe to watercourses by applying efficient water pollution control approaches. These approaches may require specific methods that should be given attention depending on catchment conditions in different areas. Finally, we highlight issues requiring additional research on boreal catchments. A key issue is to increase our understanding of the role of Fe in the utilization of DOM in riverine food webs, which are typically highly heterotrophic. More knowledge is needed on the metabolic and behavioral resistance mechanisms that aquatic organisms, such as algae, invertebrates, and fish, have developed to counter the harmful impacts of Fe in rivers with naturally high Fe and DOM concentrations. It is also emphasized that to fulfil the needs presented above, as well as to develop effective methods for decreasing the harmful impacts of Fe in water management, the biogeochemical processes contributing to Fe transport from catchments via rivers to estuaries should be better understood.


Subject(s)
Groundwater , Rivers , Animals , Ecosystem , Hydrology , Iron
14.
Ecol Lett ; 25(1): 163-176, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34747112

ABSTRACT

Steady increases in human population size and resource consumption are driving rampant agricultural expansion and intensification. Habitat loss caused by agriculture puts the integrity of ecosystems at risk and threatens the persistence of human societies that rely on ecosystem services. We develop a spatially explicit model describing the coupled dynamics of an agricultural landscape and human population size to assess the effect of different land-use management strategies, defined by agricultural clustering and intensification, on the sustainability of the social-ecological system. We show how agricultural expansion can cause natural habitats to undergo a percolation transition leading to abrupt habitat fragmentation that feedbacks on human's decision making, aggravating landscape degradation. We found that agricultural intensification to spare land from conversion is a successful strategy only in highly natural landscapes, and that clustering agricultural land is the most effective measure to preserve large connected natural fragments, prevent severe fragmentation and thus, enhance sustainability.


Subject(s)
Conservation of Natural Resources , Ecosystem , Agriculture , Humans
15.
Bioscience ; 71(10): 1079-1090, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34616238

ABSTRACT

A growing number of companies have announced zero-deforestation commitments (ZDCs) to eliminate commodities produced at the expense of forests from their supply chains. Translating these aspirational goals into forest conservation requires forest mapping and monitoring (M&M) systems that are technically adequate and therefore credible, salient so that they address the needs of decision makers, legitimate in that they are fair and unbiased, and scalable over space and time. We identify 12 attributes of M&M that contribute to these goals and assess how two prominent ZDC programs, the Amazon Soy Moratorium and the High Carbon Stock Approach, integrate these attributes into their M&M systems. These programs prioritize different attributes, highlighting fundamental trade-offs in M&M design. Rather than prescribe a one-size-fits-all solution, we provide policymakers and practitioners with guidance on the design of ZDC M&M systems that fit their specific use case and that may contribute to more effective implementation of ZDCs.

16.
J Environ Manage ; 294: 113021, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34139648

ABSTRACT

Denitrification is a significant regulator of nitrogen pollution in diverse landscapes but is difficult to quantify. We examined relationships between denitrification potential and soil and landscape properties to develop a model that predicts denitrification potential at a landscape level. Denitrification potential, ancillary soil variables, and physical landscape attributes were measured at study sites within urban, suburban, and forested environments in the Gwynns Falls watershed in Baltimore, Maryland in a series of studies between 1998 and 2014. Data from these studies were used to develop a statistical model for denitrification potential using a subset of the samples (N = 188). The remaining measurements (N = 150) were used to validate the model. Soil moisture, soil respiration, and total soil nitrogen were the best predictors of denitrification potential (R2adj = 0.35), and the model was validated by regressing observed vs. predicted values. Our results suggest that soil denitrification potential can be modeled successfully using these three parameters, and that this model performs well across a variety of natural and developed land uses. This model provides a framework for predicting nitrogen dynamics in varying land use contexts. We also outline approaches to develop appropriate landscape-scale proxies for the key model inputs, including soil moisture, respiration, and soil nitrogen.


Subject(s)
Denitrification , Soil , Environmental Pollution , Nitrogen/analysis
17.
Environ Sci Pollut Res Int ; 28(31): 42516-42532, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33813700

ABSTRACT

Global environment changes rapidly alter regional hydrothermal conditions, which undoubtedly affects the spatiotemporal dynamics of vegetation, especially in arid and semi-arid areas. However, identifying and quantifying the dynamic evolution and driving factors of vegetation greenness under the changing environment are still a challenge. In this study, gradual trend analysis was applied to calculate the overall spatiotemporal trend of the normalized difference vegetation index (NDVI) time series of Xinjiang province in China, the abrupt change analysis was used to detect the timing of breakpoint and trend shift, and two machine learning methods (boosted regression tree and random forest) were used to quantify the key factors of vegetation change and their relative contribution rate. The results have shown that vegetation has experienced overall recovery over the past 20 years in Xinjiang, and greenness increased at a rate of 17.83 10-4 year-1. Cropland, grassland, and sparse vegetation were the main biome types where vegetation restoration is happening. Nearly 10% of the pixels (about 166000 km2) were detected to have breakpoints from 2004 to 2016 of the monthly NDVI, and most of the breakpoints were concentrated in the ecotone of various biomes. CO2 concentration was the most prevalent environmental factor to increase vegetation greenness, because continuous emission of CO2 greatly enhanced the fertilization effect, further promoted vegetation growth. Besides, cropland expansion and desertification control were the vital anthropogenic factors to vegetation turning "green" in Xinjiang, and most areas under anthropogenic were mainly in oasis areas. These findings provide new insights and measures for the regional response strategies and terrestrial ecosystem protection.


Subject(s)
Ecosystem , China , Seasons
18.
J Environ Manage ; 287: 112341, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33752051

ABSTRACT

Sustainable management of ecosystems can provide various socio-ecological benefits, including disaster risk reduction. Through their regulating services and by providing natural protection, ecosystems can reduce physical exposure to common natural hazards. Ecosystems can also minimize disaster risk by reducing social and economic vulnerability and enhancing livelihood resilience. To showcase the importance and usefulness of ecosystem-based disaster risk reduction (Eco-DRR), this study (1) analyzed the land use change in a watershed in central Japan, (2) applied the concept of Eco-DRR, and made land use management recommendations regarding the watershed scale for reducing the risk of downstream flooding. The recommendations that emerged from the application, based on the land use change analysis, are: the use of hard infrastructure and vegetation to store and retain/detain stormwater and promote evapotranspiration is recommended for downstream, urban areas; the sustainable management of upland forest ecosystems and secondary forest-paddy land-human systems, and proactive land use planning in the lowland delta, where built land is concentrated, are key to the watershed-scale landscape planning and management to reduce downstream flooding risks.


Subject(s)
Disasters , Ecosystem , Conservation of Natural Resources , Floods , Humans , Japan , Risk Reduction Behavior
19.
Sci Total Environ ; 778: 146065, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33721649

ABSTRACT

Vegetation greening steered by land use management in the Chinese Loess Plateau has been widely reported, however studies that quantitatively assessing and explicitly linking the anthropogenic forcing on vegetation greening and browning are scarce. Here in this study, we calculate the increment and rate of change of fractional vegetation cover (FVC) from 1998 to 2018 in the Loess Plateau, and compare the results with changing rainfall, soil types, and Gross Domestic Product (GDP), to detail a systematic assessment of the role of the climate-vegetation-human nexus. We have observed that nearly 80% of the study area has undergone greening, and noticed that rainfall was not the main driver of rapid vegetation change, instead of human land use management such as, irrigation along the Yellow River, snowmelt-runoff irrigation, and irrigation from reservoirs formed by check dams contributed the most for the increased FVC in the Chinese Loess Plateau. Concurrently, rapid vegetation browning is almost fully driven by urban expansion. Our findings show that GDP growth promotes both browning and greening, indicative of sustainable development in the Loess plateau region. These contrasting trends reveal that the relationship between human activities and greening is very complex.


Subject(s)
Climate Change , Soil , China , Climate , Human Activities , Humans
20.
Article in English | MEDLINE | ID: mdl-35010478

ABSTRACT

Land transformation in agriculture is a crucial global issue for food safety and regional sustainable development. In the context of Chinese rural revitalization strategy, farmland transfer has become an increasingly engaging area of focus for those in a broad range of fields. In this paper, we make a comprehensive review of land transformation in agriculture through literature analysis. Farmland transfers in China were characterized as five dimensions: public policy, market mechanisms, influencing factors, optimization of spatial distribution, and practical results. Meanwhile, we shed light on limitations of the theories and methodologies for farmland transfers in previous studies, and propose the highlights of farmland transfers in China in the future: (1) refining the theoretical systems of farmland transfer under the background of transformations, (2) optimizing land use configuration for farmland transfers within the context of national strategic decisions, (3) developing the land use model supported by big data for understanding farmland transformation; (4) enhancing the comprehensive analysis and interdisciplinary application perspective for farmland transfer issues.


Subject(s)
Agriculture , Rural Population , China , Farms , Humans , Sustainable Development
SELECTION OF CITATIONS
SEARCH DETAIL
...