Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 860
Filter
1.
Gait Posture ; 113: 287-294, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38972170

ABSTRACT

BACKGROUND: Biomechanical evaluations of sport-specific jump-landing tasks may provide a more ecologically valid interpretation compared to generic jump-landing tasks. For accurate interpretation of longitudinal research, it is essential to understand the reliability of biomechanical parameters of sport-specific jump-landing tasks. RESEARCH QUESTION: How reliable are hip, knee and ankle joint angles and moment curves during two volleyball-specific jump-landing tasks and is this comparable with the reliability of a generic jump-landing task? METHODS: Three-dimensional (3D) biomechanical analyses of 27 male volleyball players were performed in two sessions separated by one week. Test-retest reliability was analyzed by calculating integrated as well as 1D intraclass correlation coefficient (ICC) and integrated standard error of measurement (SEM) for hip, knee and ankle angles and moments during a spike and block jump (volleyball-specific tasks), and during a drop vertical jump (generic task). RESULTS: Reliability of joint angles of volleyball-specific and generic jump-landing tasks are similar with excellent-to-good integrated ICC for hip, knee and ankle flexion/extension (ICC= 0.61-0.89) and hip and knee abduction/adduction (ICC=0.61-0.78) but fair-to-poor ICC for ankle abduction/adduction (ICC=0.28-0.52) and hip, knee and ankle internal/external rotation (ICC=0.29-0.53). Reliability of hip, knee and ankle joint moments was good-to excellent (ICC= 0.62-0.86) except for hip flexion moment during spike jump and drop vertical jump (ICC=0.43-0.47) and knee flexion moment during both volleyball-specific tasks (ICC=0.56-0.57). For all tasks, curve analysis revealed poorer reliability at start and end of the landing phase than during the midpart. SIGNIFICANCE: Our data suggests that kinematic evaluations of volleyball-specific jump-landing tasks are reliable to use in screening programs, especially in the sagittal plane. Notably, reliability is poorer at the beginning and end of the landing phase, requiring careful interpretation. In conclusion, the results of this study indicate the potential for integration of sport-specific jump-landing tasks in screening programs, which will be more ecologically valid.

2.
Eur J Sport Sci ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39022860

ABSTRACT

This study investigated the effects of plyometric training on lower-limb muscle strength and knee biomechanical characteristics during the landing phase. Twenty-four male subjects were recruited for this study with a randomised controlled design. They were randomly divided into a plyometric training group and a traditional training group and underwent training for 16 weeks. Each subject was evaluated every 8 weeks for knee and hip isokinetic muscle strength as well as knee kinematics and kinetics during landing. The results indicated significant group and time interaction effects for knee extension strength (F = 74.942 and p = 0.001), hip extension strength (F = 99.763 and p = 0.000) and hip flexion strength (F = 182.922 and p = 0.000). For landing kinematics, there were significant group main effects for knee flexion angle range (F = 4.429 and p = 0.047), significant time main effects for valgus angle (F = 6.502 and p = 0.011) and significant group and time interaction effects for internal rotation angle range (F = 5.475 and p = 0.008). The group main effect for maximum knee flexion angle was significant (F = 7.534 and p = 0.012), and the group and time interaction effect for maximum internal rotation angle was significant (F = 15.737 and p = 0.001). For landing kinetics, the group main effect of the loading rate was significant (F = 4.576 and p = 0.044). Significant group and time interaction effects were observed for knee extension moment at the moment of maximum vertical ground reaction force (F = 5.095 and p = 0.010) and for abduction moment (F = 8.250 and p = 0.001). These findings suggest that plyometric training leads to greater improvements in hip and knee muscle strength and beneficial changes in knee biomechanics during landing compared to traditional training.

3.
Phys Ther Sport ; 69: 8-14, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38971091

ABSTRACT

OBJECTIVES: To undertake a systematic analysis of 17 medical attention and time-loss lateral ankle ligament sprain (LALS) events from televised Australian professional netball games during the 2020-2023 seasons. DESIGN: Case series. METHODS: Three analysts independently assessed the video footage and then convened to review and discuss each case until a consensus was reached. RESULTS: When in possession (7 cases) a player was commonly performing an agility-based manoeuvre to break free from an opponent and reposition themselves to be a passing option (5/7 cases). When out of possession (10 cases) a player was either attempting to intercept a pass (6 cases) or marking an opponent (4 cases). Players tended to land on the anterior one-third of the plantar surface of the foot - forefoot or shoe tip (7 cases). Players often landed on either the ground (7 cases) or the opponent's shoe then the ground (8 cases). In 9 cases the ankle-foot was considered to be in a neutral alignment in the frontal plane at landing. At the estimated index frame the players' weight tended to be all on the foot on the injured side (11 cases) or favouring the foot on the injured side (5 cases). Inversion and adduction was a common injury mechanism. Plantar-flexion was rarely involved. CONCLUSION: Landing on the anterior one-third of the plantar surface of the foot and subsequent weight transference onto the injured limb side was more important than ankle-foot inversion at initial ground contact. Exercises involving external perturbations that challenge the control of frontal and transverse plane ankle-foot motion and improve proprioception, neuromuscular control, and dynamic balance are warranted.

4.
J Biomech ; 171: 112200, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38905926

ABSTRACT

Low-cost markerless motion capture systems offer the potential for 3D measurement of joint angles during human movement. This study aimed to validate a smartphone-based markerless motion capture system's (OpenCap) derived lower extremity kinematics during common return-to-sport tasks, comparing it to an established optoelectronic motion capture system. Athletes with prior anterior cruciate ligament reconstruction (12-18 months post-surgery) performed three movements: a jump-landing-rebound, single-leg hop, and lateral-vertical hop. Kinematics were recorded concurrently with two smartphones running OpenCap's software and with a 10-camera, marker-based motion capture system. Validity of lower extremity joint kinematics was assessed across 437 recorded trials using measures of agreement (coefficient of multiple correlation: CMC) and error (mean absolute error: MAE, root mean squared error: RMSE) across the time series of movement. Agreement was best in the sagittal plane for the knee and hip in all movements (CMC > 0.94), followed by the ankle (CMC = 0.84-0.93). Lower agreement was observed for frontal (CMC = 0.47-0.78) and transverse (CMC = 0.51-0.6) plane motion. OpenCap presented a grand mean error of 3.85° (MAE) and 4.34° (RMSE) across all joint angles and movements. These results were comparable to other available markerless systems. Most notably, OpenCap's user-friendly interface, free software, and small physical footprint have the potential to extend motion analysis applications beyond conventional biomechanics labs, thus enhancing the accessibility for a diverse range of users.


Subject(s)
Return to Sport , Humans , Biomechanical Phenomena , Male , Female , Adult , Movement/physiology , Knee Joint/physiology , Knee Joint/surgery , Lower Extremity/physiology , Anterior Cruciate Ligament Reconstruction/methods , Range of Motion, Articular/physiology , Young Adult , Smartphone , Motion Capture
5.
Sci Rep ; 14(1): 14603, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918533

ABSTRACT

Malaria in eastern Indonesia remains high despite significant reduction and elimination in other parts of the country. A rapid entomological assessment was conducted in eight high malaria endemic regencies of Papua Province, Indonesia, to expedite malaria elimination efforts in this region. This study aims to characterize specific, actionable endpoints toward understanding where and when malaria transmission is happening, where interventions may function best, and identify gaps in protection that result in continued transmission. The entomological assessment included identifying potential vectors through human landing catch (HLC), indoor morning and night resting collections, identification of larval sites through surveillance of water bodies, and vector incrimination toward understanding exposure to malaria transmission. Human landing catches (HLCs) and larval collections identified 10 Anopheles species, namely Anopheles koliensis, Anopheles punctulatus, Anopheles farauti, Anopheles hinesorum, Anopheles longirostris, Anopheles peditaeniatus, Anopheles tesselatus, Anopheles vagus, Anopheles subpictus and Anopheles kochi. The most common and abundant species found overall were An. koliensis and An. punctulatus, while An. farauti was found in large numbers in the coastal areas of Mimika and Sarmi Regencies. Vector incrimination on Anopheles collected from HLCs and night indoor resting demonstrated that An. koliensis and An. punctulatus carried Plasmodium in Keerom, Jayapura, and Sarmi Regencies. Analysis of HLCs for the most common species revealed that the An. koliensis and An. punctulatus, bite indoors and outdoors at equal rates, while An. farauti predominantly bite outdoors. Larval surveillance demonstrated that most water bodies in and surrounding residential areas contained Anopheles larvae. This study demonstrated indoor and outdoor exposure to mosquito bites and gaps in protection, enabling exposure to infectious bites in all regencies. This explains why current malaria control efforts focusing on indoor protection have failed to substantially reduce malaria incidence in the region. Optimization of insecticide-treated bed nets (ITNs), as well as installment of mosquito screens in houses, may further reduce indoor transmission. For outdoor transmission, the use of community-centric approaches to reduce or eliminate larval sources within and surrounding the village through the guidance of locally stationed entomologists, along with Social and Behavior Change mediated health education towards the local adoption of mosquito protection tools during outdoor activities, may reduce malaria transmission.


Subject(s)
Anopheles , Malaria , Mosquito Vectors , Animals , Anopheles/parasitology , Anopheles/physiology , Malaria/transmission , Malaria/epidemiology , Malaria/prevention & control , Humans , Mosquito Vectors/parasitology , Mosquito Vectors/physiology , Indonesia/epidemiology , Larva , Endemic Diseases
6.
Bioengineering (Basel) ; 11(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38927867

ABSTRACT

Fatigue is believed to increase the risk of anterior cruciate ligament (ACL) injury by directly promoting high-risk biomechanics in the lower limbs. Studies have shown that dynamic taping can help normalize inadequate biomechanics during landings. This study aims to examine the effects of dynamic taping on landing biomechanics in fatigued football athletes. Twenty-seven high-school football athletes were recruited and randomly allocated to groups of either active taping or sham taping, with a crossover allocation two weeks later. In each group, the participants underwent a functional agility short-term fatigue protocol and were evaluated using the landing error scoring system before and after the fatigue protocol. The landing error scoring system (LESS) scores in the sham taping group increased from 4.24 ± 1.83 to 5.36 ± 2.00 (t = -2.07, p = 0.04, effect size = 0.61). In contrast, the pre-post difference did not reach statistical significance in the active taping group (from 4.24 ± 1.69 to 4.52 ± 1.69, t = -1.50, p = 0.15, effect size 0.46). Furthermore, the pre-post changes between the sham and active taping groups were statistically significant (sham taping: 1.12 ± 1.20; active taping: 0.28 ± 0.94, p = 0.007). Dynamic taping, particularly using the spiral technique, appeared to mitigate faulty landing biomechanics in the fatigued athletes by reducing hip and knee flexion and increasing hip internal rotation during landing. These results suggest that dynamic taping can potentially offer protective benefits in landing mechanics, which could further be applied to prevent ACL injuries in fatigued athletes.

7.
Angew Chem Int Ed Engl ; : e202405846, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871656

ABSTRACT

Understanding the diverse electrochemical reactions occurring at electrode-electrolyte interfaces (EEIs) is a critical challenge to developing more efficient energy conversion and storage technologies. Establishing a predictive molecular-level understanding of solid electrolyte interphases (SEIs) is challenging due to the presence of multiple intertwined chemical and electrochemical processes occurring at battery electrodes. Similarly, chemical conversions in reactive electrochemical systems are often influenced by the heterogeneous distribution of active sites, surface defects, and catalyst particle sizes. In this mini review, we highlight an emerging field of interfacial science that isolates the impact of specific chemical species by preparing precisely-defined EEIs and visualizing the reactivity of their individual components using single-entity characterization techniques. We highlight the broad applicability and versatility of these methods, along with current state-of-the-art instrumentation and future opportunities for these approaches to address key scientific challenges related to batteries, chemical separations, and fuel cells. We establish that controlled preparation of well-defined electrodes combined with single entity characterization will be crucial to filling key knowledge gaps and advancing the theories used to describe and predict chemical and physical processes occurring at EEIs and accelerating new materials discovery for energy applications.

8.
J Bodyw Mov Ther ; 39: 454-462, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876668

ABSTRACT

OBJECTIVES: Anterior cruciate ligament injury is one of the most serious ligamentous injuries. The purpose is to compare the impact of the ankle joint on the knee during landing between athletes with chronic instability and a control group (coper group) and to verify the effects of the kinetic chain from other joints. DESIGN: Prospective study. SETTING: High school basketball. PARTICIPANTS: Participants were 62 female high school basketball players who had participated in team sports for >6 months. MAIN OUTCOME MEASURES: Player joint angles, movements, and moments. RESULTS: The knee valgus moment was significantly higher in the chronic ankle instability group than in the coper group (20%-60% [p < 0.01]; 80%-100% [p < 0.05]) during landing motion. The knee valgus moment was also significantly higher during the change from the maximum knee joint flexion position to the maximum extension (p < 0.05). In addition, the landing motions of the chronic instability group may have utilized suboptimal compensatory motor strategy on the sagittal plane, depending heavily on the knee joint's abduction moment. CONCLUSIONS: Our findings indicate that the chronic ankle instability group uses a different landing strategy pattern than the coper group by changing the joint moment and joint angle during landing, which may increase the risk of anterior cruciate ligament injury.


Subject(s)
Ankle Joint , Basketball , Joint Instability , Knee Joint , Humans , Basketball/physiology , Joint Instability/physiopathology , Female , Adolescent , Ankle Joint/physiopathology , Ankle Joint/physiology , Prospective Studies , Biomechanical Phenomena/physiology , Knee Joint/physiopathology , Knee Joint/physiology , Anterior Cruciate Ligament Injuries/physiopathology , Range of Motion, Articular/physiology , Movement/physiology
9.
Knee ; 49: 8-16, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824769

ABSTRACT

BACKGROUND: Anterior cruciate ligament deficiency (ACL-D) causes dysfunction in the quadriceps femoris muscle, and this dysfunction hampers a safe return to sports. However, how the dysfunctional quadriceps femoris muscle affects instantaneous re-programming of motor command in response to unpredictable events remains unknown. This study aimed to examine the effects of ACL-D on re-programming of preparatory muscle activity during an unpredictable landing task. METHODS: Eighteen patients with ACL-D and 20 healthy participants (controls) performed normal landing and surprise landing tasks. In the surprise landing task, a false floor, designed to dislodge easily under load, was positioned in the middle of the descent path. This setup causes participants to unpredictably fall through the false floor onto the actual landing surface. Electromyography data collected during the period after passing through the false floor until landing was segmented into two equal halves. The average electromyography amplitude for each muscle in each period was compared between patients and controls. RESULTS: In the vastus medialis and rectus femoris during the surprise landing task, the average electromyography amplitude during only the second half period in patients with ACL-D was significantly smaller than that in controls (p = 0.011 and 0.004, respectively). CONCLUSIONS: Abnormalities were detected in the re-programming of preparatory muscle activation during an unpredictable landing task in the vastus medialis and rectus femoris of patients with ACL-D. The surprise landing task used in the present study has the potential to become a diagnostic tool to evaluate readiness for safely returning to sports.

10.
Front Sports Act Living ; 6: 1418598, 2024.
Article in English | MEDLINE | ID: mdl-38832309

ABSTRACT

Introduction: Neuromuscular fatigue causes a transient reduction of muscle force, and alters the mechanisms of motor control. Whether these alterations increase the risk of anterior cruciate ligament (ACL) injury is still debated. Here we compare the biomechanics of single-leg drop jumps before and after the execution of a fatiguing exercise, evaluating whether this exercise causes biomechanical alterations typically associated with an increased risk of ACL lesion. The intensity of the fatiguing protocol was tailored to the aerobic capacity of each participant, minimizing potential differential effects due to inter-individual variability in fitness. Methods: Twenty-four healthy male volunteers performed single leg drop jumps, before and after a single-set fatiguing session on a cycle ergometer until exhaustion (cadence: 65-70 revolutions per minute). For each participant, the intensity of the fatiguing exercise was set to 110% of the power achieved at their anaerobic threshold, previously identified by means of a cardiopulmonary exercise test. Joint angles and moments, as well as ground reaction forces (GRF) before and after the fatiguing exercise were compared for both the dominant and the non-dominant leg. Results: Following the fatiguing exercise, the hip joint was more extended (landing: Δ=-2.17°, p = 0.005; propulsion: Δ=-1.83°, p = 0.032) and more abducted (landing: Δ=-0.72°, p = 0.01; propulsion: Δ=-1.12°, p = 0.009). Similarly, the knee joint was more extended at landing (non-dominant leg: Δ=-2.67°, p < 0.001; dominant: Δ=-1.4°, p = 0.023), and more abducted at propulsion (both legs: Δ=-0.99°, p < 0.001) and stabilization (both legs: Δ=-1.71°, p < 0.001) hence increasing knee valgus. Fatigue also caused a significant reduction of vertical GRF upon landing (Δ=-0.21 N/kg, p = 0.003), but not during propulsion. Fatigue did not affect joint moments significantly. Conclusion: The increased hip and knee extension, as well as the increased knee abduction we observed after the execution of the fatiguing exercise have been previously identified as risk factors for ACL injury. These results therefore suggest an increased risk of ACL injury after the execution of the participant-tailored fatiguing protocol proposed here. However, the reduced vertical GRF upon landing and the preservation of joint moments are intriguing, as they may suggest the adoption of protective strategies in the fatigued condition to be evaluated in future studied.

11.
Front Bioeng Biotechnol ; 12: 1382161, 2024.
Article in English | MEDLINE | ID: mdl-38712330

ABSTRACT

Skateboarding is an Olympic event with frequent jumping and landing, where the cushioning effect by the foot structure (from the arch, metatarsals, etc.) and damping performance by sports equipment (shoes, insoles, etc.) can greatly affect an athlete's sports performance and lower the risk of limb injury. Skateboarding is characterized by the formation of a "man-shoe-skateboard system," which makes its foot cushioning mechanism different from those of other sports maneuvers, such as basketball vertical jump and gymnastics broad jump. Therefore, it is necessary to clarify the cushioning mechanism of the foot structure upon landing on a skateboard. To achieve this, a multibody finite element model of the right foot, shoe, and skateboard was created using Mimics, Geomagic, and ANSYS. Kinetic data from the ollie maneuver were used to determine the plantar pressure and Achilles tendon force at three characteristics (T1, T2, and T3). The stress and strain on the foot and metatarsals (MT1-5) were then simulated. The simulation results had an error of 6.98% compared to actual measurements. During landing, the force exerted on the internal soft tissues tends to increase. The stress and strain variations were highest on MT2, MT3, and MT4. Moreover, the torsion angle of MT1 was greater than those of the other metatarsals. Additionally, the displacements of MT2, MT3, and MT4 were higher than those of the other parts. This research shows that skateboarders need to absorb the ground reaction force through the movements of the MTs for ollie landing. The soft tissues, bones, and ligaments in the front foot may have high risks of injury. The developed model serves as a valuable tool for analyzing the foot mechanisms in skateboarding; furthermore, it is crucial to enhance cushioning for the front foot during the design of skateboard shoes to reduce potential injuries.

13.
J Exp Biol ; 227(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38726554

ABSTRACT

Secure landing is indispensable for both leaping animals and robotics. Tree frogs, renowned for their adhesive capabilities, can effectively jump across intricate 3D terrain and land safely. Compared with jumping, the mechanisms underlying their landing technique, particularly in arboreal environments, have remained largely unknown. In this study, we focused on the landing patterns of the tree frog Polypedates dennysi on horizontally placed perches, explicitly emphasizing the influence of perch diameters. Tree frogs demonstrated diverse landing postures, including the utilization of: (1) single front foot, (2) double front feet, (3) anterior bellies, (4) middle bellies, (5) posterior bellies, (6) single hind foot, or (5) double hind feet. Generally, tree frogs favoured bellies on slimmer targets but double front feet on large perches. Analysis of limb-trunk relationships revealed their adaptability to modify postures, including body positions and limb orientations, for successful landing. The variations in the initial landing postures affected the subsequent landing procedures and, consequently, the dynamics. As the initial contact position switched from front foot back to the hind foot, the stabilization time decreased at first, reaching a minimum in middle belly landings, and then increased again. The maximum vertical forces showed an inverse trend, whereas the maximum fore-aft forces continuously increased as the initial contact position switched. As the perch diameter increased, the time expended dropped, whereas the maximum impact force increased. These findings not only add to our understanding of frog landings but also highlight the necessity of considering perch diameters and landing styles when studying the biomechanics of arboreal locomotion.


Subject(s)
Anura , Locomotion , Animals , Anura/physiology , Biomechanical Phenomena , Locomotion/physiology , Posture
14.
Sci Rep ; 14(1): 10282, 2024 05 04.
Article in English | MEDLINE | ID: mdl-38704481

ABSTRACT

During fatigued conditions, badminton players may experience adverse effects on their ankle joints during smash landings. In addition, the risk of ankle injury may vary with different landing strategies. This study aimed to investigate the influence of sport-specific fatigue factors and two backhand smash actions on ankle biomechanical indices. Thirteen female badminton players (age: 21.2 ± 1.9 years; height: 167.1 ± 4.1 cm; weight: 57.3 ± 5.1 kg; BMI: 20.54 ± 1.57 kg/m2) participated in this study. An 8-camera Vicon motion capture system and three Kistler force platforms were used to collect kinematic and kinetic data before and after fatigue for backhand rear-court jump smash (BRJS) and backhand lateral jump smash (BLJS). A 2 × 2 repeated measures analysis of variance was employed to analyze the effects of these smash landing actions and fatigue factors on ankle biomechanical parameters. Fatigue significantly affected the ankle-joint plantarflexion and inversion angles at the initial contact (IC) phase (p < 0.05), with both angles increasing substantially post-fatigue. From a kinetic perspective, fatigue considerably influenced the peak plantarflexion and peak inversion moments at the ankle joint, which resulted in a decrease the former and an increase in the latter after fatigue. The two smash landing actions demonstrated different landing strategies, and significant main effects were observed on the ankle plantarflexion angle, inversion angle, peak dorsiflexion/plantarflexion moment, peak inversion/eversion moment, and peak internal rotation moment (p < 0.05). The BLJS landing had a much greater landing inversion angle, peak inversion moment, and peak internal rotation moment compared with BRJS landing. The interaction effects of fatigue and smash actions significantly affected the muscle force of the peroneus longus (PL), with a more pronounced decrease in the force of the PL muscle post-fatigue in the BLJS action(post-hoc < 0.05). This study demonstrated that fatigue and smash actions, specifically BRJS and BLJS, significantly affect ankle biomechanical parameters. After fatigue, both actions showed a notable increase in IC plantarflexion and inversion angles and peak inversion moments, which may elevate the risk of lateral ankle sprains. Compared with BRJS, BLJS poses a higher risk of lateral ankle sprains after fatigue.


Subject(s)
Ankle Joint , Racquet Sports , Humans , Female , Racquet Sports/physiology , Biomechanical Phenomena , Ankle Joint/physiology , Young Adult , Fatigue/physiopathology , Adult , Muscle Fatigue/physiology , Ankle Injuries/physiopathology , Ankle Injuries/etiology , Ankle/physiology , Range of Motion, Articular/physiology , Athletes
15.
Sports Biomech ; : 1-16, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767326

ABSTRACT

Individuals with anterior cruciate ligament reconstruction (ACLR) utilise different landing biomechanics between limbs, but previous analyses have not considered the continuous or simultaneous joint motion that occurs during landing and propulsion. The purpose of this study was to compare sagittal plane ankle/knee and knee/hip coordination patterns as well as ankle, knee, and hip angles and moments and vertical ground reaction force (vGRF) between the ACLR and uninjured limbs during landing and propulsion. Fifteen females and thirteen males performed a drop vertical jump from a 30 cm box placed half their height from force platforms. Coordination was compared using a modified vector coding technique and binning analysis. Kinematics and kinetics were time normalised for waveform analyses. Coordination was not different between limbs. The ACLR limb had smaller dorsiflexion angles from 11 to 16% of landing and 24 to 75% of landing and propulsion, knee flexion moments from 5 to 15% of landing, 20 to 31% of landing, and 35 to 91% of landing and propulsion, and vGRF from 92 to 94% of propulsion compared with the uninjured limb. The ACLR limb exhibited smaller dorsiflexion angles to potentially reduce the knee joint moment arm and mitigate the eccentric and concentric demands on the ACLR knee during landing and propulsion, respectively.

16.
Small ; : e2311585, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38576110

ABSTRACT

The incorporation of redox-active species into the electric double layer is a powerful strategy for enhancing the energy density of supercapacitors. Polyoxometalates (POM) are a class of stable, redox-active species with multielectron activity, which is often used to tailor the properties of electrochemical interfaces. Traditional synthetic methods often result in interfaces containing a mixture of POM anions, unreactive counter ions, and neutral species. This leads to degradation in electrochemical performance due to aggregation and increased interfacial resistance. Another significant challenge is achieving the uniform and stable anchoring of POM anions on substrates to ensure the long-term stability of the electrochemical interface. These challenges are addressed by developing a mass spectrometry-based subambient deposition strategy for the selective deposition of POM anions onto engineered 3D porous carbon electrodes. Furthermore, positively charged functional groups are introduced on the electrode surface for efficient trapping of POM anions. This approach enables the deposition of purified POM anions uniformly through the pores of the 3D porous carbon electrode, resulting in unprecedented increase in the energy storage capacity of the electrodes. The study highlights the critical role of well-defined electrochemical interfaces in energy storage applications and offers a powerful method to achieve this through selective ion deposition.

17.
J Athl Train ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38632846

ABSTRACT

CONTEXT: Lower extremity joint (LE) kinematics during landing tasks are important predictors of injury risk and performance outcomes in athletes. OBJECTIVE: To establish sex-related differences and normative ranges for LE kinematics during the jump-landing task in a large cohort of healthy military service academy cadets. DESIGN: Cross-Sectional Study. SETTING: US Air Force, Naval, and Military Academies. PARTICIPANTS: 5308 cadets (2062 females [38.8%]). MAIN OUTCOME MEASURE(S): Sex-related differences in LE kinematics were analyzed using independent samples t-tests. Mean differences (MD) and effect sizes (d) were reported for interpretability. Normative ranges for hip and knee joint angles were established separately for males and females at initial contact (IC) and 50% of the stance phase. RESULTS: Compared to males, moderate effect sizes (d ≥ .5) were observed for knee external rotation (negative value) where females displayed greater motion at IC and at 50% stance (MD: - 3.9˚ and -5.0˚, respectively, p < .001). The following findings were of small effect size (.2 ≥ d > .5). Females exhibited less knee and hip flexion at IC (MD: -1.8˚ and -0.5˚, respectively, p < .001) and at 50% stance (MD: -4.1˚ and -4.6˚, respectfully, p < .001). This was accompanied by females having greater knee valgus (negative value) and hip adduction at IC (MD: -2.2˚ and 1.06˚, respectively, p < .001) and at 50% stance (MD: -3.2˚ and 1.8˚, respectfully, p < .001). CONCLUSION: This study establishes normative ranges for LE kinematics during the jump-landing task in a large cohort of healthy military service academy cadets entering their first year. Sex- related differences in LE kinematics were observed, highlighting the importance of considering sex as a factor in the evaluation of lower extremity movement quality and management of injury risk.

18.
BMC Musculoskelet Disord ; 25(1): 318, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654258

ABSTRACT

BACKGROUND: Non-contact anterior cruciate ligament (ACL) injuries are a major concern in sport-related activities due to dynamic knee movements. There is a paucity of finite element (FE) studies that have accurately replicated the knee geometry, kinematics, and muscle forces during dynamic activities. The objective of this study was to develop and validate a knee FE model and use it to quantify the relationships between sagittal plane knee kinematics, kinetics and the resulting ACL strain. METHODS: 3D images of a cadaver knee specimen were segmented (bones, cartilage, and meniscus) and meshed to develop the FE model. Knee ligament insertion sites were defined in the FE model via experimental digitization of the specimen's ligaments. The response of the model was validated against multiple physiological knee movements using published experimental data. Single-leg jump landing motions were then simulated on the validated model with muscle forces and kinematic inputs derived from motion capture and rigid body modelling of ten participants. RESULTS: The maximum ACL strain measured with the model during jump landing was 3.5 ± 2.2%, comparable to published experimental results. Bivariate analysis showed no significant correlation between body weight, ground reaction force and sagittal plane parameters (such as joint flexion angles, joint moments, muscle forces, and joint velocity) and ACL strain. Multivariate regression analysis showed increasing trunk, hip and ankle flexion angles decreases ACL strain (R2 = 90.04%, p < 0.05). CONCLUSIONS: Soft landing decreases ACL strain and the relationship could be presented through an empirical equation. The model and the empirical relation developed in this study could be used to better predict ACL injury risk and prevention strategies during dynamic activities.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament , Humans , Anterior Cruciate Ligament/physiology , Biomechanical Phenomena/physiology , Male , Anterior Cruciate Ligament Injuries/physiopathology , Anterior Cruciate Ligament Injuries/prevention & control , Anterior Cruciate Ligament Injuries/etiology , Knee Joint/physiology , Cadaver , Computer Simulation , Finite Element Analysis , Adult , Female , Movement/physiology , Young Adult , Middle Aged , Stress, Mechanical , Muscle, Skeletal/physiology , Models, Biological
19.
Data Brief ; 54: 110379, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38623554

ABSTRACT

Detecting emergency aircraft landing sites is crucial for ensuring passenger and crew safety during unexpected forced landings caused by factors like engine malfunctions, adverse weather, or other aviation emergencies. In this article, we present a dataset consisting of Google Maps images with their corresponding masks, specifically crafted with manual annotations of emergency aircraft landing sites, distinguishing between safe areas with suitable conditions for emergency landings and unsafe areas presenting hazardous conditions. Drawing on detailed guidelines from the Federal Aviation Administration, the annotations focus on key features such as slope, surface type, and obstacle presence, with the goal of pinpointing appropriate landing areas. The proposed dataset has 4180 images, with 2090 raw images accompanied by their corresponding annotation instances. This dataset employs a semantic segmentation approach, categorizing the image pixels into two "Safe" and "Unsafe" classes based on authenticated terrain-specific attributes, thereby offering a nuanced understanding of the viability of various landing sites in emergency scenarios.

20.
Bioinspir Biomim ; 19(3)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38467070

ABSTRACT

Bioinspired flapping-wing micro aerial vehicles (FWMAVs) have emerged over the last two decades as a promising new type of robot. Their high thrust-to-weight ratio, versatility, safety, and maneuverability, especially at small scales, could make them more suitable than fixed-wing and multi-rotor vehicles for various applications, especially in cluttered, confined environments and in close proximity to humans, flora, and fauna. Unlike natural flyers, however, most FWMAVs currently have limited take-off and landing capabilities. Natural flyers are able to take off and land effortlessly from a wide variety of surfaces and in complex environments. Mimicking such capabilities on flapping-wing robots would considerably enhance their practical usage. This review presents an overview of take-off and landing techniques for FWMAVs, covering different approaches and mechanism designs, as well as dynamics and control aspects. The special case of perching is also included. As well as discussing solutions investigated for FWMAVs specifically, we also present solutions that have been developed for different types of robots but may be applicable to flapping-wing ones. Different approaches are compared and their suitability for different applications and types of robots is assessed. Moreover, research and technology gaps are identified, and promising future work directions are identified.


Subject(s)
Robotics , Flight, Animal , Technology , Wings, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...