Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters











Publication year range
1.
Plant Mol Biol ; 114(5): 99, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39285107

ABSTRACT

Leaf senescence and abscission in autumn are critical phenological events in deciduous woody perennials. After leaf fall, dormant buds remain on deciduous woody perennials, which then enter a winter dormancy phase. Thus, leaf fall is widely believed to be linked to the onset of dormancy. In Rosaceae fruit trees, DORMANCY-ASSOCIATED MADS-box (DAM) transcription factors control bud dormancy. However, apart from their regulatory effects on bud dormancy, the biological functions of DAMs have not been thoroughly characterized. In this study, we revealed a novel DAM function influencing leaf senescence and abscission in autumn. In Prunus mume, PmDAM6 expression was gradually up-regulated in leaves during autumn toward leaf fall. Our comparative transcriptome analysis using two RNA-seq datasets for the leaves of transgenic plants overexpressing PmDAM6 and peach (Prunus persica) DAM6 (PpeDAM6) indicated Prunus DAM6 may up-regulate the expression of genes involved in ethylene biosynthesis and signaling as well as leaf abscission. Significant increases in 1-aminocyclopropane-1-carboxylate accumulation and ethylene emission in DEX-treated 35S:PmDAM6-GR leaves reflect the inductive effect of PmDAM6 on ethylene biosynthesis. Additionally, ethephon treatments promoted autumn leaf senescence and abscission in apple and P. mume, mirroring the changes due to PmDAM6 overexpression. Collectively, these findings suggest that PmDAM6 may induce ethylene emission from leaves, thereby promoting leaf senescence and abscission. This study clarified the effects of Prunus DAM6 on autumn leaf fall, which is associated with bud dormancy onset. Accordingly, in Rosaceae, DAMs may play multiple important roles affecting whole plant growth during the tree dormancy induction phase.


Subject(s)
Ethylenes , Gene Expression Regulation, Plant , Plant Leaves , Plant Proteins , Prunus , Ethylenes/metabolism , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Plant Dormancy/genetics , Plant Growth Regulators/metabolism , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Senescence , Plants, Genetically Modified , Prunus/genetics , Prunus/growth & development , Prunus/physiology , Prunus persica/genetics , Prunus persica/growth & development , Prunus persica/metabolism , Seasons
2.
Plants (Basel) ; 13(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891238

ABSTRACT

MicroRNAs (miRNAs) are pivotal regulators of gene expression, playing crucial roles in plant developmental processes and environmental responses. However, the function of miRNAs in influencing deciduous traits has been little explored. Here, we utilized sRNA-seq on two deciduous species, Ilex polyneura (Hand.-Mazz.) S. Y. Hu and Ilex asprella Champ. ex Benth., along with an evergreen species, Ilex latifolia Thunb., to identify and annotate miRNAs within these species. Our analysis revealed 162 species-specific miRNAs (termed SS-miRNAs) from 120 families, underscoring the fundamental roles and potential influence of SS-miRNAs on plant phenotypic diversity and adaptation. Notably, three SS-miRNAs in I. latifolia were found to target crucial genes within the abscission signaling pathway. Analysis of cis-regulatory elements suggested a novel regulatory relationship that may contribute to the evergreen phenotype of I. latifolia by modulating the abscission process in a light-independent manner. These findings propose a potential mechanism by which SS-miRNAs can influence the conserved abscission pathway, contributing to the phenotypic divergence between deciduous and evergreen species within the genus Ilex.

3.
Int J Mol Sci ; 24(8)2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37108752

ABSTRACT

Thidiazuron (TDZ) is a widely used chemical defoliant in cotton and can stimulate the production of ethylene in leaves, which is believed to be the key factor in inducing leaf abscission. Ethephon (Eth) can also stimulate ethylene production in leaves, but it is less effective in promoting leaf shedding. In this study, the enzyme-linked immunosorbent assays (ELISA) and RNA-seq were used to determine specific changes at hormonal levels as well as transcriptomic mechanisms induced by TDZ compared with Eth. The TDZ significantly reduced the levels of auxin and cytokinin in cotton leaves, but no considerable changes were observed for Eth. In addition, TDZ specifically increased the levels of brassinosteroids and jasmonic acid in the leaves. A total of 13 764 differentially expressed genes that specifically responded to TDZ were identified by RNA-seq. The analysis of KEGG functional categories suggested that the synthesis, metabolism, and signal transduction of auxin, cytokinin, and brassinosteroid were all involved in the TDZ-induced abscission of cotton leaves. Eight auxin transport genes (GhPIN1-c_D, GhPIN3_D, GhPIN8_A, GhABCB19-b_A, GhABCB19-b_D, GhABCB2-b_D, GhLAX6_A, and GhLAX7_D) specifically responded to TDZ. The pro35S::GhPIN3a::YFP transgenic plants showed lower defoliation than the wild type treated with TDZ, and YFP fluorescence in leaves was almost extinguished after treatment with TDZ rather than Eth. This provides direct evidence that GhPIN3a is involved in the leaf abscission induced by TDZ. We found that 959 transcription factors (TFs) specifically responded to TDZ, and a co-expression network analysis (WGCNA) showed five hub TFs (GhNAC72, GhWRKY51, GhWRKY70, GhWRKY50, and GhHSF24) during chemical defoliation with TDZ. Our work sheds light on the molecular basis of TDZ-induced leaf abscission in cotton.


Subject(s)
Ethylenes , Transcriptome , Ethylenes/metabolism , Cytokinins/metabolism , Indoleacetic Acids/pharmacology , Indoleacetic Acids/metabolism
4.
Oecologia ; 201(2): 449-459, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36692690

ABSTRACT

Many herbivorous insects die of pathogen infections, though the role of plant traits in promoting the persistence of these pathogens as an indirect interaction is poorly understood. We tested whether winter leaf retention of bush lupines (Lupinus arboreus) promotes the persistence of a nucleopolyhedroviruses, thereby increasing the infection risk of caterpillars (Arctia virginalis) feeding on the foliage during spring. We also investigated whether winter leaf retention reduces viral exposure of younger caterpillars that live on the ground, as leaf retention prevents contaminated leaves from reaching the ground. We surveyed winter leaf retention of 248 lupine bush canopies across twelve sites and examined how it related to caterpillar infection risk, herbivory, and inflorescence density. We also manipulated the amount of lupine litter available to young caterpillars in a feeding experiment to emulate litterfall exposure in the field. Greater retention of contaminated leaves from the previous season increased infection rates of caterpillars in early spring. Higher infection rates reduced herbivory and increased plant inflorescence density by summer. Young caterpillars exposed to less litterfall were more likely to starve to death but less likely to die from infection, further suggesting foliage mediated exposure to viruses. We speculate that longer leaf life span may be an unrecognized trait that indirectly mediates top-down control of herbivores by facilitating epizootics.


Subject(s)
Herbivory , Virus Diseases , Animals , Larva , Longevity , Insecta , Plants , Plant Leaves
5.
Int J Mol Sci ; 23(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36430686

ABSTRACT

Thidiazuron (TDZ) is the main defoliant used in production to promote leaf abscission for machine-picked cotton. Under low temperatures, the defoliation rate of cotton treated with TDZ decreases and the time of defoliation is delayed, but there is little information about this mechanism. In this study, RNA-seq and physiological analysis are performed to reveal the transcriptome profiling and change in endogenous phytohormones upon TDZ treatment in abscission zones (AZs) under different temperatures (daily mean temperatures: 25 °C and 15 °C). Genes differentially expressed in AZs between TDZ treatment and control under different temperatures were subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to compare the enriched GO terms and KEGG pathways between the two temperature conditions. The results show that, compared with the corresponding control group, TDZ induces many differentially expressed genes (DEGs) in AZs, and the results of the GO and KEGG analyses show that the plant hormone signaling transduction pathway is significantly regulated by TDZ. However, under low temperature, TDZ induced less DEGs, and the enriched GO terms and KEGG pathways were different with those under normal temperature condition. Many genes in the plant hormone signal transduction pathway could not be induced by TDZ under low temperature conditions. In particular, the upregulated ethylene-signaling genes and downregulated auxin-signaling genes in AZs treated with TDZ were significantly affected by low temperatures. Furthermore, the expression of ethylene and auxin synthesis genes and their content in AZs treated with TDZ were also regulated by low temperature conditions. The upregulated cell wall hydrolase genes induced by TDZ were inhibited by low temperatures. However, the inhibition of low temperature on genes in AZs treated with TDZ was relieved with the extension of the treatment time. Together, these results indicate that the responses of ethylene and auxin synthesis and the signaling pathway to TDZ are inhibited by low temperatures, which could not induce the expression of cell wall hydrolase genes, and then inhibit the separation of AZ cells and the abscission of cotton leaves. This result provides new insights into the mechanism of defoliation induced by TDZ under low temperature conditions.


Subject(s)
Gene Expression Regulation, Plant , Plant Growth Regulators , Plant Growth Regulators/pharmacology , Temperature , Ethylenes , Signal Transduction , Hydrolases , Indoleacetic Acids/pharmacology
6.
Plant Cell Rep ; 41(7): 1573-1587, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35608655

ABSTRACT

KEY MESSAGE: Natural variation of the MeMYB108 exon was associated with reactive oxygen scavengers led to alleviate leaf abscission under drought in cassava. The reactive oxygen scavengers play important roles in regulating the cassava (Manihot esculenta Crantz) leaf abscission induced by stresses. To date, the relationship between natural variations of MYB genes and reactive oxygen scavengers under drought in cassava genotypes remains unclear. Here, we reported the transcription factor MeMYB108 played an important role in regulating leaf abscission exposed to drought in cassava. The expression levels of MeMYB108 in abscission zones of cassava leaf pulvinus were higher in cassava genotype SC124, which were less easy to shed leaves under stress than cassava genotype SC8 when the leaf abscission induced by the same drought condition. Compared with wild type and interference expression plants, overexpression of MeMYB108 significantly reduced the drought-induced leaf abscission rate under drought. The consecutively 2-year analysis of reactive oxygen scavengers showed significant differences among different cassava genotypes under drought-induced leaf abscission, indicating the relevance between reactive oxygen scavengers and leaf abscission. Correlation analysis revealed the natural variation of the MeMYB108 exon was associated with reactive oxygen scavengers during drought-induced leaf abscission. Association analysis between pairwise LD of DNA polymorphism indicated the MeMYB108 allele enhanced the tolerance of cassava to drought-induced leaf abscission. Complementation transgenic lines containing the elite allele of MeMYB108 SC124 decreased the leaf abscission rate induced by drought conditions, demonstrating natural variation in MeMYB108 contributed to leaf abscission tolerance induced by drought in cassava. Further studies showed MeMYB108 played an active role in the tolerance of cassava to drought-induced leaf abscission by inducing scavenging of reactive oxygen species.


Subject(s)
Manihot , Droughts , Gene Expression Profiling , Gene Expression Regulation, Plant , Manihot/genetics , Oxygen/metabolism , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , Stress, Physiological/genetics
7.
Int J Mol Sci ; 23(5)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35269837

ABSTRACT

Thidiazuron (TDZ) is widely used as a defoliant to induce leaf abscission in cotton. However, the underlying molecular mechanism is still unclear. In this study, RNA-seq and enzyme-linked immunosorbent assays (ELISA) were performed to reveal the dynamic transcriptome profiling and the change of endogenous phytohormones upon TDZ treatment in leaf, petiole, and abscission zone (AZ). We found that TDZ induced the gene expression of ethylene biosynthesis and signal, and promoted ethylene accumulation earlier in leaf than that in AZ. While TDZ down-regulated indole-3-acetic acid (IAA) biosynthesis genes mainly in leaf and IAA signal and transport genes. Furthermore, the IAA content reduced more sharply in the leaf than that in AZ to change the auxin gradient for abscission. TDZ suppressed CTK biosynthesis genes and induced CTK metabolic genes to reduce the IPA accumulation for the reduction of ethylene sensitivity. Furthermore, TDZ regulated the gene expression of abscisic acid (ABA) biosynthesis and signal and induced ABA accumulation between 12-48 h, which could up-regulate ABA response factor genes and inhibit IAA transporter genes. Our data suggest that TDZ orchestrates metabolism and signal of ethylene, auxin, and cytokinin, and also the transport of auxin in leaf, petiole, and AZ, to control leaf abscission.


Subject(s)
Cytokinins , Gene Expression Regulation, Plant , Ethylenes , Indoleacetic Acids/metabolism , Phenylurea Compounds , Plant Leaves/metabolism , Thiadiazoles
8.
Front Plant Sci ; 13: 1101821, 2022.
Article in English | MEDLINE | ID: mdl-36860206

ABSTRACT

The reactive oxygen species (ROS) signal regulates stress-induced leaf abscission in cassava. The relationship between the function of the cassava transcription factor bHLH gene and low temperature-induced leaf abscission is still unclear. Here, we report that MebHLH18, a transcription factor, involved in regulating low temperature-induced leaf abscission in cassava. The expression of the MebHLH18 gene was significantly related to low temperature-induced leaf abscission and POD level. Under low temperatures, the levels of ROS scavengers in different cassava genotypes were significantly different in the low temperature-induced leaf abscission process. Cassava gene transformation showed that MebHLH18 overexpression significantly decreased the low temperature-induced leaf abscission rate. Simultaneously, interference expression increased the rate of leaf abscission under the same conditions. ROS analysis showed a connection between the decrease in the low temperature-induced leaf abscission rate caused by MebHLH18 expression and the increase in antioxidant activity. A Genome-wide association studies analysis showed a relationship between the natural variation of the promoter region of MebHLH18 and low temperature-induced leaf abscission. Furthermore, studies showed that the change in MebHLH18 expression was caused by a single nucleotide polymorphism variation in the promoter region upstream of the gene. The high expression of MebHLH18 led to a significant increase in POD activity. The increased POD activity decreased the accumulation of ROS at low temperatures and the rate of leaf abscission. It indicates that the natural variation in the promoter region of MebHLH18 increases antioxidant levels under low temperatures and slows down low temperature-induced leaf abscission.

9.
Innovation (Camb) ; 2(4): 100154, 2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34901903

ABSTRACT

Relationships among productivity, leaf phenology, and seasonal variation in moisture and light availability are poorly understood for evergreen broadleaved tropical/subtropical forests, which contribute 25% of terrestrial productivity. On the one hand, as moisture availability declines, trees shed leaves to reduce transpiration and the risk of hydraulic failure. On the other hand, increases in light availability promote the replacement of senescent leaves to increase productivity. Here, we provide a comprehensive framework that relates the seasonality of climate, leaf abscission, and leaf productivity across the evergreen broadleaved tropical/subtropical forest biome. The seasonal correlation between rainfall and light availability varies from strongly negative to strongly positive across the tropics and maps onto the seasonal correlation between litterfall mass and productivity for 68 forests. Where rainfall and light covary positively, litterfall and productivity also covary positively and are always greater in the wetter sunnier season. Where rainfall and light covary negatively, litterfall and productivity are always greater in the drier and sunnier season if moisture supplies remain adequate; otherwise productivity is smaller in the drier sunnier season. This framework will improve the representation of tropical/subtropical forests in Earth system models and suggests how phenology and productivity will change as climate change alters the seasonality of cloud cover and rainfall across tropical/subtropical forests.

10.
Int J Mol Sci ; 22(11)2021 May 27.
Article in English | MEDLINE | ID: mdl-34072027

ABSTRACT

A high-density genetic linkage map is essential for genetic and genomic studies including QTL mapping, genome assembly, and comparative genomic analysis. Here, we constructed a citrus high-density linkage map using SSR and SNP markers, which are evenly distributed across the citrus genome. The integrated linkage map contains 4163 markers with an average distance of 1.12 cM. The female and male linkage maps contain 1478 and 2976 markers with genetic lengths of 1093.90 cM and 1227.03 cM, respectively. Meanwhile, a genetic map comparison demonstrates that the linear order of common markers is highly conserved between the clementine mandarin and Poncirus trifoliata. Based on this high-density integrated citrus genetic map and two years of deciduous phenotypic data, two loci conferring leaf abscission phenotypic variation were detected on scaffold 1 (including 36 genes) and scaffold 8 (including 107 genes) using association analysis. Moreover, the expression patterns of 30 candidate genes were investigated under cold stress conditions because cold temperature is closely linked with the deciduous trait. The developed high-density genetic map will facilitate QTL mapping and genomic studies, and the localization of the leaf abscission deciduous trait will be valuable for understanding the mechanism of this deciduous trait and citrus breeding.


Subject(s)
Chromosome Mapping , Poncirus/genetics , Quantitative Trait Loci , Quantitative Trait, Heritable , Cold-Shock Response , Computational Biology/methods , Genetic Linkage , Genetic Markers , Humans , INDEL Mutation , Microsatellite Repeats , Phenotype , Polymorphism, Single Nucleotide
11.
Plants (Basel) ; 10(1)2020 Dec 28.
Article in English | MEDLINE | ID: mdl-33379380

ABSTRACT

Chemical defoliation is an essential agricultural practice in cotton production for mechanic harvesting. Thidiazuron (TDZ) is the active ingredient of the chemical defoliant used on cotton. So far, few studies havefocused on the method of identifying the sensitivity of cotton cultivars to TDZ. Therefore, a greenhouse soil culture experiment was performed by using two widely cultivatedupland cotton cultivars CRI 49 and CRI 12 treated with seven different concentrations (0, 100, 200, 300, 400, 500, and 1000 mg L-1) of TDZ at the seedling stage to establish a screening system. Principal component analysis and the membership function value (MFV) method was used to analyze the physiological and phenotypic characters, including abscission rate, amino acids content, net photosynthetic rate (Pn), etc. Finally, we developed a mathematical evaluation model, selected 100 mg L-1 TDZ as the optimal concentration and identified reliable characters net photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate (Tr) to evaluate cotton leaf abscission sensitivity. These results also confirmed that CRI 12 was more sensitive to TDZ than CRI 49. This is the first time using a mathematical evaluation method to evaluate the cotton leaf abscission sensitivity triggered by TDZ at the seedling stage and the results were also confirmed in the field experiment. Furthermore, it will be valuable that MFV method is applied to stress sensitivity evaluation in other crop species under stress environment.

12.
Oecologia ; 193(2): 449-460, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32556592

ABSTRACT

Climate models predict increasing amounts of precipitation and relative atmospheric humidity for high latitudes in the Northern Hemisphere. Therefore, tree species must adjust to the new climatic conditions. We studied young silver birches (Betula pendula Roth) in a long-term (2012-2018) free air humidity manipulation experiment, with the aim of clarifying the acclimation mechanisms to elevated relative atmospheric humidity. In 2016-2018, stem radial increment (measured by dendrometers) and leaf abscission were monitored, and the leaf N and P resorption efficiencies were determined. Biomass allocation was estimated, and the seasonal dynamics of foliar NPK storage was assessed. Humidification increased N resorption efficiency by 11%. The annual means of N resorption efficiency varied from 41 to 52% in control and from 50 to 59% in humidified stands. The P resorption efficiency was strongly affected by weather conditions and varied between years from 25 to 66%. Higher foliar NPK storages at the end of growing season and delayed leaf fall allowed to extend the growth period in humidified plots, which resulted in a week longer stem radial growth. Although stem diameter growth of humidified birches recovered after 5 years, tree height retardation persisted over the seven study years, resulting in increased stem taper (diameter to height ratio) under humidification. Additionally, humidification increased the share of the bark in stem biomass and the number of branches per crown length. The acclimation of silver birches to increased air humidity entails changes in forest N cycle and in birch timber quality.


Subject(s)
Betula , Nitrogen , Forests , Humidity , Plant Leaves , Trees
13.
Int J Mol Sci ; 21(8)2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32326540

ABSTRACT

Chemical defoliation is an important part of cotton mechanical harvesting, which can effectively reduce the impurity content. Thidiazuron (TDZ) is the most used chemical defoliant on cotton. To better clarify the mechanism of TDZ promoting cotton leaf abscission, a greenhouse experiment was conducted on two cotton cultivars (CRI 12 and CRI 49) by using 100 mg L-1 TDZ at the eight-true-leaf stage. Results showed that TDZ significantly promoted the formation of leaf abscission zone and leaf abscission. Although the antioxidant enzyme activities were improved, the reactive oxygen species and malondialdehyde (MDA) contents of TDZ increased significantly compared with CK (water). The photosynthesis system was destroyed as net photosynthesis (Pn), transpiration rate (Tr), and stomatal conductance (Gs) decreased dramatically by TDZ. Furthermore, comparative RNA-seq analysis of the leaves showed that all of the photosynthetic related genes were downregulated and the oxidation-reduction process participated in leaf shedding caused by TDZ. Consequently, a hypothesis involving possible cross-talk between ROS metabolism and photosynthesis jointly regulating cotton leaf abscission is proposed. Our findings not only provide important insights into leaf shedding-associated changes induced by TDZ in cotton, but also highlight the possibility that the ROS and photosynthesis may play a critical role in the organ shedding process in other crops.


Subject(s)
Defoliants, Chemical/pharmacology , Gene Expression Regulation, Plant/drug effects , Gossypium/metabolism , Phenylurea Compounds/pharmacology , Photosynthesis/drug effects , Plant Leaves/metabolism , Thiadiazoles/pharmacology , Carbohydrates/analysis , Chlorophyll/analysis , Cotton Fiber , Defoliants, Chemical/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Gene Ontology , Gossypium/drug effects , Gossypium/genetics , Malondialdehyde/analysis , Microscopy, Electron, Scanning , Plant Epidermis/anatomy & histology , Plant Epidermis/drug effects , Plant Epidermis/ultrastructure , Plant Leaves/drug effects , Plant Leaves/ultrastructure , Plant Stomata/drug effects , Plant Stomata/physiology , RNA-Seq , Reactive Oxygen Species/metabolism , Seedlings/anatomy & histology , Seedlings/growth & development
14.
Plants (Basel) ; 8(6)2019 May 30.
Article in English | MEDLINE | ID: mdl-31151222

ABSTRACT

The programmed loss of a plant organ is called abscission, which is an important cell separation process that occurs with different organs throughout the life of a plant. The use of floral organ abscission in Arabidopsis thaliana as a model has allowed greater understanding of the complexities of organ abscission, but whether the regulatory pathways are conserved throughout the plant kingdom and for all organ abscission types is unknown. One important pathway that has attracted much attention involves a peptide ligand-receptor signalling system that consists of the secreted peptide IDA (INFLORESCENCE DEFICIENT IN ABSCISSION) and at least two leucine-rich repeat (LRR) receptor-like kinases (RLK), HAESA (HAE) and HAESA-LIKE2 (HSL2). In the current study we examine the bioactive potential of IDA peptides in two different abscission processes, leaf abscission in Populus and ripe fruit abscission in oil palm, and find in both cases treatment with IDA peptides enhances cell separation and abscission of both organ types. Our results provide evidence to suggest that the IDA-HAE-HSL2 pathway is conserved and functions in these phylogenetically divergent dicot and monocot species during both leaf and fruit abscission, respectively.

15.
Methods Mol Biol ; 1991: 127-139, 2019.
Article in English | MEDLINE | ID: mdl-31041770

ABSTRACT

Abscission is a process that allows plants to shed unwanted organs. Plants can use abscission as a defense mechanism to shed leaves that are heavily infected with pathogenic bacteria. By shedding infected leaves, plants completely eliminate the bacteria from the plant body, thus preventing further spreading of the disease. A lot is known about how plants limit the growth of pathogenic bacteria in vegetative leaf tissues. Much less is known about how plants defend themselves in non-vegetative developmental stages and how they use organ level responses such as leaf abscission for defense. Organ level defense responses can be effectively studied in the Pseudomonas syringae-triggered leaf abscission system in Arabidopsis. This method article describes detailed procedures for quantitative analysis of cauline leaf abscission including dissecting abscission zones for extraction of RNA and proteins for quantitative gene or protein expression analysis. The method described for molecular analysis of abscission zones could also be used in other cases where tissue is extremely limiting.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Gene Expression Regulation, Plant , Plant Leaves/physiology , Pseudomonas syringae/pathogenicity , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Plant Leaves/microbiology
16.
J Exp Bot ; 70(5): 1525-1538, 2019 03 11.
Article in English | MEDLINE | ID: mdl-30715415

ABSTRACT

Abscission is a process that allows plants to shed tissues or organs via cell separation, and occurs throughout the life cycle. Removal of leaves through the use of chemical defoliants is very important for mechanical harvesting of cotton (Gossypium hirsutum). However, our knowledge of the molecular mechanisms of the defoliation response involved is limited. In this study, RNA-seq was conducted in order to profile the differentially expressed genes (DEGs) between cultivars X50 (sensitive to chemical defoliants) and X33 (relatively insensitive) at different time points after treatment with thidiazuron and ethephon (TE). A total of 2434 DEGs were identified between the two cultivars across the different time-points. Functional categories according to GO and KEGG analyses revealed that plant hormone signal transduction and zeatin biosynthesis were involved in the response to TE. Cytokinin oxidase/dehydrogenase (CKX) genes and ethylene-related genes were up-regulated following TE treatment, and were associated with increased level of ethylene, especially in cultivar X50. Down-regulation of GhCKX3 resulted in delayed defoliation and a reduced ethylene response. The results show that crosstalk between cytokinin and ethylene regulates cotton defoliation, and provide new insights into the molecular mechanisms underlying the mode of action of defoliants in cotton.


Subject(s)
Cytokinins/metabolism , Defoliants, Chemical/administration & dosage , Ethylenes/metabolism , Gossypium/physiology , Plant Leaves/growth & development , Gossypium/drug effects , Gossypium/genetics , Organophosphorus Compounds/administration & dosage , Phenylurea Compounds/administration & dosage , Plant Growth Regulators/metabolism , Plant Leaves/drug effects , Signal Transduction/drug effects , Thiadiazoles/administration & dosage
17.
J Exp Bot ; 69(4): 733-740, 2018 02 12.
Article in English | MEDLINE | ID: mdl-28992277

ABSTRACT

Abscission is a process in plants for shedding unwanted organs such as leaves, flowers, fruits, or floral organs. Shedding of leaves in the fall is the most visually obvious display of abscission in nature. The very shape plants take is forged by the processes of growth and abscission. Mankind manipulates abscission in modern agriculture to do things such as prevent pre-harvest fruit drop prior to mechanical harvesting in orchards. Abscission occurs specifically at abscission zones that are laid down as the organ that will one day abscise is developed. A sophisticated signaling network initiates abscission when it is time to shed the unwanted organ. In this article, we review recent advances in understanding the signaling mechanisms that activate abscission. Physiological advances and roles for hormones in abscission are also addressed. Finally, we discuss current avenues for basic abscission research and potentially lucrative future directions for its application to modern agriculture.


Subject(s)
Arabidopsis/physiology , Gene Expression Regulation, Developmental/physiology , Gene Expression Regulation, Plant/physiology , Plant Growth Regulators/metabolism , Signal Transduction/physiology , Arabidopsis/genetics , Arabidopsis/growth & development , Flowers/growth & development , Flowers/physiology , Fruit/growth & development , Fruit/physiology , Plant Leaves/growth & development , Plant Leaves/physiology
18.
Insects ; 8(2)2017 Mar 24.
Article in English | MEDLINE | ID: mdl-28338630

ABSTRACT

This study was conducted to elucidate the life cycle and the ecological characteristics of Trachys yanoi Y. Kurosawa, an important pest of Zelkova serrata (Thunb.) Makino. Life cycle, mortality rates in developmental stages, annual population dynamics, and early leaf abscission were investigated. Adults emerged from under the bark of Zelkova trees in April and fed on Zelkova leaves. Females laid 49 eggs on average, mainly in May and early June. Eggs hatched after 17 days, and the larvae fed inside the leaves. They developed through three instars. In July, leaves with the final stage of larvae were abscised. Four days after abscission, the larvae pupated. New adults eclosed from pupae seven days after pupation, and the adults emerged from abscised leaves after an additional two days. In total, 1650 adults emerged per 1 m² of forest floor, resulting in a major population increase. The newly emerged adults fed on the remaining Zelkova leaves, compounding the damage. In October, adults overwintered under the tree bark. Mortality rates in the egg, larval, and pupal stages were 41%, 58%, and 31%, respectively. The mortality rate among overwintering individuals was 43%. Because only Zelkova leaves that were abscised in July contained the larvae, and because only a small number of beetles emerged from non-abscised, mined leaves, the removal of abscised leaves at nine-day intervals over period of early leaf abscission is a simple and effective way to control the beetle.

19.
Ciênc. rural ; Ciênc. rural (Online);47(2): e20151611, 2017. graf
Article in English | LILACS | ID: biblio-828442

ABSTRACT

ABSTRACT: Species from Capsicum genus are used for different purposes and in more recent years as ornamental potted plant. Despite the increased commercial importance, there are only a few studies on the environmental factors affecting the post-production shelf life of these ornamental plants. The presence of ethylene induces various responses on potted peppers, reducing the shelf life of sensitive cultivars. This study aimed to evaluate the effects of ethylene and the inhibitors of ethylene action, 1-methylcyclopropene (1-MCP) and silver thiosulfate (STS) on the shelf life of potted 'Calypso' and 'MG 302' peppers. Cultivar 'MG 302' showed intermediate sensitivity to ethylene action, while the cultivar 'Calypso' showed complete abscission of leaves when exposed to ethylene. In both cultivars, treatment with STS + Ethylene presented symptoms of phytotoxicity in plants, while treatment with 1-MCP + Ethylene was effective in delaying senescence and abscission for the cultivar 'MG 302', while cultivar 'Calypso' showed abscission similar to control plants. Plants treated with STS showed the longest durability when compared to the other treatments, about six days for 'Calypso' and 18 days for 'MG 302'. Nevertheless, plants treated with 1-MCP also exhibited good shelf life, about six days for 'Calypso' and nine days for the 'MG 302'. Although the treatment with STS was more efficient on the plants shelf life, did not completely block the action of ethylene and exhibited some phytotoxicity, while the treatment with 1-MCP had good efficiency without inducing any toxicity.


RESUMO: Espécies do gênero Capsicum estão sendo usados para diversas finalidades e nos últimos anos como planta ornamental de vaso. Apesar da crescente importância comercial, há poucos estudos sobre os fatores ambientais que afetam a sua vida útil de pós-produção destas plantas ornamentais. A presença de etileno induz várias respostas em pimenteiras em vasos, reduzindo a vida útil de prateleira de cultivares sensíveis. Este estudo teve como objetivo avaliar os efeitos do etileno e inibidores da ação do etileno, 1-metilciclopropeno (1-MCP) e tiossulfato de prata (STS) sobre a vida útil de vaso de pimenteiras das cultivares 'Calypso' e 'MG 302'. A cultivar 'MG 302' apresentou sensibilidade intermediária a ação do etileno, enquanto a cultivar 'Calypso' apresentou abscisão completa das folhas quando exposta ao etileno. Em ambas as cultivares, o tratamento STS + Etileno mostrou sintomas de fitotoxicidade nas plantas. O tratamento com 1-MCP + Etileno foi eficaz em retardar a senescência e abscisão apenas para a cultivar 'MG 302', enquanto a cultivar 'Calypso' mostrou abscisão foliar semelhante as plantas controle. Plantas tratadas com STS mostraram maior durabilidade quando comparadas aos outros tratamentos, cerca de seis dias para 'Calypso' e dezoito dias para 'MG 302'. No entanto, as plantas tratadas com 1-MCP também exibiram boa vida útil de prateleira, cerca de seis dias para 'Calypso' e nove dias para a 'MG 302'. Embora o tratamento com STS tenha sido mais eficiente na vida de prateleira das plantas, não bloqueou completamente a ação do etileno e apresentaram algum fitotoxicidade, enquanto o tratamento com 1-MCP teve boa eficiência sem induzir qualquer toxicidade.

20.
New Phytol ; 212(4): 1007-1018, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27373446

ABSTRACT

During droughts, leaves are predicted to act as 'hydraulic fuses' by shedding when plants reach critically low water potential (Ψplant ), thereby slowing water loss, stabilizing Ψplant and protecting against cavitation-induced loss of stem hydraulic conductivity (Ks ). We tested these predictions among trees in seasonally dry tropical forests, where leaf shedding is common, yet variable, among species. We tracked leaf phenology, Ψplant and Ks in saplings of six tree species distributed across two forests. Species differed in their timing and extent of leaf shedding, yet converged in shedding leaves as they approached the Ψplant value associated with a 50% loss of Ks and at which their model-estimated maximum sustainable transpiration rate approached zero. However, after shedding all leaves, the Ψplant value of one species, Genipa americana, continued to decline, indicating that water loss continued after leaf shedding. Ks was highly variable among saplings within species and seasons, suggesting a minimal influence of seasonal drought on Ks . Hydraulic limits appear to drive diverse patterns of leaf shedding among tropical trees, supporting the hydraulic fuse hypothesis. However, leaf shedding is not universally effective at stabilizing Ψplant , suggesting that the main function of drought deciduousness may vary among species.


Subject(s)
Droughts , Models, Biological , Plant Leaves/physiology , Plant Stems/physiology , Seasons , Gases/metabolism , Plant Leaves/anatomy & histology , Plant Stems/anatomy & histology , Plant Stomata/physiology , Species Specificity , Time Factors , Trees/physiology , Water/physiology
SELECTION OF CITATIONS
SEARCH DETAIL