Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters











Publication year range
1.
Braz J Microbiol ; 55(3): 2839-2844, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38743246

ABSTRACT

Hemileia vastatrix, causal agent of coffee leaf rust (CLR), is an aggressive pathogen of coffee plants worldwide. Conventional fungicides play a major role in the suppression of this disease, but a recent shift toward eco-friendly farming practices has occurred and additional novel, effective, and sustainable strategies for CLR control are needed. Naturally occurring fungal antagonists could be well-positioned to meet this demand, but these fungi need to be isolated and tested for efficacy to identify organisms with potential. In this study, a survey of fungi associated with CLR lesions in four districts of Hawai'i Island, HI, USA (Kona, Ka'u, Hamakua, and Hilo) was conducted. Coffee leaves infected with CLR were collected from 22 locations and over 600 lesions were plated on ½ APDA and CTC 4T media. DNA was extracted from purified isolates and the internal transcribed spacer region (ITS) was sequenced and analyzed by BLASTn. In total, 194 isolates comprising 50 taxa were recovered. Several of the genera are known antagonists of CLR or other plant pathogens, including Simplicillium, Akanthomyces, Cladosporium, Fusarium, and Clonostachys. The wide diversity of fungi associated with CLR lesions provide a wealth of possibilities for identifying potential CLR antagonists that could serve as a valuable tool for coffee farmers as part of an integrated pest management plan.


Subject(s)
Coffea , Plant Diseases , Plant Leaves , Coffea/microbiology , Hawaii , Plant Diseases/microbiology , Plant Diseases/prevention & control , Plant Leaves/microbiology , Fungi/classification , Fungi/isolation & purification , Fungi/genetics , Fungi/drug effects , Basidiomycota/isolation & purification , Basidiomycota/genetics , Basidiomycota/classification , Antibiosis
2.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Article in English | MEDLINE | ID: mdl-38599638

ABSTRACT

Coffee leaf rust, caused by the fungus Hemileia vastatrix, has become a major concern for coffee-producing countries. Additionally, there has been an increase in the resistance of certain races of the fungus to fungicides and breeding cultivars, making producers use alternative control methods. In this work, we transplanted the leaf surface microbiota of rust-resistant coffee species (Coffea racemosa and Coffea stenophylla) to Coffea arabica and tested whether the new microbiota would be able to minimize the damage caused by H. vastatrix. It was seen that the transplant was successful in controlling rust, especially from C. stenophylla, but the protection depended on the concentration of the microbiota. Certain fungi, such as Acrocalymma, Bipolaris, Didymella, Nigrospora, Setophaeosphaeria, Simplicillium, Stagonospora and Torula, and bacteria, such as Chryseobacterium, Sphingobium and especially Enterobacter, had their populations increased and this may be related to the antagonism seen against H. vastatrix. Interestingly, the relative population of bacteria from genera Pantoea, Methylobacterium and Sphingomonas decreased after transplantation, suggesting a positive interaction between them and H. vastatrix development. Our findings may help to better understand the role of the microbiota in coffee leaf rust, as well as help to optimize the development of biocontrol agents.


Subject(s)
Basidiomycota , Coffea , Disease Resistance , Microbiota , Plant Diseases , Plant Leaves , Coffea/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Plant Leaves/microbiology , Basidiomycota/genetics , Basidiomycota/growth & development , Bacteria/genetics , Bacteria/growth & development , Bacteria/classification , Fungi/growth & development , Fungi/genetics
3.
Braz. j. biol ; 84: e249472, 2024. tab, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1364512

ABSTRACT

Leaf rust, caused by Puccinia triticina, is the most common rust disease of wheat. The fungus is an obligate parasite capable of producing infectious urediniospores. To study the genetic structure of the leaf rust population 20 RAPD primers were evaluated on 15 isolates samples collected in Pakistan. A total of 105 RAPD fragments were amplified with an average of 7 fragments per primer. The number of amplified fragments varied from 1 to 12. GL Decamer L-07 and GL Decamer L-01 amplified the highest number of bands (twelve) and primer GL Decamer A-03 amplified the lowest number of bands i.e one. Results showed that almost all investigated isolates were genetically different that confirms high genetic diversity within the leaf rust population. Rust spores can follow the migration pattern in short and long distances to neighbor areas. Results indicated that the greatest variability was revealed by 74.9% of genetic differentiation within leaf rust populations. These results suggested that each population was not completely identical and high gene flow has occurred among the leaf rust population of different areas. The highest differentiation and genetic distance among the Pakistani leaf rust populations were detected between the leaf rust population in NARC isolate (NARC-4) and AARI-11and the highest similarity was observed between NARC isolates (NARC-4) and (NARC-5). The present study showed the leaf rust population in Pakistan is highly dynamic and variable.


A ferrugem da folha, causada por Puccinia triticina, é a ferrugem mais comum do trigo. O fungo é um parasita obrigatório, capaz de produzir urediniósporos infecciosos. Para estudar a estrutura genética da população de ferrugem da folha, 20 primers RAPD foram avaliados em 15 amostras de isolados coletadas no Paquistão. Um total de 105 fragmentos RAPD foram amplificados com uma média de 7 fragmentos por primer. O número de fragmentos amplificados variou de 1 a 12. GL Decamer L-07 e GL Decamer L-01 amplificaram o maior número de bandas (doze), e o primer GL Decamer A-03 amplificou o menor número de bandas, ou seja, um. Os resultados mostraram que quase todos os isolados investigados eram geneticamente diferentes, o que confirma a alta diversidade genética na população de ferrugem da folha. Os esporos de ferrugem podem seguir o padrão de migração em distâncias curtas e longas para áreas vizinhas. Os resultados indicaram que a maior variabilidade foi revelada por 74,9% da diferenciação genética nas populações de ferrugem. Esses resultados sugeriram que cada população não era completamente idêntica e um alto fluxo gênico ocorreu entre a população de ferrugem da folha de diferentes áreas. A maior diferenciação e distância genética entre as populações de ferrugem da folha do Paquistão foram detectadas entre a população de ferrugem da folha no isolado NARC (NARC-4) e AARI-11 e a maior similaridade foi observada entre os isolados NARC (NARC-4) e (NARC-5). O presente estudo mostrou que a população de ferrugem da folha no Paquistão é altamente dinâmica e variável.


Subject(s)
Triticum/parasitology , Biomarkers , Agricultural Pests , Fungi/genetics , Puccinia/genetics
4.
Microbiol Resour Announc ; 12(11): e0044423, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37791781

ABSTRACT

Coffee leaf rust, caused by the fungus Hemileia vastatrix (Basidiomycota; Pucciniomycota), is a devastating disease spread worldwide. To improve the available genomes, we use PacBio HiFi sequencing enhanced by Dovetail Omni-C chromatin conformation capture to assemble a highly contiguous 747.98 Mb genome of an isolate collected from Coffea arabica.

5.
Int J Mol Sci ; 24(15)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37569535

ABSTRACT

Understanding the genetic basis of rust resistance in elite CIMMYT wheat germplasm enhances breeding and deployment of durable resistance globally. "Mokue#1", released in 2023 in Pakistan as TARNAB Gandum-1, has exhibited high levels of resistance to stripe rust, leaf rust, and stem rust pathotypes present at multiple environments in Mexico and Kenya at different times. To determine the genetic basis of resistance, a F5 recombinant inbred line (RIL) mapping population consisting of 261 lines was developed and phenotyped for multiple years at field sites in Mexico and Kenya under the conditions of artificially created rust epidemics. DArTSeq genotyping was performed, and a linkage map was constructed using 7892 informative polymorphic markers. Composite interval mapping identified three significant and consistent loci contributed by Mokue: QLrYr.cim-1BL and QLrYr.cim-2AS on chromosome 1BL and 2AS, respectively associated with stripe rust and leaf rust resistance, and QLrSr.cim-2DS on chromosome 2DS for leaf rust and stem rust resistance. The QTL on 1BL was confirmed to be the Lr46/Yr29 locus, whereas the QTL on 2AS represented the Yr17/Lr37 region on the 2NS/2AS translocation. The QTL on 2DS was a unique locus conferring leaf rust resistance in Mexico and stem rust resistance in Kenya. In addition to these pleiotropic loci, four minor QTLs were also identified on chromosomes 2DL and 6BS associated with stripe rust, and 3AL and 6AS for stem rust, respectively, using the Kenya disease severity data. Significant decreases in disease severities were also demonstrated due to additive effects of QTLs when present in combinations.


Subject(s)
Basidiomycota , Triticum , Triticum/genetics , Disease Resistance/genetics , Plant Diseases/genetics , Plant Breeding , Genomics
6.
J Fungi (Basel) ; 9(3)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36983505

ABSTRACT

Late leaf rust is a fungal disease in raspberries caused by Aculeastrum americanum (Farl.) M. Scholler U. Braun (syn. Thekopsora americana (Farl.) Aime McTaggart) leading to early defoliation and yield losses. Red raspberries (Rubus idaeus L.) are susceptible to this pathogen, although this susceptibility varies among cultivars. In contrast, black raspberries were previously reported to be more resistant (Rubus occidentalis L.) and immune (Rubus niveus Thunb.) to this pathogen, raising their importance in plant breeding programs. However, what features make them respond differently to the same pathogen? In this study, we characterize for the first time the pre- and post-formed structural and biochemical defense mechanisms of R. idaeus cv. Autumn Bliss, R. occidentalis and R. niveus. Ultrastructural and histopathological analyses were used to uncover the interactions between these raspberries and A. americanum. The ultrastructural results indicate that the pathogen germinates on both leaf surfaces but can only form appressoria on the stomata. Although the three raspberry species were infected and colonized by A. americanum, a clear difference in susceptibility was observed between them. A compact mesophyll, pre- and post-formed phenolic compounds, and post-formed pectic compounds were the main plant defense mechanisms against fungal colonization. These findings provide new information about raspberries' defense mechanisms in response to A. americanum and elucidate the interactions occurring in these pathosystems.

7.
J Fungi (Basel) ; 9(2)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36836362

ABSTRACT

During surveys conducted in South America and Africa to identify natural fungal enemies of coffee leaf rust (CLR), Hemileia vastatrix, over 1500 strains were isolated, either as endophytes from healthy tissues of Coffea species or as mycoparasites growing on rust pustules. Based on morphological data, eight isolates-three isolated from wild or semiwild coffee and five from Hemileia species on coffee, all from Africa-were provisionally assigned to the genus Clonostachys. A polyphasic study of their morphological, cultural and molecular characteristics-including the Tef1 (translation elongation factor 1 alpha), RPB1 (largest subunit of RNA polymerase II), TUB (ß-tubulin) and ACL1 (ATP citrate lyase) regions-confirmed these isolates as belonging to three species of the genus Clonostachys: namely C. byssicola, C. rhizophaga and C. rosea f. rosea. Preliminary assays were also conducted to test the potential of the Clonostachys isolates to reduce CLR severity on coffee under greenhouse conditions. Foliar and soil applications indicated that seven of the isolates had a significant effect (p < 0.05) in reducing CLR severity. In parallel, in vitro tests that involved conidia suspensions of each of the isolates together with urediniospores of H. vastatrix resulted in high levels of inhibition of urediniospore germination. All eight isolates showed their ability to establish as endophytes in C. arabica during this study, and some proved to be mycoparasites of H. vastatrix. In addition to reporting the first records of Clonostachys associated with healthy coffee tissues and with Hemileia rusts of coffee, this work provides the first evidence that Clonostachys isolates have potential as biological control agents against CLR.

8.
Genes (Basel) ; 14(1)2023 01 10.
Article in English | MEDLINE | ID: mdl-36672930

ABSTRACT

In this study, marker-assisted recurrent selection was evaluated for pyramiding resistance gene alleles against coffee leaf rust (CLR) and coffee berry diseases (CBD) in Coffea arabica. A total of 144 genotypes corresponding to 12 hybrid populations from crosses between eight parent plants with desired morphological and agronomic traits were evaluated. Molecular data were used for cross-certification, diversity study and resistance allele marker-assisted selection (MAS) against the causal agent of coffee leaf rust (Hemileia vastatrix) and coffee berry disease (Colletotrichum kahawae). In addition, nine morphological and agronomic traits were evaluated to determine the components of variance, select superior hybrids, and estimate genetic gain. From the genotypes evaluated, 134 were confirmed as hybrids. The genetic diversity between and within populations was 75.5% and 24.5%, respectively, and the cluster analysis revealed three primary groups. Pyramiding of CLR and CBD resistance genes was conducted in 11 genotypes using MAS. A selection intensity of 30% resulted in a gain of over 50% compared to the original population. Selected hybrids with increased gain also showed greater genetic divergence in addition to the pyramided resistance alleles. The strategies used were, therefore, efficient to select superior coffee hybrids for recurrent selection programs and could be used as a source of resistance in various crosses.


Subject(s)
Coffea , Disease Resistance , Disease Resistance/genetics , Coffea/genetics , Alleles , Plant Diseases/genetics
9.
Mol Divers ; 27(1): 281-297, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35441971

ABSTRACT

Botrytis cinerea, Rhizoctonia solani and Hemileia vastatrix are three species of phytopathogenic fungi behind major crop losses worldwide. These have been selected as target models for testing the fungicide potential of a series of bis(ylidene) cyclohexanones. Although some compounds of this chemical class are known to have inhibitory activity against human pathogens, they have never been explored for the control of phytopathogens until now. In the present work, bis(ylidene) cyclohexanones were synthesized through simple, fast and low-cost base- or acid-catalyzed aldol condensation reaction and tested in vitro against B. cinerea, R. solani and H. vastatrix. bis(pyridylmethylene) cyclohexanones showed the highest activity against the target fungi. When tested at 200 nmol per mycelial plug against R. solani., these compounds completely inhibited the mycelial growth, and the most active bis(pyridylmethylene) cyclohexanone compound had an IC50 of 155.5 nmol plug-1. Additionally, bis(pyridylmethylene) cyclohexanones completely inhibited urediniospore germination of H. vastatrix, at 125 µmol L-1. The most active bis(pyridylmethylene) cyclohexanone had an IC50 value of 4.8 µmol L-1, which was estimated as approximately 2.6 times lower than that found for the copper oxychloride-based fungicide, used as control. Additionally, these substances had a low cytotoxicity against the mammalian Vero cell line. Finally, in silico calculations indicated that these compounds present physicochemical parameters regarded as suitable for agrochemicals. Bis(ylidene) cyclohexanones may constitute promising candidates for the development of novel antifungal agents for the control of relevant fungal diseases in agriculture.


Subject(s)
Antifungal Agents , Fungicides, Industrial , Humans , Cyclohexanones , Plant Diseases/microbiology , Fungi , Plants
10.
Plant Dis ; 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36410015

ABSTRACT

Leaf rust caused by Cerotelium fici (Cast.) Arth. is the main disease affecting Moraceae family plants, such as Ficus and Morus species (Galleti and Rezende 2016; Srikantaswamy et al. 2006). In August 2020, rust symptoms were observed in 100% of mulberry (Morus nigra L.) trees in an experimental orchard (Piracicaba, SP, Brazil; 22°42'28"S, 47°37'42"W). Mulberry leaves with high rust severity became yellowish and fell-off prematurely. Pustules were light brown with yellowish halo and presented mean size of 0.9 mm2. Uredinial paraphyses (n = 50) measured 42.2 ± 0.67 µm long with wall uniformly ca 0.6-1.1 µm thick. Urediniospores were brownish, echinulate, globoid to broadly ellipsoid, and measured 27.1 ± 0.29 × 21.0 ± 0.27 µm with a wall thickness of 0.6 ± 0.01 µm (n = 100). The morphology of the urediniospores observed in this study was similar to that reported in the literature for C. fici on Morus alba and Ficus spp. (Gupta et al. 1994; McKenzie 1986; Hennen et al. 2005). We used a low-coverage genome-skimming approach to retrieve genetic information of the rRNA cluster and the mtDNA. Genomic DNA was extracted from 3-4 mg of stored urediniospores at -80 °C, macerated in liquid nitrogen, using a modified cetyl trimethylammonium bromide extraction procedure (Lo Piccolo et al. 2012), and sequenced with 150-bp paired-end reads on Illumina NovaSeq 6000 System. Raw data, (45,761,957 X 2 reads) were assembled with SPAdes v3.15.1 (Bankevich et al., 2012) and the output used to create a custom BLAST database. Loci used for the phylogenetic analyses were identified by BLASTn using, as a query, sequences of C. fici from Ficus sp. from Australia publicly available: Accession No. MH047210.1 for the rRNA and MW036502.1 for COX3. The retrieved sequences were deposited in GenBank under accession numbers OM296992 and OP797407 for the partial rRNA cluster and COX3, respectively. The Bayesian inference phylogenetic analysis of the three concatenate loci (18S, 28S, and COX3) revealed that the isolate obtained in this study (MN1) was clustered in a well-supported clade with C. fici type species. Pathogenicity tests were conducted using mulberry potted plants under greenhouse conditions (25 ± 5 °C). The urediniospores suspension (5 × 104 urediniospores ml-1) with 0.05% Tween 20 was sprayed with an airbrush on fully expanded leaves until run-off. As a control, mulberry plants were sprayed with distilled water and kept under the same conditions. Inoculated and mock-inoculated plants were kept in a dark moist chamber at 23 °C (± 2 °C) for 24 h. After this period, plants were moved to the greenhouse. The experimental design was completely randomized with five replicates, each replicate consisted of one potted plant and the experiment was performed twice. At 12 days post-inoculation, all inoculated plants showed rust symptoms identical to those observed in the field, whereas control plants had no symptoms. The first symptoms were small pustules on the abaxial surface of fully expanded leaves. Small chlorotic lesions were observed on the adaxial leaf surface, which evolved into necrotic lesions. The pathogen was re-inoculated into potted plants, where it was maintained through monthly inoculations. To our knowledge, this is the first report of mulberry rust on M. nigra in Brazil. As mulberry leaves are the only natural food for silkworm (Bombyx mori L.), rust poses a significant threat to the sericulture industry because the disease can decrease production and quality of mulberry foliage.

11.
Pest Manag Sci ; 78(11): 4741-4752, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35871604

ABSTRACT

BACKGROUND: The purpose of this work was to investigate the potential use of zinc-dithiocarbimate salts to control Hemileia vastatrix, the causal agent of the coffee leaf rust disease, and to evaluate their toxicity towards Apis mellifera, one of the most important coffee plant pollinators. RESULTS: Zinc-dithiocarbimate salts were prepared and fully characterized by infrared, proton (1 H) and carbon-13 (13 C) nuclear magnetic resonance and elemental analyses of carbon (C), hydrogen (H), nitrogen (N) and zinc (Zn). X-ray diffraction technique studies confirmed the proposed structures. The salts inhibited the germination of H. vastatrix spores in vitro, with a 50% inhibitory concentration (IC50 ) from 12 to 18 µmol.L-1 and a 90% inhibitory concentration (IC90 ) from 23 to 26 µmol.L-1 . Zinc-dithiocarbimate salts with the best in vitro results were selected for in vivo experiments with Coffea arabica var Caturra and with the pollinator A. mellifera. The results were similar to those of Mancozeb, a broad-spectrum contact fungicide, with a good control of the disease and low toxicity to the honeybee. CONCLUSION: The zinc-dithiocarbimate complex salts have potential to control coffee leaf rust, with low toxicity to the pollinator insect. © 2022 Society of Chemical Industry.


Subject(s)
Basidiomycota , Coffea , Fungicides, Industrial , Animals , Bees , Carbon , Fungicides, Industrial/pharmacology , Nitrogen , Plant Diseases/prevention & control , Protons , Salts , Zinc/pharmacology
12.
Biology (Basel) ; 10(11)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34827161

ABSTRACT

Leaf rust is one of the most significant diseases of wheat worldwide. In Argentina, it is one of the main reasons for variety replacement that becomes susceptible after large-scale use. Some varieties showed durable resistance to this disease, including Buck Manantial and Sinvalocho MA. RILs (Recombinant Inbred Lines) were developed for each of these varieties and used in genetics studies to identify components of resistance, both in greenhouse inoculations using leaf rust races, and in field evaluations under natural population infections. In Buck Manantial, the APR gene LrBMP1 was associated with resistance in field tests. In crosses involving Sinvalocho MA, four genes were previously identified and associated with resistance in field testing: APR (Adult Plant Resistance) gene LrSV1, the APR genetic system LrSV2 + LrcSV2 and the ASR (All Stage Resistance) gene LrG6. Using backcrosses, LrBMP1 was introgressed in four commercial susceptible varieties and LrSV1, LrSV2 + LrcSV2 and LrG6 were simultaneously introgressed in three susceptible commercial varieties. The use of molecular markers for recurrent parent background selection allowed us to select resistant lines with more than 80% similarity to commercial varieties. Additionally, progress towards positional cloning of the genetic system LrSV2 + LrcSV2 for leaf rust APR is reported.

13.
Agron Sustain Dev ; 41(5): 62, 2021.
Article in English | MEDLINE | ID: mdl-34484434

ABSTRACT

In Latin America, the cultivation of Arabica coffee (Coffea arabica) plays a critical role in rural livelihoods, biodiversity conservation, and sustainable development. Over the last 20 years, coffee farms and landscapes across the region have undergone rapid and profound biophysical changes in response to low coffee prices, changing climatic conditions, severe plant pathogen outbreaks, and other drivers. Although these biophysical transformations are pervasive and affect millions of rural livelihoods, there is limited information on the types, location, and extent of landscape changes and their socioeconomic and ecological consequences. Here we review the state of knowledge on the ongoing biophysical changes in coffee-growing regions, explore the potential socioeconomic and ecological impacts of these changes, and highlight key research gaps. We identify seven major land-use trends which are affecting the sustainability of coffee-growing regions across Latin America in different ways. These trends include (1) the widespread shift to disease-resistant cultivars, (2) the conventional intensification of coffee management with greater planting densities, greater use of agrochemicals and less shade, (3) the conversion of coffee to other agricultural land uses, (4) the introduction of Robusta coffee (Coffea canephora) into areas not previously cultivated with coffee, (5) the expansion of coffee into forested areas, (6) the urbanization of coffee landscapes, and (7) the increase in the area of coffee produced under voluntary sustainability standards. Our review highlights the incomplete and scattered information on the drivers, patterns, and outcomes of biophysical changes in coffee landscapes, and lays out a detailed research agenda to address these research gaps and elucidate the effects of different landscape trajectories on rural livelihoods, biodiversity conservation, and other aspects of sustainable development. A better understanding of the drivers, patterns, and consequences of changes in coffee landscapes is vital for informing the design of policies, programs, and incentives for sustainable coffee production. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13593-021-00712-0.

14.
Sensors (Basel) ; 21(16)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34450916

ABSTRACT

Coffee Leaf Rust (CLR) is a fungal epidemic disease that has been affecting coffee trees around the world since the 1980s. The early diagnosis of CLR would contribute strategically to minimize the impact on the crops and, therefore, protect the farmers' profitability. In this research, a cyber-physical data-collection system was developed, by integrating Remote Sensing and Wireless Sensor Networks, to gather data, during the development of the CLR, on a test bench coffee-crop. The system is capable of automatically collecting, structuring, and locally and remotely storing reliable multi-type data from different field sensors, Red-Green-Blue (RGB) and multi-spectral cameras (RE and RGN). In addition, a data-visualization dashboard was implemented to monitor the data-collection routines in real-time. The operation of the data collection system allowed to create a three-month size dataset that can be used to train CLR diagnosis machine learning models. This result validates that the designed system can collect, store, and transfer reliable data of a test bench coffee-crop towards CLR diagnosis.


Subject(s)
Basidiomycota , Coffee , Data Collection , Plant Diseases , Remote Sensing Technology
15.
Phytopathology ; 111(10): 1726-1734, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33703921

ABSTRACT

Asian grapevine leaf rust, caused by Neophysopella meliosmae-myrianthae and N. tropicalis, is often controlled by quinone outside inhibitor (QoI) and demethylation inhibitor (DMI) fungicides in Brazil. Here, we evaluated the sensitivity of 55 Neophysopella spp. isolates to pyraclostrobin (QoI) and tebuconazole (DMI). To elucidate the resistance mechanisms, we analyzed the sequences of the cytochrome b (CYTB) and cytochrome P450 sterol 14α-demethylase (CYP51) target proteins of QoI and DMI fungicides, respectively. The CYP51 expression levels were also determined in a selection of isolates. In leaf disc assays, the mean 50% effective concentration (EC50) value for pyraclostrobin was about 0.040 µg/ml for both species. CYTB sequences were identical among all 55 isolates, which did not contain an intron immediately after codon 143. No amino acid substitution was identified at codons 129, 137, and 143. The mean EC50 value for tebuconazole was 0.62 µg/ml for N. tropicalis and 0.46 µg/ml for N. meliosmae-myrianthae, and no CYP51 sequence variation was identified among isolates of the same species. However, five N. meliosmae-myrianthae isolates grew on leaf discs treated at 10 µg/ml tebuconazole, and these were further exposed to tebuconazole selection pressure. Tebuconazole-adapted laboratory isolates of N. meliosmae-myrianthae showed an eight- to 25-fold increase in resistance after four rounds of selection that was not associated with CYP51 target alterations. In comparison with sensitive isolates, CYP51 expression was induced in the presence of tebuconazole in three out of four tebuconazole-adapted isolates tested. These results suggest a potential risk for QoI and DMI resistance development in Neophysopella spp.


Subject(s)
Vitis , Cytochromes b/genetics , Introns/genetics , Plant Diseases , Quinones , Sterols
16.
Sci. agric ; 78(6): 1-9, 2021. tab, ilus, graf
Article in English | VETINDEX | ID: biblio-1497988

ABSTRACT

The biotrophic fungus Hemileia vastatrix causes coffee leaf rust (CLR), one of the most devastating diseases in Coffea arabica. Coffee, like other plants, has developed effective mechanisms to recognize and respond to infections caused by pathogens. Plant resistance gene analogs (RGAs) have been identified in certain plants as candidates for resistance (R) genes or membrane receptors that activate the R genes. The RGAs identified in different plants possess conserved domains that play specific roles in the fight against pathogens. Despite the importance of RGAs, in coffee plants these genes and other molecular mechanisms of disease resistance are still unknown. This study aimed to sequence and characterize candidate genes from coffee plants with the potential for involvement in resistance to H. vastatrix . Sequencing was performed based on a library of bacterial artificial chromosomes (BAC) of the coffee clone Híbrido de Timor (HdT) CIFC 832/2 and screened using a functional marker. Two RGAs, HdT_LRR_RLK1 and HdT_LRR_RLK2, containing the motif of leucine-rich repeat-like kinase (LRR-RLK) were identified. Based on the presence or absence of the HdT_LRR_RLK2 RGA in a number of differential coffee clones containing different combinations of the rust resistance gene, these RGAs did not correspond to any resistance gene already characterized (SH1-9). These genes were also analyzed using qPCR and demonstrated a major expression peak at 24 h after inoculation in both the compatible and incompatible interactions between coffee and H. vastatrix . These results are valuable information for breeding programs aimed at developing CLR-resistant cultivars, in addition to enabling a better understanding of the interactions between coffee and H. vastatrix .


Subject(s)
Coffea/genetics , Coffea/immunology , Fungi/pathogenicity
17.
Sci. agric. ; 78(6): 1-9, 2021. tab, ilus, graf
Article in English | VETINDEX | ID: vti-31246

ABSTRACT

The biotrophic fungus Hemileia vastatrix causes coffee leaf rust (CLR), one of the most devastating diseases in Coffea arabica. Coffee, like other plants, has developed effective mechanisms to recognize and respond to infections caused by pathogens. Plant resistance gene analogs (RGAs) have been identified in certain plants as candidates for resistance (R) genes or membrane receptors that activate the R genes. The RGAs identified in different plants possess conserved domains that play specific roles in the fight against pathogens. Despite the importance of RGAs, in coffee plants these genes and other molecular mechanisms of disease resistance are still unknown. This study aimed to sequence and characterize candidate genes from coffee plants with the potential for involvement in resistance to H. vastatrix . Sequencing was performed based on a library of bacterial artificial chromosomes (BAC) of the coffee clone Híbrido de Timor (HdT) CIFC 832/2 and screened using a functional marker. Two RGAs, HdT_LRR_RLK1 and HdT_LRR_RLK2, containing the motif of leucine-rich repeat-like kinase (LRR-RLK) were identified. Based on the presence or absence of the HdT_LRR_RLK2 RGA in a number of differential coffee clones containing different combinations of the rust resistance gene, these RGAs did not correspond to any resistance gene already characterized (SH1-9). These genes were also analyzed using qPCR and demonstrated a major expression peak at 24 h after inoculation in both the compatible and incompatible interactions between coffee and H. vastatrix . These results are valuable information for breeding programs aimed at developing CLR-resistant cultivars, in addition to enabling a better understanding of the interactions between coffee and H. vastatrix .(AU)


Subject(s)
Fungi/pathogenicity , Coffea/genetics , Coffea/immunology
18.
Front Plant Sci ; 11: 309, 2020.
Article in English | MEDLINE | ID: mdl-32265962

ABSTRACT

Epidemics of coffee leaf rust (CLR) leads to great yield losses and huge depreciation of coffee marketing values, if no control measures are applied. Societal expectations of a more sustainable coffee production are increasingly imposing the replacement of fungicide treatments by alternative solutions. A protection strategy is to take advantage of the plant immune system by eliciting constitutive defenses. Based on such concept, plant resistance inducers (PRIs) have been developed. The Greenforce CuCa formulation, similarly to acibenzolar-S-methyl (ASM), shows promising results in the control of CLR (Hemileia vastatrix) in Coffea arabica cv. Mundo Novo. The molecular mechanisms of PRIs action are poorly understood. In order to contribute to its elucidation a proteomic, physiological (leaf gas-exchange) and biochemical (enzymatic) analyses were performed. Coffee leaves treated with Greenforce CuCa and ASM and inoculation with H. vastatrix were considered. Proteomics revealed that both PRIs lead to metabolic adjustments but, inducing distinct proteins. These proteins were related with photosynthesis, protein metabolism and stress responses. Greenforce CuCa increased photosynthesis and stomatal conductance, while ASM caused a decrease in these parameters. It was further observed that Greenforce CuCa reinforces the redox homeostasis of the leaf, while ASM seems to affect preferentially the secondary metabolism and the stress-related proteins. So, the PRIs prepare the plant to resist CLR but, inducing different defense mechanisms upon pathogen infection. The existence of a link between the primary metabolism and defense responses was evidenced. The identification of components of the plant primary metabolism, essential for plant growth and development that, simultaneously, participate in the plant defense responses can open new perspectives for plant breeding programs.

19.
PeerJ ; 8: e8345, 2020.
Article in English | MEDLINE | ID: mdl-32002327

ABSTRACT

BACKGROUND: In Mexico, coffee leaf rust (CLR) is the main disease that affects the Arabica coffee crop. In this study, the local response of two Mexican cultivars of Coffea arabica (Oro Azteca and Garnica) in the early stages of Hemileia vastatrix infection was evaluated. METHODS: We quantified the development of fungal structures in locally-infected leaf disks from both cultivars, using qRT-PCR to measure the relative expression of two pathogenesis recognition genes (CaNDR1 and CaNBS-LRR) and three genes associated with the salicylic acid (SA)-related pathway (CaNPR1, CaPR1, and CaPR5). RESULTS: Resistance of the cv. Oro Azteca was significantly higher than that of the cv. Garnica, with 8.2% and 53.3% haustorial detection, respectively. In addition, the non-race specific disease resistance gene (CaNDR1), a key gene for the pathogen recognition, as well as the genes associated with SA, CaNPR1, CaPR1, and CaPR5, presented an increased expression in response to infection by H. vastatrix in cv. Oro Azteca if comparing with cv. Garnica. Our results suggest that Oro Azteca's defense mechanisms could involve early recognition of CLR by NDR1 and the subsequent activation of the SA signaling pathway.

20.
Phytopathology ; 110(4): 892-899, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31850832

ABSTRACT

The durum wheat lines Heller#1 and Dunkler from the International Maize and Wheat Improvement Center Global Wheat Program showed moderate and stable adult plant resistance to leaf rust under high disease pressure over field environments in northwestern Mexico. Leaf rust phenotyping was performed on two recombinant inbred line (RIL) populations derived from crosses of Heller#1 and Dunkler with the susceptible parent Atred#2, conducted under artificially induced Puccinia triticina epidemics in 2013, 2014, 2015, and 2016. The Atred#2 × Heller#1 and Atred#2 × Dunkler populations were genotyped by single nucleotide polymorphism (SNP) platforms and diversity arrays technology markers, respectively. Four leaf rust resistance quantitative trait loci were detected simultaneously in the two RIL populations: Lr46, QLr.cim-2BC, QLr.cim-5BL, and QLr.cim-6BL based on phenotypic data across all four crop seasons. They explained 11.7 to 46.8%, 7.2 to 26.1%, 8.4 to 24.1%, and 12.4 to 28.5%, respectively, of the phenotypic variation for leaf rust resistance in Atred#2 × Heller#1 and 16.3 to 56.6%, 6.7 to 15.7%, 4.1 to 10.1%, and 5.1 to 20.2% of the variation in the Atred#2 × Dunkler population. Only the resistance allele of QLr.cim-2BC was from the susceptible parent Atred#2, and resistance alleles at other loci came from the resistant parents Heller#1 and Dunkler. The SNP markers closely linked to Lr46 and QLr.cim-2BC were converted to kompetitive allele specific PCR markers for use in marker-assisted selection to improve leaf rust resistance through crosses with Heller#1 and Dunkler sources.


Subject(s)
Basidiomycota , Triticum , Chromosome Mapping , Disease Resistance , Humans , Mexico , Plant Diseases
SELECTION OF CITATIONS
SEARCH DETAIL