Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Heliyon ; 9(7): e18147, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37519728

ABSTRACT

Gypsum plasterboards are widely used in interior decoration like false ceilings, wall partitioning etc. The main component of this plasterboard is gypsum, which is a mineral material. These boards contain poor mechanical strength with lower durability. The addition of natural fibres in these plasterboards can be useful to achieve better mechanical properties. Since Jute fibre is abundant in Bangladesh and its usability in reinforced composites is well established, for this reason, jute fibre was selected to do the research. The aim of this study was to evaluate the impact of jute fibre on the mechanical properties of the gypsum plasterboard. To make this board, Plaster of Paris and water were thoroughly mixed to make a suspension first. Different fibre loadings of 2, 4, 6, and 8% were incorporated into gypsum composites. Reinforcement of 6% fibre provided the highest tensile properties, but 8% fibre loading showed inferior tensile and flexural properties. Impact test results showed a gradually improving nature with fibre loading, and hardness values showed a decreasing trend in hardness with higher fibre loading. FTIR results and SEM images confirmed that no significant chemical bonding took place in the composites, instead, the composite depended mainly on the mechanical bonding among the reins crystals and between the fibre and gypsum matrix.

2.
Materials (Basel) ; 15(21)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36363290

ABSTRACT

The energy dissipation capacity and damping ability of restorative materials used to restore deciduous teeth were assessed compared to common mechanical properties. Mechanical properties (flexural strength, modulus of elasticity, modulus of toughness) for Compoglass F, Dyract eXtra, SDR flow, Tetric Evo Ceram, Tetric Evo Ceram Bulk Fill, and Venus Diamond were determined using a 4-point bending test. Vickers hardness and Martens hardness, together with its plastic index (ηITdis), were recorded using instrumented indentation testing. Leeb hardness (HLD) and its deduced energy dissipation data (HLDdis) were likewise determined. The reliability of materials was assessed using Weibull analysis. For common mechanical properties, Venus Diamond always exhibited the significantly highest results and SDR flow the lowest, except for flexural strength. Independently determined damping parameters (modulus of toughness, HLDdis, ηITdis) invariably disclosed the highest values for SDR flow. Composite materials, including SDR flow, showed markedly higher reliabilities (Weibull modulus) than Compoglass F and Dyract eXtra. SDR flow showed pronounced energy dissipation and damping characteristics, making it the most promising material for a biomimetic restoration of viscoelastic dentin structures in deciduous teeth. Future developments in composite technology should implement improved resin structures that facilitate damping effects in artificial restorative materials.

3.
Polymers (Basel) ; 14(3)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35160480

ABSTRACT

The aim of the present study was to evaluate and quantify the damping properties of common resin-based computer-aided design and computer-aided manufacturing (CAD/CAM) restorative materials (CRMs) and assess their energy dissipation abilities. Leeb hardness (HLD), together with its deduced energy dissipation data (HLDdis), and loss tangent values recorded via dynamic mechanical analysis (DMA) were determined for six polymer, four composite, and one ceramic CRM as well as one metal. Data were statistically analyzed. Among resin-based CRMs, the significantly highest HLDdis data were detected for the fiber-reinforced composite FD (p < 0.001) directly followed by the filler-reinforced Ambarino High Class (p < 0.001). The significantly lowest HLDdis values were observed for the polymer-based CRM Telio CAD (p < 0.001). For loss tangent, both PEEK materials showed the significantly lowest data and the polymer-based M-PM the highest results with all composite CRMs in between. HLDdis data, which simultaneously record the energy dissipation mechanism of plastic material deformation, more precisely characterize the damping behavior of resin-based CRMs compared to loss tangent results that merely describe viscoelastic material behavior. Depending on material composition, resin-based CRMs reveal extremely different ratios of viscoelastic damping but frequently show enhanced HLDdis values because of plastic material deformation. Future developments in CAD/CAM restorative technology should focus on developing improved viscoelastic damping effects.

4.
J Mech Behav Biomed Mater ; 126: 104987, 2022 02.
Article in English | MEDLINE | ID: mdl-34871956

ABSTRACT

OBJECTIVES: To evaluate and quantify the damping capacities of common CAD/CAM restorative materials (CRMs) and to assess their energy dissipation abilities by comparing loss tangent and Leeb hardness data. METHODS: Leeb hardness (HLD), together with its deduced energy dissipation data (HLDdis), and loss tangent values recorded via dynamic mechanical analysis (DMA) were determined for 4 ceramic, 13 composite, and 2 polymer-based CRMs as well as 1 metal. For Leeb hardness, ten indentations per material were performed on two separate specimens (12.0 × 12.0 × 3.5 mm3) after water storage (24 h; 37.0 ± 1.0 °C). For DMA, ten specimens (16.00 × 4.00 × 1.00 mm3 ± 0.05 mm) per material were investigated in distilled water (37.0 ± 0.5 °C) with a dynamic force of 1 N at 1.5 Hz. Each data set was analyzed using two-way analysis of variance (ANOVA) with material type and material nested in material type as factors. Post-ANOVA contrasts were performed using a Bonferroni adjustment for multiple comparisons (α = 0.05). Correlations between different parameters were tested (Pearson, α = 0.05). RESULTS: HLDdis data revealed the significantly highest damping capacity for metal and the lowest values for ceramics with composites and polymers in between. However, for loss tangent, the metal together with lithium disilicate glass-ceramics exhibited the lowest damping effects and polymer materials the highest results with composites likewise in between. A strong dependency of the loss tangent results on the filler content of the investigated CRMs was indicated (r = - 0.822, p < 0.001), while a positive and only moderate correlation between loss tangent and HLDdis was observed (r = 0.565, p < 0.001), which conversely revealed a very strong correlation (r = 0.911, p < 0.001) if the metal was excluded from the calculation. CONCLUSIONS: Although HLDdis and loss tangent values both allowed a distinct differentiation of the damping capabilities of various CRMs and the respective material types, HLDdis data appeared to more accurately describe the damping capacity of CRMs as the energy dissipation mechanism of permanent plastic material deformation, that is commonly observed for metals and some composite-based CRMs, is equally captured. This finding could be particularly interesting for the future development of new CRMs with improved mechanical properties as HLDdis data determination in principle is a very efficient and simple technique to entirely specify unknown damping capacities of materials.


Subject(s)
Ceramics , Computer-Aided Design , Dental Porcelain , Hardness , Materials Testing , Mechanical Phenomena , Polymers , Surface Properties
5.
Dent Mater ; 37(4): e213-e230, 2021 04.
Article in English | MEDLINE | ID: mdl-33531148

ABSTRACT

OBJECTIVES: To assess energy dissipation capacities and surface damping abilities of different CAD/CAM restorative materials (CRMs) to characterize stress resistance during load peaks. METHODS: Using instrumented indentation testing (IIT), Martens hardness (HM) together with its elastic (ηIT) and plastic index (ηITdis) and Leeb hardness (HLD) together with its deduced energy dissipation (HLDdis) were determined for eight ceramic, eight composite, and four polymer-based materials as well as three metals. The results were compared to those of bovine enamel. Ten indentations per material were performed at room temperature (23 ± 1 °C) on two separate specimens (12.0 × 12.0 × 3.5 mm3) after water storage (24 h; 37.0 ± 1.0 °C). Hardness parameters were recorded, and data were analyzed with one-way MANOVA (Games-Howell post hoc tests, α = 0.05). Correlations between different parameters were tested (Pearson, α = 0.05). RESULTS: Independently determined HLDdis, and ηITdis values substantiated different energy dissipation characteristics of CRM, whereby a strong correlation was observed for the two datasets (r = 0.956, p = 0.011). Ceramics had the significantly lowest values (p < 0.001) while both parameters revealed the highest surface damping effects for metals (p < 0.001), followed in both cases by bovine enamel. Energy dissipation of polymer and composite CRM was in between ceramics and bovine enamel (p < 0.001), whereas only for HLDdis did both show no significant difference (p > 0.05). SIGNIFICANCE: Promising new HLDdis and ηITdis data allow a reliable differentiation of energy dissipation and surface damping capacities of CRMs. Previously published rankings of edge chipping and loss tangent results were perfectly reproduced, especially by HLDdis.


Subject(s)
Computer-Aided Design , Dental Materials , Animals , Cattle , Ceramics , Dental Porcelain , Hardness , Materials Testing , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL