Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.465
Filter
1.
J Ethnopharmacol ; : 118512, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964627

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The Cannabis sativa L. ssp. indica (Lam.) plant has been historically utilized as a natural herbal remedy for the treatment of several ailments. In Lebanon, cannabis extracts have long been traditionally used to treat arthritis, diabetes, and cancer. AIM OF THE STUDY: The current study aims to investigate the anti-cancer properties of Lebanese cannabis oil extract (COE) on acute myeloid leukemia using WEHI-3 cells, and a WEHI-3-induced leukemia mouse model. MATERIALS AND METHODS: WEHI-3 cells were treated with increasing concentrations of COE to determine the IC50 after 24, 48 and 72-h post treatment. Flow cytometry was utilized to identify the mode of cell death. Western blot assay was performed to assess apoptotic marker proteins. In vivo model was established by inoculating WEHI-3 cells in BALB/c mice, and treatment commencing 10 days post-inoculation and continued for a duration of 3 weeks. RESULTS: COE exhibited significant cytotoxicity with IC50 of 7.76, 3.82, and 3.34 µg/mL at 24, 48, and 72 h respectively post-treatment. COE treatment caused an induction of apoptosis through an inhibition of the MAPK/ERK pathway and triggering a caspase-dependent apoptosis via the extrinsic and intrinsic modes independent of ROS production. Animals treated with COE exhibited a significantly higher survival rate, reduction in spleen weight as well as white blood cells count. CONCLUSION: COE exhibited a potent anti-cancer activity against AML cells, both in vitro and in vivo. These findings emphasize the potential application of COE as a chemotherapeutic adjuvant in treatment of acute myeloid leukemia.

2.
BMC Infect Dis ; 24(1): 663, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38956476

ABSTRACT

BACKGROUND: Severe COVID-19 is uncommon, restricted to 19% of the total population. In response to the first virus wave (alpha variant of SARS-CoV-2), we investigated whether a biomarker indicated severity of disease and, in particular, if variable expression of angiotensin converting enzyme 2 (ACE2) in blood might clarify this difference in risk and of post COVID -19 conditions (PCC). METHODS: The IRB-approved study compared patients hospitalized with severe COVID-19 to healthy controls. Severe infection was defined requiring oxygen or increased oxygen need from baseline at admission with positive COVID-19 PCR. A single blood sample was obtained from patients within a day of admission. ACE2 RNA expression in blood cells was measured by an RT-PCR assay. Plasma ACE1 and ACE2 enzyme activities were quantified by fluorescent peptides. Plasma TIMP-1, PIIINP and MMP-9 antigens were quantified by ELISA. Data were entered into REDCap and analyzed using STATA v 14 and GraphPad Prism v 10. RESULTS: Forty-eight patients and 72 healthy controls were recruited during the pandemic. ACE2 RNA expression in peripheral blood mononuclear cells (PBMC) was rarely detected acutely during severe COVID-19 but common in controls (OR for undetected ACE2: 12.4 [95% CI: 2.62-76.1]). ACE2 RNA expression in PBMC did not determine plasma ACE1 and ACE2 activity, suggesting alternative cell-signaling pathways. Markers of fibrosis (TIMP-1 and PIIINP) and vasculopathy (MMP-9) were additionally elevated. ACE2 RNA expression during severe COVID-19 often responded within hours to convalescent plasma. Analogous to oncogenesis, we speculate that potent, persistent, cryptic processes following COVID-19 (the renin-angiotensin system (RAS), fibrosis and vasculopathy) initiate or promote post-COVID-19 conditions (PCC) in susceptible individuals. CONCLUSIONS: This work elucidates biological and temporal plausibility for ACE2, TIMP1, PIIINP and MMP-9 in the pathogenesis of PCC. Intersection of these independent systems is uncommon and may in part explain the rarity of PCC.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Leukocytes, Mononuclear , SARS-CoV-2 , Humans , COVID-19/blood , Angiotensin-Converting Enzyme 2/blood , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Male , Female , Middle Aged , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/virology , Aged , Adult , Biomarkers/blood , Tissue Inhibitor of Metalloproteinase-1/blood , Tissue Inhibitor of Metalloproteinase-1/genetics , Matrix Metalloproteinase 9/blood , Matrix Metalloproteinase 9/genetics , Severity of Illness Index , Case-Control Studies , Peptidyl-Dipeptidase A/blood , Peptidyl-Dipeptidase A/genetics
4.
J Leukoc Biol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953175

ABSTRACT

Sepsis is a dysregulated systemic inflammatory response to an infection, which can lead to multiple organ dysfunction syndrome that includes the kidney. Leukocyte recruitment is an important process of the host immune defense in response to sepsis. Endothelial cells (EC) actively regulate leukocyte recruitment by expressing adhesion molecules following the activation of dedicated intracellular signal transduction pathways. Previous studies reported that the expression of adhesion molecules was associated with the activation of endothelial NF-κB p65 and MAPK c-Jun pathways in vitro in response to conditions that mimic processes that occur in inflammation. This study aimed to investigate the spatiotemporal patterns of leukocyte recruitment, expression of adhesion molecules, and endothelial nuclear p65 and c-Jun localization in renal microvascular beds of septic mice. Here, we used a cecal ligation and puncture (CLP) sepsis mouse model and RT-qPCR and immunohistochemical staining. We showed that neutrophils, macrophages, and T lymphocytes were all present in the kidney, yet only neutrophils accumulated in a spatiotemporally discernible pattern, mainly in glomeruli at 4 hours after CLP-sepsis initiation. E-selectin, not VCAM-1, was expressed in glomeruli at the same time point. In a subset of mice at 72 hours after CLP-sepsis started, VCAM-1 expression was prominent in glomerular EC, which was not related to changes in mmu-microRNA(miR)-126a-3p levels, a short noncoding microRNA previously shown to inhibit the translation of VCAM-1 mRNA into protein. Nuclear localization of p65 and c-Jun occurred in EC of all microvascular segments at 4 and 7 hours after CLP-sepsis initiation. In summary, sepsis-induced recruitment of neutrophils, E-selectin expression, and NF-κB p65 and MAPK c-Jun pathway activation coincided in glomeruli at the early stage of the disease. In the other microvascular beds, sepsis led to NF-κB p65 and MAPK c-Jun pathway activation with limited expression of E-selectin and no association with VCAM-1 expression or leukocyte recruitment.

5.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928414

ABSTRACT

Application of laser-generated electron beams in radiotherapy is a recent development. Accordingly, mechanisms of biological response to radiation damage need to be investigated. In this study, telomere length (TL) as endpoint of genetic damage was analyzed in human blood cells (leukocytes) and K562 leukemic cells irradiated with laser-generated ultrashort electron beam. Metaphases and interphases were analyzed in quantitative fluorescence in situ hybridization (Q-FISH) to assess TL. TLs were shortened compared to non-irradiated controls in both settings (metaphase and interphase) after irradiation with 0.5, 1.5, and 3.0 Gy in blood leukocytes. Radiation also caused a significant TL shortening detectable in the interphase of K562 cells. Overall, a negative correlation between TL and radiation doses was observed in normal and leukemic cells in a dose-dependent manner. K562 cells were more sensitive than normal blood cells to increasing doses of ultrashort electron beam radiation. As telomere shortening leads to genome instability and cell death, the results obtained confirm the suitability of this biomarker for assessing genotoxic effects of accelerated electrons for their further use in radiation therapy. Observed differences in TL shortening between normal and K562 cells provide an opportunity for further development of optimal radiation parameters to reduce side effects in normal cells during radiotherapy.


Subject(s)
Electrons , Leukocytes , Telomere , Humans , K562 Cells , Leukocytes/radiation effects , Leukocytes/metabolism , Telomere/radiation effects , Telomere/genetics , Telomere/metabolism , Leukemia/genetics , Leukemia/pathology , Leukemia/radiotherapy , Telomere Homeostasis/radiation effects , In Situ Hybridization, Fluorescence , Telomere Shortening/radiation effects , DNA Damage/radiation effects , Dose-Response Relationship, Radiation
6.
Lipids Health Dis ; 23(1): 179, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862998

ABSTRACT

BACKGROUND: Dry eye disease (DED) is a complication of dyslipidemia (DLP) that is caused by metabolic syndrome and increased inflammation. This research aimed to assess leukocyte and systemic inflammation index ratios as potential biomarkers for systemic inflammation in dyslipidemia patients with dry eye disease (DLP-DED). METHODS: Several blood biomarkers were studied in 32 patients with DLP-DED (study group) and 63 patients with DLP-only (control group). The evaluated blood biomarkers included specific systemic inflammation index ratios, such as the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), monocyte-to-lymphocyte ratio (MLR), and neutrophil-to-lymphocyte and platelet ratio (NLPR), and lipid profiles, such as total cholesterol (TC), high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), triglyceride (TG), albumin (ALB), and C-reactive protein (CRP) levels. RESULTS: Lymphocyte levels were significantly greater in the DLP-DED group than in the DLP-only group (P = 0.044). In addition, a significant negative correlation between HDL and the NLPR (P = 0.007; r= -0.428) and a significant negative correlation between the serum ALB concentration and the PLR (P = 0.008; r= -0.420) were identified as potential inflammatory predictors of DLP-DED. CONCLUSION: The findings of this study suggest that patients with DLP-DED may benefit from routine blood monitoring of their elevated lipid profile and blood inflammatory biomarkers, such as CRP, leukocytes, and systemic inflammation index ratios (NLR, PLR, MLR, and NLPR), to reduce the complications of DLP on ocular health. The correlation data suggest that the NLPR, PLR, serum ALB concentration, and serum HDL concentration may be valuable inflammatory biomarkers in DLP-DED patients. More research is required to ascertain the significance of the NLR, PLR, MLR, and NLPR and the additive role that leukocytes play.


Subject(s)
Biomarkers , Dry Eye Syndromes , Dyslipidemias , Inflammation , Humans , Dyslipidemias/blood , Male , Female , Dry Eye Syndromes/blood , Middle Aged , Inflammation/blood , Case-Control Studies , Retrospective Studies , Biomarkers/blood , Aged , Cholesterol, HDL/blood , Triglycerides/blood , C-Reactive Protein/metabolism , Leukocytes/metabolism , Lymphocytes , Neutrophils/metabolism , Cholesterol, LDL/blood , Adult , Blood Platelets/pathology , Blood Platelets/metabolism
7.
Environ Res ; : 119424, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38879109

ABSTRACT

Birds are good bioindicators of disturbance in the environment. They are present in different habitats and trophic levels. In addition, rapid urbanization has led birds to use cities as shelter and for seeking food resources. Sewage treatment plants (STPs) are suitable locations for free-living birds within cities. However, few studies address the impacts of emerging pollutants from sewage treatment plants on wild birds. In this sense, the aim of this study was to analyze the genotoxic, mutagenic, and immunological impacts from metal and pollutant exposure on free-living birds collected at a STP. For comparison, birds were collected in a preserved environment, the Silvania National Forest (FLONA). To achieve this, we used non-destructive biomarkers sensitive to environmental changes. Birds were collected in both environments using mist nets. After collection, birds were weighed, measured, species-identified, and released. Blood was collected for comet assay, micronucleus test, and leukocyte profile, while feathers were collected for metal concentration analysis. Water physicochemical parameters were measured at both sites, and water samples were collected for metal analysis. Our results demonstrated that birds collected at the STP exhibit a higher frequency of genotoxic damage and erythrocyte abnormalities, and increased immune response compared to FLONA birds. Traces of potentially toxic metals, such as Hg and As, were found in the birds feathers from both environments, raising concerns about metal contamination in both environments. Trophic guilds appear to respond similarly to exposure. The parameters and metals found in the water reflect environmental characteristics and may be influencing pollutant availability. Finally, despite the advancement of our findings, studies linking these damages to detrimental effects on behavior and reproduction are encouraged.

8.
Immunol Cell Biol ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877291

ABSTRACT

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system affecting predominantly adults. It is a complex disease associated with both environmental and genetic risk factors. Although over 230 risk single-nucleotide polymorphisms have been associated with MS, all are common human variants. The mechanisms by which they increase the risk of MS, however, remain elusive. We hypothesized that a complex genetic phenotype such as MS could be driven by coordinated expression of genes controlled by transcriptional regulatory networks. We, therefore, constructed a gene coexpression network from microarray expression analyses of five purified peripheral blood leukocyte subsets of 76 patients with relapsing remitting MS and 104 healthy controls. These analyses identified a major network (or module) of expressed genes associated with MS that play key roles in cell-mediated cytotoxicity which was downregulated in monocytes of patients with MS. Manipulation of the module gene expression was achieved in vitro through small interfering RNA gene knockdown of identified drivers. In a mouse model, network gene knockdown modulated the autoimmune inflammatory MS model disease-experimental autoimmune encephalomyelitis. This research implicates a cytotoxicity-associated gene network in myeloid cells in the pathogenesis of MS.

9.
Methods Cell Biol ; 188: 131-152, 2024.
Article in English | MEDLINE | ID: mdl-38880521

ABSTRACT

Renal injury often occurs as a complication in autoimmune diseases such as systemic lupus erythematosus (SLE). It is estimated that a minimum of 20% SLE patients develop lupus nephritis, a condition that can be fatal when the pathology progresses to end-stage renal disease. Studies in animal models showed that incidence of immune cell infiltrates in the kidney was linked to pathological injury and correlated with severe lupus nephritis. Thus, preventing immune cell infiltration into the kidney is a potential approach to impede the progression to an end-stage disease. A requirement to investigate the role of kidney-infiltrating leukocytes is the development of reproducible and efficient protocols for purification and characterization of immune cells in kidney samples. This chapter describes a detailed methodology that discriminates tissue-resident leukocytes from blood-circulating cells that are found in kidney. Our protocol was designed to maximize cell viability and to reduce variability among samples, with a combination of intravascular staining and magnetic bead separation for leukocyte enrichment. Experiments included as example were performed with FcγRIIb[KO] mice, a well-characterized murine model of SLE. We identified T cells and macrophages as the primary leukocyte subsets infiltrating into the kidney during severe nephritis, and we extensively characterized them phenotypically by flow cytometry.


Subject(s)
Disease Models, Animal , Kidney , Leukocytes , Lupus Nephritis , Animals , Lupus Nephritis/pathology , Lupus Nephritis/immunology , Mice , Kidney/pathology , Leukocytes/immunology , Leukocytes/pathology , Cell Separation/methods , Mice, Knockout , Macrophages/immunology , Macrophages/pathology , Flow Cytometry/methods , T-Lymphocytes/immunology , Receptors, IgG/metabolism
10.
Int J Mol Sci ; 25(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38928073

ABSTRACT

The Cystic Fibrosis Conductance Transmembrane Regulator gene encodes for the CFTR ion channel, which is responsible for the transport of chloride and bicarbonate across the plasma membrane. Mutations in the gene result in impaired ion transport, subsequently leading to perturbed secretion in all exocrine glands and, therefore, the multi-organ disease cystic fibrosis (CF). In recent years, several studies have reported on CFTR expression in immune cells as demonstrated by immunofluorescence, flow cytometry, and immunoblotting. However, these data are mainly restricted to single-cell populations and show significant variation depending on the methodology used. Here, we investigated CFTR transcription and protein expression using standardized protocols in a comprehensive panel of immune cells. Methods: We applied a high-resolution Western blot protocol using a combination of highly specific monoclonal CFTR antibodies that have been optimized for the detection of CFTR in epithelial cells and healthy primary immune cell subpopulations sorted by flow cytometry and used immortalized cell lines as controls. The specificity of CFTR protein detection was controlled by peptide competition and enzymatic Peptide-N-Glycosidase-F (PNGase) digest. CFTR transcripts were analyzed using quantitative real-time PCR and normalized to the level of epithelial T84 cells as a reference. Results: CFTR mRNA expression could be shown for primary CD4+ T cells, NK cells, as well as differentiated THP-1 and Jurkat T cells. In contrast, we failed to detect CFTR transcripts for CD14+ monocytes and undifferentiated THP-1 cells, as well as for B cells and CD8+ T cells. Prominent immunoreactive bands were detectable by immunoblotting with the combination of four CFTR antibodies targeting different epitopes of the CFTR protein. However, in biosamples of non-epithelial origin, these CFTR-like protein bands could be unmasked as false positives through peptide competition or PNGase digest, meaning that the observed mRNA transcripts were not necessarily translated into CFTR proteins, which could be detected via immunoblotting. Our results confirm that mRNA expression in immune cells is many times lower than in that cells of epithelial origin. The immunoreactive signals in immune cells turned out to be false positives, and may be provoked by the presence of a high-affinity protein with a similar epitope. Non-specific binding (e.g., Fab-interaction with glycosyl branches) might also contribute to false positive signals. Our findings highlight the necessity of accurate controls, such as CFTR-negative cells, as well as peptide competition and glycolytic digest in order to identify genuine CFTR protein by immunoblotting. Our data suggest, furthermore, that CFTR protein expression data from techniques such as histology, for which the absence of a molecular weight or other independent control prevents the unmasking of false positive immunoreactive signals, must be interpreted carefully as well.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Leukocytes, Mononuclear , RNA, Messenger , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , Leukocytes, Mononuclear/metabolism , Blotting, Western , Real-Time Polymerase Chain Reaction/methods , Cystic Fibrosis/metabolism , Cystic Fibrosis/genetics , Killer Cells, Natural/metabolism , Flow Cytometry/methods , CD4-Positive T-Lymphocytes/metabolism
11.
Biochemistry (Mosc) ; 89(5): 923-932, 2024 May.
Article in English | MEDLINE | ID: mdl-38880652

ABSTRACT

Phagocytosis is an essential innate immunity function in humans and animals. A decrease in the ability to phagocytize is associated with many diseases and aging of the immune system. Assessment of phagocytosis dynamics requires quantification of bacteria inside and outside the phagocyte. Although flow cytometry is the most common method for assessing phagocytosis, it does not include visualization and direct quantification of location of bacteria. Here, we used double-labeled Escherichia coli cells to evaluate phagocytosis by flow cytometry (cell sorting) and confocal microscopy, as well as employed image cytometry to provide high-throughput quantitative and spatial recognition of the double-labeled E. coli associated with the phagocytes. Retention of pathogens on the surface of myeloid and lymphoid cells without their internalization was suggested to be an auxiliary function of innate immunity in the fight against infections. The developed method of bacterial labeling significantly increased the accuracy of spatial and quantitative measurement of phagocytosis in whole blood and can be recommended as a tool for phagocytosis assessment by image cytometry.


Subject(s)
Escherichia coli , Flow Cytometry , Phagocytosis , Escherichia coli/immunology , Flow Cytometry/methods , Humans , Microscopy, Confocal , Staining and Labeling/methods , Image Cytometry/methods , Animals
12.
Front Vet Sci ; 11: 1385400, 2024.
Article in English | MEDLINE | ID: mdl-38846783

ABSTRACT

Multiparameter flow cytometry is a routine method in immunological studies incorporated in biomedical, veterinary, agricultural, and wildlife research and routinely used in veterinary clinical laboratories. Its use in the diagnostics of poultry diseases is still limited, but due to the continuous expansion of reagents and cost reductions, this may change in the near future. Although the structure and function of the avian immune system show commonalities with mammals, at the molecular level, there is often low homology across species. The cross-reactivity of mammalian immunological reagents is therefore low, but nevertheless, the list of reagents to study chicken immune cells is increasing. Recent improvement in multicolor antibody panels for chicken cells has resulted in more detailed analysis by flow cytometry and has allowed the discovery of novel leukocyte cell subpopulations. In this article, we present an overview of the reagents and guidance needed to perform multicolor flow cytometry using chicken samples and common pitfalls to avoid.

13.
Front Med (Lausanne) ; 11: 1399658, 2024.
Article in English | MEDLINE | ID: mdl-38860205

ABSTRACT

Background: Inflammatory bowel disease (IBD) is a highly prevalent, recurrent, chronic intestinal inflammatory disease. Several observational studies have shown that circulating leukocytes are strongly associated with IBD. However, whether alterations in leukocytes are causally related to IBD remains uncertain. The present study explores this issue with the Mendelian randomization (MR) analysis method. Methods: The Genome wide association study (GWAS) statistical data related to circulating leukocytes and IBD were obtained from the Blood Cell Consortium and the IEU Qpen GWAS project, respectively. Inverse variance weighting (IVW) was used as the main MR analytical method, coupled with a series of sensitivity analyses to ensure the reliability of the results. Results: The results of IVW showed that increased monocyte count (especially CD14- CD16+ monocyte absolute counts) was negatively correlated with the risk of IBD and its main subtypes. Increased neutrophil count was positively associated with the risk of IBD and ulcerative colitis. Meanwhile, there was no causal relationship between basophil, eosinophil, lymphocyte counts and IBD risk. Conclusion: These results indicate that a causal relationship exists between circulating leukocytes and the risk of IBD and its subtypes, which confirms the important role that the leukocyte immune system plays in IBD. Our findings provide additional research directions for the clinical prevention and treatment of IBD.

14.
Biochem Pharmacol ; 226: 116368, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38880360

ABSTRACT

The voltage-dependent potassium channel Kv1.3 is a promising therapeutic target for the treatment of autoimmune and chronic inflammatory disorders. Kv1.3 blockers are effective in treating multiple sclerosis (fampridine) and psoriasis (dalazatide). However, most Kv1.3 pharmacological antagonists are not specific enough, triggering potential side effects and limiting their therapeutic use. Functional Kv are oligomeric complexes in which the presence of ancillary subunits shapes their function and pharmacology. In leukocytes, Kv1.3 associates with KCNE4, which reduces the surface abundance and enhances the inactivation of the channel. This mechanism exerts profound consequences on Kv1.3-related physiological responses. Because KCNE peptides alter the pharmacology of Kv channels, we studied the effects of KCNE4 on Kv1.3 pharmacology to gain insights into pharmacological approaches. To that end, we used margatoxin, which binds the channel pore from the extracellular space, and Psora-4, which blocks the channel from the intracellular side. While KCNE4 apparently did not alter the affinity of either margatoxin or Psora-4, it slowed the inhibition kinetics of the latter in a stoichiometry-dependent manner. The results suggested changes in the Kv1.3 architecture in the presence of KCNE4. The data indicated that while the outer part of the channel mouth remains unaffected, KCNE4 disturbs the intracellular architecture of the complex. Various leukocyte types expressing different Kv1.3/KCNE4 configurations participate in the immune response. Our data provide evidence that the presence of these variable architectures, which affect both the structure of the complex and their pharmacology, should be considered when developing putative therapeutic approaches.

15.
Nutrients ; 16(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38931217

ABSTRACT

Fermented foods, including cheeses, have garnered increased interest in recent years for their potential health benefits. This study explores the biological properties of eight French raw-milk cheeses-goat cheese, Saint-Nectaire, Cantal, Bleu d'Auvergne, Roquefort, Comté, Brie de Meaux, and Epoisses-on oxidative processes using both in vivo (Caenorhabditis elegans) and in vitro (human leukocytes) models. A cheese fractionation protocol was adapted to study four fractions for each cheese: a freeze-dried fraction (FDC) corresponding to whole cheese, an apolar (ApE), and two polar extracts (W40 and W70). We showed that all cheese fractions significantly improved Caenorhabditis elegans (C. elegans) survival rates when exposed to oxidative conditions by up to five times compared to the control, regardless of the fractionation protocol and the cheese type. They were also all able to reduce the in vivo accumulation of reactive oxygen species (ROS) by up to 70% under oxidative conditions, thereby safeguarding C. elegans from oxidative damage. These beneficial effects were explained by a reduction in ROS production up to 50% in vitro in human leukocytes and overexpression of antioxidant factor-encoding genes (daf-16, skn-1, ctl-2, and sod-3) in C. elegans.


Subject(s)
Caenorhabditis elegans , Cheese , Leukocytes , Oxidative Stress , Reactive Oxygen Species , Animals , Cheese/analysis , Humans , Oxidative Stress/drug effects , Leukocytes/metabolism , Leukocytes/drug effects , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , Milk/chemistry , Oxidation-Reduction , France
16.
Fish Shellfish Immunol ; 151: 109685, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38857816

ABSTRACT

Innate immunity is vital for animal homeostasis and survival. First-line immuno-defense for fish larvae involves mucus enriched with leukolectin (LL) secreted by dermal lectocytes. Later during the critical transition from yolk-nutrition to feeding, additional larval immuno-protection in zebrafish (zF) is provided by macrophages containing LL (lectophages). This work investigated new LL-expression in embryos and in blood, structures of fish leukocytic LL and LL-genes, and LL-presence in chicken leukocytes. In zF-embryos, lectophages appear ∼10 hpf, while later, cells co-expressing myeloperoxidase- and LL-mRNA were detected (∼19 hpf). Furthermore, protein-extracts of Atlantic salmon (Ssal) leukocytes contained LL-proteins, compartmentalized in the cytosol. Cloning and sequencing revealed 94 % nt-sequence identity between variants of Ssal-leukolectins. Highly conserved LLs allowed production of epitope-specific anti-LL IgGs. Immuno-fluorescence-analysis demonstrated that most Ssal-bloodcells were LL-negative, but both some large cells with protrusions and some small, rounded cells did express LL. Immunoperoxidase-staining method confirmed LL-expression in some Ssal-leukocytes, identified as macrophages, PMN-leukocytes, thrombocytes and dendritic cells. However, closer examination revealed a dichotomy of these cell-categories into either LL-positive, or LL-negative variants. In situ hybridization demonstrated profuse LL-expression in Ssal head kidney interstitial tissue, while LL-transcripts were absent in large kidney tubules. Both hematopoietic (non-pigmented) marrow cells and melano-macrophages expressed LL-mRNA, implying that leukolectins provide lifelong innate immuno-protection. PCR-amplification using Ssal-leukocytic DNA as template, and direct sequencing yielded a leukocytic ll-gene. Some cells in salmon, cod, halibut, oikopleura and zebrafish embryos express LL-proteins and/or LL-mRNA, and LL-mRNA is detected in salmon, cod and chicken leukocytes. However, current genomes for these species lack recognizable LL-loci except the Ssal_v3.1 Genome-assembly. The data demonstrate an unexpected dichotomy of some leukocyte lineages into LL-positive or LL-negative cell-variants. Such dichotomies suggest exploring differential impacts from the duplicated leukocyte-lineages in health and disease.

17.
bioRxiv ; 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38712302

ABSTRACT

This study investigates the short and long-term effects of IFNT and PAG on the transcriptome of endometrium and blood leukocytes. Holstein heifers received intrauterine infusions of one of the following treatments: 20 mL of a 200 µg/mL bovine serum albumin solution (BSA; vehicle) from day 14 to 16 of the estrous cycle (BSA), vehicle + 10 µg/mL of IFNT from day 14 to 16 (IFNT3), vehicle + 10 µg/mL of IFNT from day 14 to 19 (IFNT6), and vehicle + 10 µg/mL of IFNT from day 14 to 16 followed by vehicle + 10 µg/mL of IFNT + 5 µg/mL of PAG from day 17 to 19 (IFNT+PAG). RNA-seq analysis was performed in endometrial biopsies and blood leukocytes collected after treatments. Acute IFNT signaling in the endometrium (IFNT3 vs BSA), induced differentially expressed genes (DEG) associated with interferon activation, immune response, inflammation, cell death, and inhibited vesicle transport and extracellular matrix remodeling. Prolonged IFNT signaling (IFNT6 vs IFNT3) altered gene expression related to cell invasion, retinoic acid signaling, and embryo implantation. In contrast, PAG induced numerous DEG in blood leukocytes but only 4 DEG in the endometrium. In blood leukocytes, PAG stimulated genes involved in development and TGFB signaling while inhibiting interferon signaling and cell migration. Overall, IFNT is a primary regulator of endometrial gene expression, while PAG predominantly affected the transcriptome of circulating immune cells during early pregnancy. Further research is essential to fully grasp the roles of identified DEG in both the endometrium and blood leukocytes.

18.
Cells ; 13(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38727323

ABSTRACT

IL-36 cytokines are emerging as beneficial in immunity against pathogens and cancers but can also be detrimental when dysregulated in autoimmune and autoinflammatory conditions. Interest in targeting IL-36 activity for therapeutic purposes is rapidly growing, yet many unknowns about the functions of these cytokines remain. Thus, the availability of robust research tools is essential for both fundamental basic science and pre-clinical studies to fully access outcomes of any manipulation of the system. For this purpose, a floxed Il1rl2, the gene encoding the IL-36 receptor, mouse strain was developed to facilitate the generation of conditional knockout mice. The targeted locus was engineered to contain an inverted mCherry reporter sequence that upon Cre-mediated recombination will be flipped and expressed under the control of the endogenous Il1rl2 promoter. This feature can be used to confirm knockout in individual cells but also as a reporter to determine which cells express the IL-36 receptor IL-1RL2. The locus was confirmed to function as intended and further used to demonstrate the expression of IL-1RL2 in barrier tissues. Il1rl2 expression was detected in leukocytes in all barrier tissues. Interestingly, strong expression was observed in epithelial cells at locations in direct contact with the environment such as the skin, oral mucosa, the esophagus, and the upper airways, but almost absent from epithelial cells at more inward facing sites, including lung alveoli, the small intestine, and the colon. These findings suggest specialized functions of IL-1RL2 in outward facing epithelial tissues and cells. The generated mouse model should prove valuable in defining such functions and may also facilitate basic and translational research.


Subject(s)
Receptors, Interleukin-1 , Animals , Mice , Gene Expression Regulation , Genes, Reporter , Genetic Loci , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-1 Receptor-Like 1 Protein/genetics , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin-1/metabolism , Receptors, Interleukin-1/genetics , Red Fluorescent Protein/genetics
19.
Prostaglandins Other Lipid Mediat ; 173: 106852, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38761959

ABSTRACT

Zerumbone, a sesquiterpene isolated from Zingiber zerumbet, has many bioactivities, exhibiting anti-inflammatory properties. However, the effect of zerumbone on the eicosanoid signaling pathway has yet to be examined. Here, we deciphered the anti-eicosanoid properties of zerumbone isolated from ginger. The molecular interaction between zerumbone and eicosanoid metabolizing enzymes (COX-2, 5-LOX, FLAP, and LTA4-hydrolase) and receptors (EP-4, BLT-1, and ICAM-1) along with NOS-2 were assessed using Auto-Dock 4.2 and visualized by chimera and Liggplot+ software. Further, the leukocytes were treated with zerumbone (1-20 µM) and activated using bacterial lipopolysaccharide (LPS-10 nM). The oxidative stress (OS) markers, antioxidant enzymes, and the eicosanoid pathway mediators such as COX-2, 5-LOX, BLT-1, and EP-4 were assessed. The molecular interaction of zerumbone with eicosanoids showed a higher binding affinity with mPGES-1, followed by NOS-2, FLAP, COX-2, LTA-4-hydrolase, and BLT-1. The concentration of 5 µM zerumbone effectively prevented the generation of reactive oxygen species (ROS) and nitric oxide (NO). Likewise, zerumbone significantly (p<0.05) inhibited COX-2, 5-LOX, NOS-2, EP-4, BLT-1, and ICAM-1 expression in LPS-induced peripheral blood leukocytes from rats. Further, the zerumbone treatment on the human PBMCs activated with LPS showed significant inhibition in the expression of ICAM1, COX-2, 5-LOX, and the generation of inflammatory cytokines compared to the control. Overall, the data presented infers that zerumbone positively modulates critical enzymes and receptors of eicosanoids in leukocytes activated with lipopolysaccharides. Thus, zerumbone can be a potential anti-eicosanoid drug in managing inflammation.


Subject(s)
Anti-Inflammatory Agents , Eicosanoids , Lipopolysaccharides , Sesquiterpenes , Signal Transduction , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Lipopolysaccharides/pharmacology , Eicosanoids/metabolism , Humans , Anti-Inflammatory Agents/pharmacology , Signal Transduction/drug effects , Leukocytes/drug effects , Leukocytes/metabolism , Animals , Oxidative Stress/drug effects , Rats
20.
Vet J ; 305: 106140, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38782236

ABSTRACT

General anesthesia and surgical stress can suppress the immunological response by acting both directly on the immune system and indirectly on the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system. Disturbance of the immune system during the perioperative period can lead to complications such as wound-healing disorders and infections up to sepsis. Effectiveness of acupuncture in regulating the immune function by increasing leukocyte numbers and inhibiting inflammatory response has been proven. This study aimed to explore the impact of electroacupuncture (EAP) on the dynamic balance of the immune system and immune cell populations in dogs undergoing surgery. Twelve healthy bitches scheduled for elective ovariectomy were divided into two groups according to whether (EAP, n=6) or not (CTR, n=6) a peri-operative electroacupuncture treatment was performed. Levels of leukocytes (neutrophils, monocytes, T- and B-cells) and immunoglobulins M (IgM) and A (IgA) were measured in blood samples collected before (T0), 1 h (T1) and 2.5 h (T2) after anesthesia induction. Leukocytes count decreased from T0 to T1 in both groups and restored within 1.5 h in EAP group whereas remained significantly lower in CTR group (P<0.02). In particular, neutrophils and monocytes increased in dogs receiving EAP (P<0.01) while T-cells decreased in CTR group (P<0.04) at T2. B-cells and cytotoxic T-cells decreased in EAP dogs (P<0.04) at T2. No differences in helper T-cells, IgM and IgA levels were recorded between groups and over time. Our results suggest a modulatory effect of EAP on the immune system which is early expressed on neutrophils, monocytes and T-cells.


Subject(s)
Electroacupuncture , Animals , Dogs , Electroacupuncture/veterinary , Electroacupuncture/methods , Female , Pilot Projects , Ovariectomy/veterinary , Leukocyte Count/veterinary , Immunoglobulin A/blood , Immunoglobulin M/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...