Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters











Publication year range
1.
Molecules ; 29(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474615

ABSTRACT

The valorization of byproducts from the sugarcane industry represents a potential alternative method with a low energy cost for the production of metabolites that are of commercial and industrial interest. The production of exopolysaccharides (EPSs) was carried out using the yeast Suhomyces kilbournensis isolated from agro-industrial sugarcane, and the products and byproducts of this agro-industrial sugarcane were used as carbon sources for their recovery. The effect of pH, temperature, and carbon and nitrogen sources and their concentration in EPS production by submerged fermentation (SmF) was studied in 170 mL glass containers of uniform geometry at 30 °C with an initial pH of 6.5. The resulting EPSs were characterized with Fourier-transform infrared spectroscopy (FT-IR). The results showed that the highest EPS production yields were 4.26 and 44.33 g/L after 6 h of fermentation using sucrose and molasses as carbon sources, respectively. Finally, an FT-IR analysis of the EPSs produced by S. kilbournensis corresponded to levan, corroborating its origin. It is important to mention that this is the first work that reports the production of levan using this yeast. This is relevant because, currently, most studies are focused on the use of recombinant and genetically modified microorganisms; in this scenario, Suhomyces kilbournensis is a native yeast isolated from the sugar production process, giving it a great advantage in the incorporation of carbon sources into their metabolic processes in order to produce levan sucrose, which uses fructose to polymerize levan.


Subject(s)
Saccharomycetales , Saccharum , Fermentation , Saccharum/metabolism , Molasses/analysis , Carbon , Spectroscopy, Fourier Transform Infrared , Saccharomyces cerevisiae/metabolism , Fructans/chemistry , Sucrose/metabolism
2.
Front Microbiol ; 14: 1142582, 2023.
Article in English | MEDLINE | ID: mdl-37025627

ABSTRACT

Paenibacillus antarcticus IPAC21, an endospore-forming and bioemulsifier-producing strain, was isolated from King George Island, Antarctica. As psychrotolerant/psychrophilic bacteria can be considered promising sources for novel products such as bioactive compounds and other industrially relevant substances/compounds, the IPAC21 genome was sequenced using Illumina Hi-seq, and a search for genes related to the production of bioemulsifiers and other metabolic pathways was performed. The IPAC21 strain has a genome of 5,505,124 bp and a G + C content of 40.5%. Genes related to the biosynthesis of exopolysaccharides, such as the gene that encodes the extracellular enzyme levansucrase responsible for the synthesis of levan, the 2,3-butanediol pathway, PTS sugar transporters, cold-shock proteins, and chaperones were found in its genome. IPAC21 cell-free supernatants obtained after cell growth in trypticase soy broth at different temperatures were evaluated for bioemulsifier production by the emulsification index (EI) using hexadecane, kerosene and diesel. EI values higher than 50% were obtained using the three oil derivatives when IPAC21 was grown at 28°C. The bioemulsifier produced by P. antarcticus IPAC21 was stable at different NaCl concentrations, low temperatures and pH values, suggesting its potential use in lower and moderate temperature processes in the petroleum industry.

3.
Int J Biol Macromol ; 235: 123800, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-36828085

ABSTRACT

Levan is a homopolysaccharide of fructose that has both scientific and industrial importance, with various applications in health, pharmaceutical, cosmetic and food industries. Despite its broad spectrum of uses, there are only a limited number of commercial levan sources due to the high costs related to its production. To make production economically viable, efforts have been concentrated on the selection of levan-producing microorganisms, the genetic manipulation of new strains, and the use of inexpensive agro-industrial byproducts as substrates. Another efficient strategy involves the concomitant synthesis of other products with high market value and as such, the successful co-production of levan was demonstrated with fructooligosaccharides, ethanol, sorbitol, poly-ε-lysine, poly-γ-glutamic acid and polyhydroxyalkanoates. This paper offers a systematic review of important aspects regarding recent strategies involving the simultaneous synthesis of levan and other bioproducts of aggregate value reported to date and discusses the challenges and opportunities for its large-scale production and applications.


Subject(s)
Polyhydroxyalkanoates , Ethanol , Fructose , Fructans/chemistry , Food Industry
4.
Microb Cell Fact ; 22(1): 18, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36703199

ABSTRACT

BACKGROUND: Although Levan-type fructooligosaccharides (L-FOS) have been shown to exhibit prebiotic properties, no efficient methods for their large-scale production have been proposed. One alternative relies on the simultaneous levan synthesis from sucrose, followed by endolevanase hydrolysis. For this purpose, several options have been described, particularly through the synthesis of the corresponding enzymes in recombinant Escherichia coli. Major drawbacks still consist in the requirement of GRAS microorganisms for enzyme production, but mainly, the elimination of glucose and fructose, the reaction by-products. RESULTS: The expression of a fusion enzyme between Bacillus licheniformis endolevanase (LevB1) and B. subtilis levansucrase (SacB) in Pichia pastoris cultures, coupled with the simultaneous synthesis of L-FOS from sucrose and the elimination of the residual monosaccharides, in a single one-pot process was developed. The proof of concept at 250 mL flask-level, resulted in 8.62 g of monosaccharide-free L-FOS and 12.83 gDCW of biomass, after 3 successive sucrose additions (30 g in total), that is a 28.7% yield (w L-FOS/w sucrose) over a period of 288 h. At a 1.5 L bioreactor-level, growth considerably increased and, after 59 h and two sucrose additions, 72.9 g of monosaccharide-free L-FOS and 22.77 gDCW of biomass were obtained from a total of 160 g of sucrose fed, corresponding to a 45.5% yield (w L-FOS/w sucrose), 1.6 higher than the flask system. The L-FOS obtained at flask-level had a DP lower than 20 fructose units, while at bioreactor-level smaller oligosaccharides were obtained, with a DP lower than 10, as a consequence of the lower endolevanase activity in the flask-level. CONCLUSION: We demonstrate here in a novel system, that P. pastoris cultures can simultaneously be used as comprehensive system to produce the enzyme and the enzymatic L-FOS synthesis with growth sustained by sucrose by-products. This system may be now the center of an optimization strategy for an efficient production of glucose and fructose free L-FOS, to make them available for their application as prebiotics. Besides, P. pastoris biomass also constitutes an interesting source of unicellular protein.


Subject(s)
Oligosaccharides , Sugars , Oligosaccharides/metabolism , Glucose , Monosaccharides , Sucrose/metabolism , Fructose/metabolism , Fructans/metabolism
5.
Microorganisms ; 10(5)2022 Apr 24.
Article in English | MEDLINE | ID: mdl-35630334

ABSTRACT

Levansucrase LevS from Leuconostoc mesenteroides B-512F is a multidomain fructansucrase (MD-FN) that contains additional domains (ADs) to the catalytic domain. However, the understanding of the effect that these ADs have on enzyme activity remains vague. To this aim, structure-function relationship studies of these LevS ADs were performed by evaluating both biochemical properties and the enzymatic capacity of truncated versions of LevS. Joint participation of the N- and C-terminal domains is essential for stability, activity, specificity, and polymerization processes. Specifically, the N-terminal region is involved in stability, while the transition region plays an essential role in the transfructosylation reaction and polymer elongation. Based on our results, we suggest that ADs interact with each other, adopting a U-shaped topology. The importance of these ADs observed in the MD-FN of the Leuconostocaceae family is not shared by the Lactobacillaceae family. Phylogenetic analysis of LevS AD suggests that MD-FN from Lactobacillaceae and Leuconostocaceae have different evolutionary origins. This is the first study on the structure-function relationship of multidomain levansucrases from the Leuconostocaceae family. Our results point towards the functional role of AD in MD-FN and its involvement in fructan synthesis.

6.
Int J Biol Macromol ; 186: 788-799, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34245738

ABSTRACT

A levan-type fructooligosaccharide was produced by a Paenibacillus strain isolated from Brazilian crude oil, the purity of which was 98.5% after precipitation with ethanol and dialysis. Characterization by FTIR, NMR spectroscopy, GC-FID and ESI-MS revealed that it is a mixture of linear ß(2 â†’ 6) fructosyl polymers with average degree of polymerization (DP) of 18 and branching ratio of 20. Morphological structure and physicochemical properties were investigated to assess levan microstructure, degradation temperature and thermomechanical features. Thermal Gravimetric Analysis highlighted degradation temperature of 218 °C, Differential Scanning Calorimetry (DSC) glass transition at 81.47 °C, and Dynamic Mechanical Analysis three frequency-dependent transition peaks. These peaks, corresponding to a first thermomechanical transition event at 86.60 °C related to the DSC endothermic event, a second at 170.9 °C and a third at 185.2 °C, were attributed to different glass transition temperatures of oligo and polyfructans with different DP. Levan showed high morphological versatility and technological potential for the food, nutraceutical, and pharmaceutical industries.


Subject(s)
Fructans/isolation & purification , Paenibacillus/metabolism , Petroleum/microbiology , Carbohydrate Conformation , Chemical Fractionation , Hot Temperature , Structure-Activity Relationship , Vitrification
7.
Int J Pharm ; 580: 119242, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32199961

ABSTRACT

Bacterial levan is a fructose homopolymer that offers great potential in biotechnological applications due to biocompatibility, biodegradability and non-toxicity. This biopolymer possesses diverse multifunctional features, which translates into a wide range of applicability, including in industry, consumer products, pharmaceuticals and biomedicine. Extensive research has identified great potential for its exploitation in human health. In addition, nanostructured systems have provided significant advances in the area of health, mainly with respect to disease diagnosis and treatment. While the functional properties of these natural polysaccharide-based polymers are desirable in these systems, research in this area has been limited to few natural polymers, such as chitosan, alginate and dextran, which obscures the true potential of levan in the production of nanostructured systems for biotechnological and medical applications. The present review considers the latest research in the field to focus on the use of levan as a promising biopolymer for the development of nanomaterials.


Subject(s)
Fructans/chemistry , Nanostructures/chemistry , Alginates/chemistry , Biocompatible Materials/chemistry , Biopolymers/chemistry , Chitosan/chemistry , Drug Delivery Systems/methods , Humans , Polymers/chemistry , Polysaccharides/chemistry
8.
Appl Biochem Biotechnol ; 184(3): 838-851, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28871528

ABSTRACT

Fructooligosaccharides and levan have a wide range of applications in the food industry due to their physiological and functional properties. The enzymatic synthesis of these molecules exhibits great advantages when compared with microbial fermentation. In this study, the production of levansucrase from Bacillus subtilis natto and its utilization in fructooligosaccharides and levan syntheses using different reaction conditions were described. The best condition for levansucrase production was 420.7 g L-1 of sucrose at pH 7.0, which reached 23.9 U ml-1 of transfructosylation activity. In a bioreactor, the highest production of fructooligosaccharides was 41.3 g L-1 using a medium containing 350 g L-1 sucrose at 35 °C for 36 h. The enzymatic synthesis of levan resulted in 86.9 g L-1 when conditions similar to those used for fructooligosaccharides synthesis were applied. These results indicate that the levansucrase from B. subtilis natto could be applied for the co-production of fructooligosaccharides and levan, which are biomolecules that have health benefits and are used successfully in the food industry.


Subject(s)
Bacillus subtilis/enzymology , Bacterial Proteins/chemistry , Food Industry , Fructans/chemistry , Hexosyltransferases/chemistry , Oligosaccharides/chemistry
9.
Carbohydr Polym ; 177: 40-48, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28962785

ABSTRACT

We describe here the enzymatic production of levan type-fructooligosaccharides (L-FOS) with a DP from 2 to 10, through simultaneous synthesis and hydrolysis reactions. This was accomplished by LevB1SacB, a new enzyme resulting from the fusion of SacB, a levansucrase from Bacillus subtilis and LevB1, an endolevanase from B. licheniformis. In the fusion enzyme, SacB retains its catalytic behavior with a decrease in kcat from 164 to 108s-1. LevB1 in LevB1SacB kinetic behavior improves considerably reaching saturation with levan and following Michaelis-Menten kinetics, quite differently from the previously reported first order kinetic behavior. We also report that LevB1SacB or both enzymes (LevB1 & SacB) at equimolar concentrations in simultaneous reactions result in an optimal, wide and diverse L-FOS profile, including 6-kestose, levanbiose and blastose among other L-FOS and 1-kestose, which accumulates as by-product of SacB levan synthesis. Yields of around 40% (w/w) were obtained from 600g/l sucrose with either LevB1SacB or LevB1 & SacB. The reaction was successfully scaled up to a stirred 2l bioreactor.


Subject(s)
Glycoside Hydrolases/metabolism , Hexosyltransferases/metabolism , Oligosaccharides/chemical synthesis , Fructans/chemistry , Oligosaccharides/metabolism , Recombinant Fusion Proteins/metabolism , Sucrose/metabolism
10.
Food Chem ; 227: 202-210, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28274423

ABSTRACT

Blastose, a natural disaccharide found in honey, is usually found as a byproduct of fructo-oligosaccharide synthesis from sucrose with fructosyltransferases. In this study, we describe a novel two-step biosynthetic route to obtain blastose, designed from a detailed observation of B. subtilis levansucrase (SacB) acceptor structural requirements for fructosylation. The strategy consisted first in the synthesis of the trisaccharide O-ß-d-Fruf-(2↔6)-O-α-d-Glcp-(1↔1)-α-d-Glcp, through a regioselective ß-d-transfructosylation of trehalose (Tre) which acts as acceptor in a reaction catalyzed by SacB using sucrose or levan as fructosyl donor. In this reaction, levansucrase (LS) transfers regioselectively a fructosyl residue to either C6-OH group of the glucose residues in Tre. The resulting trisaccharide obtained in 23% molar yield based on trehalose, was purified and fully characterized by extensive NMR studies. In the second step, the trisaccharide is specifically hydrolyzed by trehalase, to obtain blastose in 43.2% molar yield based on the trisaccharide. This is the first report describing the formation of blastose through a sequential transfuctosylation-hydrolysis reaction.


Subject(s)
Disaccharidases/metabolism , Hexosyltransferases/metabolism , Trehalose/metabolism , Trisaccharides/metabolism , Bacillus subtilis/enzymology , Bacterial Proteins/metabolism , Fructans/metabolism , Hydrolysis , Sucrose/metabolism
11.
Braz. J. Microbiol. ; 43(4): 1613-1619, Oct.-Dec. 2012. tab
Article in English | VETINDEX | ID: vti-2115

ABSTRACT

Levan is an exopolysaccharide of fructose primarily linked by β-(2→6) glycosidic bonds with some β-(2→1) branched chains. Due to its chemical properties, levan has possible applications in both the food and pharmaceutical industries. Bacillus subtilis is a promising industrial levan producer, as it ferments sucrose and has a high levan-formation capacity. A new strain of B. subtilis was recently isolated from Japanese food natto, and it has produced levan in large quantities. For future pharmaceutical applications, this study aimed to investigate the effects of levan produced by B. subtilis Natto, mainly as potential hypoglycemic agent, (previously optimized with a molecular weight equal to 72.37 and 4,146 kDa) in Wistar male rats with diabetes induced by streptozotocin and non-diabetic rats and to monitor their plasma cholesterol and triacylglycerol levels. After 15 days of experimentation, the animals were sacrificed, and their blood samples were analyzed. The results, compared using analysis of variance, demonstrated that for this type of levan, a hypoglycemic effect was not observed, as there was no improvement of diabetes symptoms during the experiment. However, levan did not affect any studied parameters in normal rats, indicating that the exopolysaccharide can be used for other purposes.(AU)


Subject(s)
Bacillus , Rats/classification , Diabetes Mellitus, Type 1 , Hypoglycemia/genetics
12.
Braz. j. microbiol ; Braz. j. microbiol;43(4): 1613-1619, Oct.-Dec. 2012. tab
Article in English | LILACS | ID: lil-665849

ABSTRACT

Levan is an exopolysaccharide of fructose primarily linked by ƒÀ-(2¨6) glycosidic bonds with some ƒÀ-(2¨1) branched chains. Due to its chemical properties, levan has possible applications in both the food and pharmaceutical industries. Bacillus subtilis is a promising industrial levan producer, as it ferments sucrose and has a high levan-formation capacity. A new strain of B. subtilis was recently isolated from Japanese food natto, and it has produced levan in large quantities. For future pharmaceutical applications, this study aimed to investigate the effects of levan produced by B. subtilis Natto, mainly as potential hypoglycemic agent, (previously optimized with a molecular weight equal to 72.37 and 4,146 kDa) in Wistar male rats with diabetes induced by streptozotocin and non-diabetic rats and to monitor their plasma cholesterol and triacylglycerol levels. After 15 days of experimentation, the animals were sacrificed, and their blood samples were analyzed. The results, compared using analysis of variance, demonstrated that for this type of levan, a hypoglycemic effect was not observed, as there was no improvement of diabetes symptoms during the experiment. However, levan did not affect any studied parameters in normal rats, indicating that the exopolysaccharide can be used for other purposes.


Subject(s)
Animals , Rats , Bacillus subtilis/isolation & purification , Streptozocin/analysis , Fructans/analysis , Fructose/analysis , Hypoglycemia , Sucrose/analysis , Methodology as a Subject , Rats, Wistar
13.
Braz J Microbiol ; 43(4): 1613-9, 2012 Oct.
Article in English | MEDLINE | ID: mdl-24031993

ABSTRACT

Levan is an exopolysaccharide of fructose primarily linked by ß-(2→6) glycosidic bonds with some ß-(2→1) branched chains. Due to its chemical properties, levan has possible applications in both the food and pharmaceutical industries. Bacillus subtilis is a promising industrial levan producer, as it ferments sucrose and has a high levan-formation capacity. A new strain of B. subtilis was recently isolated from Japanese food natto, and it has produced levan in large quantities. For future pharmaceutical applications, this study aimed to investigate the effects of levan produced by B. subtilis Natto, mainly as potential hypoglycemic agent, (previously optimized with a molecular weight equal to 72.37 and 4,146 kDa) in Wistar male rats with diabetes induced by streptozotocin and non-diabetic rats and to monitor their plasma cholesterol and triacylglycerol levels. After 15 days of experimentation, the animals were sacrificed, and their blood samples were analyzed. The results, compared using analysis of variance, demonstrated that for this type of levan, a hypoglycemic effect was not observed, as there was no improvement of diabetes symptoms during the experiment. However, levan did not affect any studied parameters in normal rats, indicating that the exopolysaccharide can be used for other purposes.

14.
Braz. arch. biol. technol ; Braz. arch. biol. technol;54(3): 589-600, May-June 2011. graf, tab
Article in English | LILACS | ID: lil-591198

ABSTRACT

The aim of this work was to study the nutritional requirements of Zymomonas mobilis CCT 4494 for levan production in three chemically defined media. During the optimization of the fermentative process for the production of the exopolysaccharide, different concentrations of glucose, fructose and sucrose as carbon source and yeast extract as vitamin source were tested. Variations of incubation temperature and initial pH of the medium were observed. The results showed that medium containing 20.0 percent sucrose and 0.5 percent yeast extract, with initial pH of 7.0, incubated at 30°C gave a 43.0 percent yield of the biopolymer.

15.
Acta sci., Biol. sci ; Acta sci., Biol. sci;32(3): 229-233, jul.-set. 2010. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1460664

ABSTRACT

The effect of the variables pantothenic acid, yeast extract and sodium chloride, as well as the cell permeabilization technique, were investigated on the formation of levan, ethanol, sorbitol and biomass of Zymomonas mobilis, using a 24-1 fraction factorial design. Cell growth was determined by turbidimetry at 605 nm, relating it to a biomass with a dry weight calibration curve. Reducing sugars were quantified according to Somogyi and Nelson. Total sugars were quantified by the phenol-sulfuric acid method, sorbitol by HPLC and ethanol. The levan produced was precipitated by the addition of absolute ethanol and quantified in fructose units. In levan biosynthesis, the variable that had the largest contribution was cell condition. The results suggested that the factors that most affected biomass and ethanol formation were sodium chloride concentration and cell condition that affected negatively on production. For sorbitol, the variable that had a significant effect was permeabilization, which decreased its synthesis. Studies to amplify the range of established factors would be important.


A influência das variáveis: ácido pantotênico, extrato de levedura, cloreto de sódio, e a técnica de permeabilização celular foram investigadas na formação de levana, sorbitol, etanol e biomassa de Zymomonas mobilis utilizando um delineamento estatístico fatorial fracionado 24-1. A biomassa foi determinada por turbidimetria, Os açúcares redutores foram quantificados por Somogy e Nelson, açúcar total por Fenol Sulfúrico, sorbitol por HPLC e etanol por micro-destilação. A levana produzida foi precipitada com etanol absoluto e determinada como unidade de frutose. Na biossíntese de levana, a variável que mais contribuiu foi a condição celular. Os resultados sugerem que, para a formação da biomassa e etanol, os fatores que mais interferiram foram a concentração de cloreto de sódio e a condição celular que influencia negativamente a produção. Para o sorbitol, a variável que teve efeito significativo foi a permeabilização celular que atuou diminuindo a sua síntese. Estudos que ampliam a faixa de variação dos fatores estabelecidos são interessantes.


Subject(s)
Biomass , Sodium Chloride/administration & dosage , Fructans/chemical synthesis , Sorbitol/chemical synthesis , Zymomonas/growth & development , Pantothenic Acid/administration & dosage , Ethanol/chemical synthesis , Yeasts/enzymology , Cell Membrane Permeability
16.
Acta sci., Biol. sci ; Acta sci., Biol. sci;32(3): 229-233, jul.-set. 2010.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1460666

ABSTRACT

The effect of the variables pantothenic acid, yeast extract and sodium chloride, as well as the cell permeabilization technique, were investigated on the formation of levan, ethanol, sorbitol and biomass of Zymomonas mobilis, using a 24-1 fraction factorial design. Cell growth was determined by turbidimetry at 605 nm, relating it to a biomass with a dry weight calibration curve. Reducing sugars were quantified according to Somogyi and Nelson. Total sugars were quantified by the phenol-sulfuric acid method, sorbitol by HPLC and ethanol. The levan produced was precipitated by the addition of absolute ethanol and quantified in fructose units. In levan biosynthesis, the variable that had the largest contribution was cell condition. The results suggested that the factors that most affected biomass and ethanol formation were sodium chloride concentration and cell condition that affected negatively on production. For sorbitol, the variable that had a significant effect was permeabilization, which decreased its synthesis. Studies to amplify the range of established factors would be important.


The effect of the variables pantothenic acid, yeast extract and sodium chloride, as well as the cell permeabilization technique, were investigated on the formation of levan, ethanol, sorbitol and biomass of Zymomonas mobilis, using a 24-1 fraction factorial design. Cell growth was determined by turbidimetry at 605 nm, relating it to a biomass with a dry weight calibration curve. Reducing sugars were quantified according to Somogyi and Nelson. Total sugars were quantified by the phenol-sulfuric acid method, sorbitol by HPLC and ethanol. The levan produced was precipitated by the addition of absolute ethanol and quantified in fructose units. In levan biosynthesis, the variable that had the largest contribution was cell condition. The results suggested that the factors that most affected biomass and ethanol formation were sodium chloride concentration and cell condition that affected negatively on production. For sorbitol, the variable that had a significant effect was permeabilization, which decreased its synthesis. Studies to amplify the range of established factors would be important.

17.
Acta Sci. Biol. Sci. ; 32(3): 229-233, 2010. tab, graf
Article in English | VETINDEX | ID: vti-6619

ABSTRACT

The effect of the variables pantothenic acid, yeast extract and sodium chloride, as well as the cell permeabilization technique, were investigated on the formation of levan, ethanol, sorbitol and biomass of Zymomonas mobilis, using a 24-1 fraction factorial design. Cell growth was determined by turbidimetry at 605 nm, relating it to a biomass with a dry weight calibration curve. Reducing sugars were quantified according to Somogyi and Nelson. Total sugars were quantified by the phenol-sulfuric acid method, sorbitol by HPLC and ethanol. The levan produced was precipitated by the addition of absolute ethanol and quantified in fructose units. In levan biosynthesis, the variable that had the largest contribution was cell condition. The results suggested that the factors that most affected biomass and ethanol formation were sodium chloride concentration and cell condition that affected negatively on production. For sorbitol, the variable that had a significant effect was permeabilization, which decreased its synthesis. Studies to amplify the range of established factors would be important.(AU)


A influência das variáveis: ácido pantotênico, extrato de levedura, cloreto de sódio, e a técnica de permeabilização celular foram investigadas na formação de levana, sorbitol, etanol e biomassa de Zymomonas mobilis utilizando um delineamento estatístico fatorial fracionado 24-1. A biomassa foi determinada por turbidimetria, Os açúcares redutores foram quantificados por Somogy e Nelson, açúcar total por Fenol Sulfúrico, sorbitol por HPLC e etanol por micro-destilação. A levana produzida foi precipitada com etanol absoluto e determinada como unidade de frutose. Na biossíntese de levana, a variável que mais contribuiu foi a condição celular. Os resultados sugerem que, para a formação da biomassa e etanol, os fatores que mais interferiram foram a concentração de cloreto de sódio e a condição celular que influencia negativamente a produção. Para o sorbitol, a variável que teve efeito significativo foi a permeabilização celular que atuou diminuindo a sua síntese. Estudos que ampliam a faixa de variação dos fatores estabelecidos são interessantes.(AU)


Subject(s)
Fructans/chemical synthesis , Sorbitol/chemical synthesis , Zymomonas/growth & development , Biomass , Pantothenic Acid/administration & dosage , Sodium Chloride/administration & dosage , Ethanol/chemical synthesis , Cell Membrane Permeability , Yeasts/enzymology
18.
Acta sci., Biol. sci ; 32(3): 229-233, 2010.
Article in English | VETINDEX | ID: vti-765735

ABSTRACT

The effect of the variables pantothenic acid, yeast extract and sodium chloride, as well as the cell permeabilization technique, were investigated on the formation of levan, ethanol, sorbitol and biomass of Zymomonas mobilis, using a 24-1 fraction factorial design. Cell growth was determined by turbidimetry at 605 nm, relating it to a biomass with a dry weight calibration curve. Reducing sugars were quantified according to Somogyi and Nelson. Total sugars were quantified by the phenol-sulfuric acid method, sorbitol by HPLC and ethanol. The levan produced was precipitated by the addition of absolute ethanol and quantified in fructose units. In levan biosynthesis, the variable that had the largest contribution was cell condition. The results suggested that the factors that most affected biomass and ethanol formation were sodium chloride concentration and cell condition that affected negatively on production. For sorbitol, the variable that had a significant effect was permeabilization, which decreased its synthesis. Studies to amplify the range of established factors would be important.


The effect of the variables pantothenic acid, yeast extract and sodium chloride, as well as the cell permeabilization technique, were investigated on the formation of levan, ethanol, sorbitol and biomass of Zymomonas mobilis, using a 24-1 fraction factorial design. Cell growth was determined by turbidimetry at 605 nm, relating it to a biomass with a dry weight calibration curve. Reducing sugars were quantified according to Somogyi and Nelson. Total sugars were quantified by the phenol-sulfuric acid method, sorbitol by HPLC and ethanol. The levan produced was precipitated by the addition of absolute ethanol and quantified in fructose units. In levan biosynthesis, the variable that had the largest contribution was cell condition. The results suggested that the factors that most affected biomass and ethanol formation were sodium chloride concentration and cell condition that affected negatively on production. For sorbitol, the variable that had a significant effect was permeabilization, which decreased its synthesis. Studies to amplify the range of established factors would be important.

19.
Article in English | VETINDEX | ID: vti-444052

ABSTRACT

Levan is a non-toxic, biologically active, extra cellular polysaccharide composed solely by fructose units. Optimization of levan production by Zymomonas mobilis strain ZAG-12 employing a 2(4-1) fractional factorial design was performed to analyze the influence of the temperature (20, 25 e 30ºC) agitation (50, 75 e 100 rpm), and the initial concentrations of both sucrose (150, 200 e 250 g.L-1) and yeast extract (2.0, 3.5 e 5.0g.L-1) on final levan concentration. Aerobic fermentation was performed batchwise in 500mL Pyrex flasks for 72 hours. Biomass, ethanol, levan and sucrose were determined at beginning and also at end of the fermentations. The experiments showed that the final levan concentration depended on initial sucrose concentration, temperature and agitation velocity and that the initial concentration of yeast extract did not influence levan production. However, when the production of ethanol and biomass were considered, it became evident that yeast extract was a significant variable. The best conditions for levan production occurred at 100 rpm agitation, 20ºC and 250g.L-1 of initial sucrose resulting in 14.67g.L-1 of levan.


Levana é um polissacarídeo extracelular, biologicamente ativo, não tóxico, contendo em sua estrutura apenas frutose. A maximização da produção de levana, por via fermentativa, pela linhagem de Zymomonas mobilis ZAG-12, foi estudada utilizando-se um planejamento fatorial de dois níveis 2(4-1), variando-se as concentrações iniciais de sacarose (150, 200 e 250 g.L-1) , extrato de levedura (2.0, 3.5 e 5.0 g.L-1), temperatura (20, 25 e 30ºC) e agitação (50, 75 e 100 rpm). As fermentações foram desenvolvidas por processos descontínuos em frascos Pyrex roscados, de 500 mL, contendo 300 mL de meio a base de sacarose, por 72 horas. No início e ao final do processo, foram dosados: biomassa, etanol, levana e sacarose como açúcares redutores totais. A análise dos dados mostra que o aumento da produção de levana depende tanto dos efeitos da concentração inicial de sacarose, temperatura e agitação, isoladamente, quanto da interação entre agitação e temperatura na faixa experimental estudada. O extrato de levedura não afeta a produção de levana, entretanto, quando a resposta é produção de etanol e biomassa, fica evidente que essa variável é significativa. Os resultados demonstraram que as melhores condições para a produção em batelada ocorreram com 250g/L de sacarose inicial, 100 rpm de agitação, a 20ºC.

20.
Semina Ci. agr. ; 26(1): 71-82, 2005.
Article in Portuguese | VETINDEX | ID: vti-763157

ABSTRACT

Levan is an exopolysaccharide, constituted by fructose units, ? (2- 6) linked, obtained by transfructosilation reaction during microorganisms fermentation in a sucrose rich but wi thout glucose, fructose or mixtures in the culture media. Bacterial levan production is a good alternative fructose source, besides having certain functional characteristics in the human body, such as a hypocholesterolemic and an anticarcinogenic agent. In the food industry, levan can be used to fix colors and flavors, as well as thickening and stabilizing agent. In the bacterial levan production, Zymomonas mobilis has been considered the best possible alternative, since it uses as carbon source sucrose or industrial residues that contain this sugar, in different concentrations, in a mineral salts rich medium. Levan production is not only influenced by carbon source and its concentration, but also by pH, temperature and type of salts. Moreover, the oxygenation of the fermentation medium, also affect the characteristics of the molecule and the cellular growth. In this revision some important topics concerning the bacterial levan production are presented.


Levana é um exopolissacarídeo, constituído por unidades de frutose, unidas através de ligações ? (2- 6), obtido pela reação de transfrutosilação durante a fermentação de microrganismos em meio rico em sacarose mas não em frutose, glucose ou misturas de ambas. Pesquisas sobre bactérias produtoras de levana vêm sendo implementadas, uma vez que a mesma é uma fonte alternativa de frutose, além de apresentar características funcionais no organismo humano, como agente hipocolesterolêmico e anticarcinogênico. Na indústria de alimentos a levana pode ser empregada como fixador de cores e sabores, bem como espessante e estabilizante de vários alimentos. Das bactérias produtoras de levana, Zymomonas mobilis tem sido a melhor alternativa, uma vez que usa como fonte de carbono a sacarose ou resíduos industriais contendo este açúcar, em diferentes concentrações, em um meio rico em sais minerais. A produção de levana é influenciada não apenas pela fonte de carbono e sua concentração, mas também pelas variações de pH, temperatura e tipo de sais presentes, além da oxigenação do meio de fermentação, afetando também as características da molécula e o crescimento celular. Neste trabalho de revisão apresentam-se tópicos de interesse referentes à produção de levana bacteriana.

SELECTION OF CITATIONS
SEARCH DETAIL