ABSTRACT
The reproductive mode of viviparity has independently evolved in various animal taxa. It refers to the condition in which the embryos or young develop inside the female's body during gestation, providing advantages such as protection, nutrition, and improved survival chances. However, parasites and diseases can be an evolutionary force that limit the host's resources, leading to physiological, morphological, and behavioral changes that impose additional costs on both the pregnant female and her offspring. This review integrates the primary literature published between 1980 and 2021 on the parasitism of viviparous hosts. We describe aspects such as reproductive investment in females, offspring sex ratios, lactation investment in mammals, alterations in birth intervals, current reproductive investment, variations between environments, immune system activity in response to immunological challenges, and other factors that can influence the interaction between viviparous females and parasites. Maintaining pregnancy incurs costs in managing the mother's resources and regulating the immune system's responses to the offspring, while simultaneously maintaining an adequate defense against parasites and pathogens. Parasites can significantly influence this reproductive mode: parasitized females adjust their investment in survival and reproduction based on their life history, environmental factors, and the diversity of encountered parasites.
Subject(s)
Biological Evolution , Vertebrates , Female , Animals , Pregnancy , Lactation , Nutritional Status , Reproduction , MammalsABSTRACT
Variations in the availability of nutritional resources in animals can trigger reversible adjustments, which in the short term are manifested as behavioral and physiological changes. Several of these responses are mediated by Sirt1, which acts as an energy status sensor governing a global genetic program to cope with changes in nutritional status. Growing evidence suggests a key role of the response of the perinatal environment to caloric restriction in the setup of physiological responses in adulthood. The existence of adaptive predictive responses has been proposed, which suggests that early nutrition could establish metabolic capacities suitable for future food-scarce environments. We evaluated how perinatal food deprivation and maternal gestational weight gain impact the transcriptional, physiological, and behavioral responses in mice, when acclimated to caloric restriction in adulthood. Our results show a strong predictive capacity of maternal weight and gestational weight gain, in the expression of Sirt1 and its downstream targets in the brain and liver, mitochondrial enzymatic activity in skeletal muscle, and exploratory behavior in offspring. We also observed differential responses of both lactation and gestational food restriction on gene expression, thermogenesis, organ masses, and behavior, in response to adult caloric restriction. We conclude that the early nutritional state could determine the magnitude of responses to food scarcity later in adulthood, mediated by the pivotal metabolic sensor Sirt1. Our results suggest that maternal gestational weight gain could be an important life history trait and could be used to predict features that improve the invasive capacity or adjustment to seasonal food scarcity of the offspring.
ABSTRACT
Pathogenic assessment of a baculovirus-based biopesticide containing Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV: Baculoviridae: Alphabaculovirus) infecting fall armyworm, Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae) is reported. In the bioassays, neonates were infected with different doses of SfMNPV applied on Cry1Ac Bt soybean and non-Bt soybean. Our findings indicated that S. frugiperda neonates did not survive at 10 d post infection or develop into adults on Bt and non-Bt soybean sprayed with the field recommended dose of SfMNPV. In contrast, a proportion of the infected neonates developed into adults when infected with lower doses of SfMNPV (50%, 25%, and 10% of field dose) in both Bt and non-Bt soybean. However, S. frugiperda neonates surviving infection at the lowest virus doses on both soybean varieties showed longer neonate-to-pupa and neonate-to-adult periods, lower larval and pupal weights, reduced fecundity, and increased population suppression. Nevertheless, more pronounced pathogenicity of SfMNPV infecting neonates of S. frugiperda were verified on larvae that developed on Bt soybean. These findings revealed that, beyond mortality, the biopesticide containing SfMNPV also causes significant sublethal pathogenic effects on neonates of S. frugiperda developing on Bt and non-Bt soybean and suggested an additive effect among SfMNPV and Cry1Ac insecticidal protein expressed in Bt soybean.
Subject(s)
Insecticides , Nucleopolyhedroviruses , Animals , Bacterial Proteins/genetics , Biological Control Agents , Endotoxins , Hemolysin Proteins , Larva , Nucleopolyhedroviruses/genetics , Plants, Genetically Modified/genetics , Soybean Proteins , Glycine max , Spodoptera/genetics , Zea mays/geneticsABSTRACT
Most reef fishes begin life as planktonic larvae before settling to the reef, metamorphosing and entering the benthic adult population. Different selective forces determine survival in the planktonic and benthic life stages, but traits established in the larval stage may carry over to affect post-settlement performance. We tested the hypothesis that larval traits affect two key post-settlement fish behaviours: social group-joining and foraging. Certain larval traits of reef fishes are permanently recorded in the rings in their otoliths. In the bluehead wrasse (Thalassoma bifasciatum), prior work has shown that key larval traits recorded in otoliths (growth rate, energetic condition at settlement) carry over to affect post-settlement survival on the reef, with higher-larval-condition fish experiencing less post-settlement mortality. We hypothesized that this selective mortality is mediated by carry-over effects on post-settlement antipredator behaviours. We predicted that better-condition fish would forage less and be more likely to join groups, both behaviours that would reduce predation risk. We collected 550 recently settled bluehead wrasse (Thalassoma bifasciatum) from three reef sites off St. Croix (USVI) and performed two analyses. First, we compared each settler's larval traits to the size of its social group to determine whether larval traits influenced group-joining behaviour. Secondly, we observed foraging behaviour in a subset of grouped and solitary fish (n = 14) for 1-4 days post-settlement. We then collected the fish and tested whether larval traits influenced the proportion of time spent foraging. Body length at settlement, but not condition, affected group-joining behaviour; smaller fish were more likely to remain solitary or in smaller groups. However, both greater length and better condition were associated with greater proportions of time spent foraging over four consecutive days post-settlement. Larval traits carry over to affect post-settlement behaviour, although not as we expected: higher quality larvae join groups more frequently (safer) but then forage more. Foraging is risky but may allow faster post-settlement growth, reducing mortality risk in the long run. This shows that behaviour likely serves as a mechanistic link connecting larval traits to post-settlement selective mortality.
Subject(s)
Behavior, Animal/physiology , Perciformes/growth & development , Animals , Appetitive Behavior , Coral Reefs , Larva/physiology , Metamorphosis, Biological , Otolithic Membrane/growth & development , Perciformes/physiology , Predatory Behavior , Social Behavior , United States Virgin IslandsABSTRACT
A cohort of 100 eggs of Panstrongylus geniculatus (Latreille) was reared in the laboratory under constant conditions (temperature 26 ± 1°C, 60 ± 10% RH), with mortality and fecundity data recorded weekly. We calculated stage-specific development times, age-specific mortality and fecundity (18.4 eggs/â/wk), and stage-specific and total preadult mortality (31.6%), and the weekly intrinsic rate of natural increase (r(o) = 0.096), the finite population growth rate (λ = 1.109), the net reproductive rate (R(0) = 60.45), and the generation time (T = 46.34 wk). Elasticity analysis showed that the dominant life-history trait determining λ was survival (particularly the adult female's survival). Adult females dominated the stage-specific reproductive value, and the egg stage dominated the stable stage distribution (SSD). The damping ratio (ρ = 1.096) suggests a relatively rapid period of recovery to a disturbed SSD. Results were compared with one previous study and conform relatively well, considering that environmental conditions were not the same. We estimated the colonizing ability of P. geniculatus, using as a criterion the ro/b index, and obtained the value of 0.74, an indicator of a good colonizer, and similar to well-known invasive species such as Rhodnius prolixus and Triatoma infestans. The life history traits and demographic parameters here presented for P. geniculatus are discussed in terms of their usefulness for evolutionary studies and vector control activities.