Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 502
Filter
1.
Article in English | MEDLINE | ID: mdl-38984760

ABSTRACT

The Anthropocene is seeing the human footprint rapidly spreading to all of Earth's ecosystems. The fast-changing biotic and abiotic conditions experienced by all organisms are exerting new and strong selective pressures, and there is a growing list of examples of human-induced evolution in response to anthropogenic impacts. No organism is exempt from these novel selective pressures. Here, we synthesise current knowledge on human-induced evolution in eukaryotic parasites of animals, and present a multidisciplinary framework for its study and monitoring. Parasites generally have short generation times and huge fecundity, features that predispose them for rapid evolution. We begin by reviewing evidence that parasites often have substantial standing genetic variation, and examples of their rapid evolution both under conditions of livestock production and in serial passage experiments. We then present a two-step conceptual overview of the causal chain linking anthropogenic impacts to parasite evolution. First, we review the major anthropogenic factors impacting parasites, and identify the selective pressures they exert on parasites through increased mortality of either infective stages or adult parasites, or through changes in host density, quality or immunity. Second, we discuss what new phenotypic traits are likely to be favoured by the new selective pressures resulting from altered parasite mortality or host changes; we focus mostly on parasite virulence and basic life-history traits, as these most directly influence the transmission success of parasites and the pathology they induce. To illustrate the kinds of evolutionary changes in parasites anticipated in the Anthropocene, we present a few scenarios, either already documented or hypothetical but plausible, involving parasite taxa in livestock, aquaculture and natural systems. Finally, we offer several approaches for investigations and real-time monitoring of rapid, human-induced evolution in parasites, ranging from controlled experiments to the use of state-of-the-art genomic tools. The implications of fast-evolving parasites in the Anthropocene for disease emergence and the dynamics of infections in domestic animals and wildlife are concerning. Broader recognition that it is not only the conditions for parasite transmission that are changing, but the parasites themselves, is needed to meet better the challenges ahead.

2.
Parasit Vectors ; 17(1): 294, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982472

ABSTRACT

BACKGROUND: Microsporidia MB (MB) is a naturally occurring symbiont of Anopheles and has recently been identified as having a potential to inhibit the transmission of Plasmodium in mosquitoes. MB intensity is high in mosquito gonads, with no fitness consequences for the mosquito, and is linked to horizontal (sexual) and vertical (transovarial) transmission from one mosquito to another. Maximising MB intensity and transmission is important for maintaining heavily infected mosquito colonies for experiments and ultimately for mosquito releases. We have investigated how diet affects the MB-Anopheles arabiensis symbiosis phenotypes, such as larval development and mortality, adult size and survival, as well as MB intensity in both larvae and adults. METHODS: F1 larvae of G0 females confirmed to be An. arabiensis and infected with MB were either combined (group lines [GLs]) or reared separately (isofemale lines [IMLs]) depending on the specific experiment. Four diet regimes (all mg/larva/day) were tested on F1 GLs: Tetramin 0.07, Tetramin 0.3, Gocat 0.3 and Cerelac 0.3. GLs reared on Tetramin 0.3 mg/larva/day were then fed either a 1% or 6% glucose diet to determine adult survival. Larvae of IMLs were fed Tetramin 0.07 mg and Tetramin 0.3 mg for larval experiments. The mosquitoes in the adult experiments with IMLs were reared on 1% or 6% glucose. RESULTS: Amongst the four larval diet regimes tested on An. arabiensis development in the presence of MB, the fastest larval development highest adult emergence, largest body size of mosquitoes, highest prevalence and highest density of MB occurred in those fed Tetramin 0.3 mg/larva/day. Although adult MB-positive mosquitoes fed on 6% glucose survived longer than MB-negative mosquitoes, there was no such effect for those fed on the 1% glucose diet. Development time, wing length and adult survival were not significantly different between MB-infected and uninfected An. arabiensis fed on the Tetramin 0.07 mg/larva/day diet, demonstrating that the MB-conferred fitness advantage was diet-dependent. CONCLUSIONS: Microsporidia MB does not adversely impact the development and fitness of An. arabiensis, even under limited dietary conditions. The diet regime of Tetramin 0.3 mg/larva/day + 6% glucose for adults is the superior diet for the mass rearing of MB-infected An. arabiensis mosquitoes. These results are important for rearing MB-infected An. arabiensis in the laboratory for experiments and the mass rearing required for field releases.


Subject(s)
Anopheles , Diet , Larva , Microsporidia , Animals , Anopheles/microbiology , Anopheles/physiology , Anopheles/parasitology , Female , Larva/microbiology , Larva/growth & development , Microsporidia/physiology , Symbiosis , Mosquito Vectors/microbiology , Mosquito Vectors/physiology
3.
J Therm Biol ; 123: 103895, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38996476

ABSTRACT

Global warming may affect the early developmental stages of high-altitude amphibians, thereby influencing their later fitness. Yet, this has been largely unexplored. To investigate whether and how the temperatures experienced by embryonic and larval stages affect their fitness at later developmental stages, we designed two experiments in which the embryos and larvae were treated with three temperatures (24, 18 and 12 °C), respectively. Then, the life history traits of the tadpoles during the metamorphotic climax in all treatments were evaluated, including growth rate, survival rate, morphology, thermal physiology, swimming performance, standard metabolic rate (SMR), oxidative and antioxidative system, and metabolic enzyme activities. The results revealed that elevated temperature accelerated metamorphosis but decreased body size at metamorphosis. Additionally, warming during the embryonic and larval stages decreased the thermal tolerance range and induced increased oxidative stress. Furthermore, high embryonic temperature significantly decreased the hatching success, but had no significant effect on swimming performance and SMR. Warming during larval periods was harmful to the survival and swimming performance of tadpoles. The effect size analysis revealed that the negative impacts of embryonic temperature on certain physiological traits, such as growth and development, survival and swimming performance, were more pronounced than those of larval temperature. Our results highlight the necessity for particular attention to be paid to the early stages of amphibians, notably the embryonic stages when evaluating the impact of global warming on their survival.

4.
Ecol Evol ; 14(7): e70023, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39055776

ABSTRACT

Montane oceanic islands possess unique geographic and ecological attributes, rendering them valuable for assessing patterns and drivers of alpha and beta taxonomic, functional, and phylogenetic diversity along elevational gradients. Such comparisons of diversity facets can provide insights into the mechanisms governing community assembly on islands. Herein, we aimed to characterize taxonomic, functional, and phylogenetic bryophyte diversity on Madeira Island within and across areas at varying elevations. We also assessed how these diversity facets for the alpha and beta components relate to ecological and anthropogenic factors. We estimated and compared alpha and beta taxonomic, functional, and phylogenetic diversity using 80 plots of 0.5 m × 0.5 m across the whole elevational gradient of the island. We compiled trait databases and supplemented them with our own observations. Phylogenetic information was sourced from the Moss and Liverwort Tree of Life. To assess the impact of ecological and anthropogenic factors on the three facets, we applied linear mixed-effects models and generalized dissimilarity models to alpha- and beta-diversity matrices, respectively. All facets of diversity exhibited strong correlations within both mosses and liverworts, indicating a substantial congruence when alpha and beta are analyzed separately. The bryophyte groups categorized by the growth form demonstrated contrasting patterns, aligning with their distinctive ecological requirements. While a mid-elevation peak emerged as a common pattern across the three facets of alpha diversity, beta diversity often displayed the opposite trend. Although the relative influence of environmental factors varied depending on the diversity facet and bryophyte grouping considered, we found that alpha and beta diversity of bryophytes are more influenced by climatic factors and the predominant type of vegetation than by anthropogenic factors. In the current context of global change, these results should be interpreted with caution, but they point to the resilience of bryophytes to survive in relatively well-preserved natural microhabitats within anthropogenic landscapes. In this study on Madeira Island, we investigated patterns and drivers of alpha and beta taxonomic, functional, and phylogenetic diversity along elevational gradients. We found that alpha and beta diversity of bryophytes are more strongly influenced by climatic factors and the predominant type of vegetation than by anthropogenic factors.

5.
bioRxiv ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38915528

ABSTRACT

Understanding how variation in key abiotic and biotic factors interact at spatial scales relevant for mosquito fitness and population dynamics is crucial for predicting current and future mosquito distributions and abundances, and the transmission potential for human pathogens. However, studies investigating the effects of environmental variation on mosquito traits have investigated environmental factors in isolation or in laboratory experiments that examine constant environmental conditions that often do not occur in the field. To address these limitations, we conducted a semi-field experiment in Athens, Georgia using the invasive Asian tiger mosquito (Aedes albopictus). We selected nine sites that spanned natural variation in impervious surface and vegetation cover to explore effects of the microclimate (temperature and humidity) on mosquitoes. On these sites, we manipulated conspecific larval density at each site. We repeated the experiment in the summer and fall. We then evaluated the effects of land cover, larval density, and time of season, as well as interactive effects, on the mean proportion of females emerging, juvenile development time, size upon emergence, and predicted per capita population growth (i.e., fitness). We found significant effects of larval density, land cover, and season on all response variables. Of most note, we saw strong interactive effects of season and intra-specific density on each response variable, including a non-intuitive decrease in development time with increasing intra-specific competition in the fall. Our study demonstrates that ignoring the interaction between variation in biotic and abiotic variables could reduce the accuracy and precision of models used to predict mosquito population and pathogen transmission dynamics, especially those inferring dynamics at finer-spatial scales across which transmission and control occur.


Para poder predecir la distribución y abundancia de las poblaciones de mosquitos y la transmisión potencial de patógenos a humanos, es crucial comprender cómo factores abióticos y bióticos clave para el éxito reproductivo y la dinámica poblacional de los mosquitos interactúan a escalas relevantes. Sin embargo, los estudios que han investigado los efectos de variables ambientales en las características demográficas de los mosquitos han considerado su efecto de forma aislada o en experimentos de laboratorio bajo condiciones ambientales constantes que, a menudo, no reflejan lo que ocurre en el campo. Para abordar estas limitaciones, llevamos a cabo un experimento de semi-campo en Athens, Georgia, utilizando el mosquito invasor tigre asiático (Aedes albopictus). Seleccionamos nueve sitios que abarcaban variaciones naturales en la superficie impermeable y cobertura vegetal para explorar los efectos del microclima (temperatura y humedad) en los mosquitos. También manipulamos la densidad de larvas de tigre asiático en dos experimentos que fueron realizados en el verano y otoño. Evaluamos los efectos de la cobertura vegetal, la densidad de larvas, la temporada climática, y la interacción entre estas variables en la proporción de hembras que emergieron, el tiempo de desarrollo de las larvas, el tamaño al momento de la emergencia, y el crecimiento demográfico per cápita previsto (éxito reproductivo). Encontramos efectos significativos de la densidad de larvas, la variación de la cobertura vegetal y la estación del año en todas las variables de respuesta. Más notablemente, observamos un fuerte efecto de la interacción entre la temporada climática y la densidad de larvas en todas las variables de respuesta, incluyendo una disminución no intuitiva en el tiempo de desarrollo con el aumento de la competencia intraespecífica en el otoño. Nuestro estudio evidencia que ignorar la interacción entre variables abióticas y bióticas podría reducir la exactitud y precisión de los modelos utilizados para predecir las dinámicas de las poblaciones de mosquitos, y por tanto, de la transmisión de patógenos. Esto, especialmente en modelos que infieren estas dinámicas a escalas espaciales más finas, en las cuales ocurre la transmisión y el control.

6.
Microbiol Spectr ; 12(7): e0014324, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38860784

ABSTRACT

Pseudomonas aeruginosa is a ubiquitous, opportunistic human pathogen. Since it often expresses multidrug resistance, new treatment options are urgently required. Such new treatments are usually assessed with one of the canonical laboratory strains, PAO1 or PA14. However, these two strains are unlikely representative of the strains infecting patients, because they have adapted to laboratory conditions and do not capture the enormous genomic diversity of the species. Here, we characterized the major P. aeruginosa clone type (mPact) panel. This panel consists of 20 strains, which reflect the species' genomic diversity, cover all major clone types, and have both patient and environmental origins. We found significant strain variation in distinct responses toward antibiotics and general growth characteristics. Only few of the measured traits are related, suggesting independent trait optimization across strains. High resistance levels were only identified for clinical mPact isolates and could be linked to known antimicrobial resistance (AMR) genes. One strain, H01, produced highly unstable AMR combined with reduced growth under drug-free conditions, indicating an evolutionary cost to resistance. The expression of microcolonies was common among strains, especially for strain H15, which also showed reduced growth, possibly indicating another type of evolutionary trade-off. By linking isolation source, growth, and virulence to life history traits, we further identified specific adaptive strategies for individual mPact strains toward either host processes or degradation pathways. Overall, the mPact panel provides a reasonably sized set of distinct strains, enabling in-depth analysis of new treatment designs or evolutionary dynamics in consideration of the species' genomic diversity. IMPORTANCE: New treatment strategies are urgently needed for high-risk pathogens such as the opportunistic and often multidrug-resistant pathogen Pseudomonas aeruginosa. Here, we characterize the major P. aeruginosa clone type (mPact) panel. It consists of 20 strains with different origins that cover the major clone types of the species as well as its genomic diversity. This mPact panel shows significant variation in (i) resistance against distinct antibiotics, including several last resort antibiotics; (ii) related traits associated with the response to antibiotics; and (iii) general growth characteristics. We further developed a novel approach that integrates information on resistance, growth, virulence, and life-history characteristics, allowing us to demonstrate the presence of distinct adaptive strategies of the strains that focus either on host interaction or resource processing. In conclusion, the mPact panel provides a manageable number of representative strains for this important pathogen for further in-depth analyses of treatment options and evolutionary dynamics.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Pseudomonas Infections , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Pseudomonas aeruginosa/classification , Anti-Bacterial Agents/pharmacology , Humans , Pseudomonas Infections/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Genetic Variation , Virulence/genetics , Genome, Bacterial/genetics , Drug Resistance, Bacterial/genetics
7.
Ecol Evol ; 14(6): e11596, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38932969

ABSTRACT

Asynchronous migration of insect herbivores and their host plants towards higher elevations following climate warming is expected to generate novel plant-insect interactions. While the disassociation of specialised interactions can challenge species' persistence, consequences for specialised low-elevation insect herbivores encountering novel high-elevation plants under climate change remain largely unknown. To explore the ability of two low-elevation Lepidoptera species, Melitaea celadussa and Zygaena filipendulae, to undergo shifts from low- to high-elevation host plants, we combined a translocation experiment performed at two elevations in the Swiss Alps with experiments conducted under controlled conditions. Specifically, we exposed M. celadussa and Z. filipendulae to current low- and congeneric high-elevation host plants, to test how shifts in host plant use impact oviposition probability, number of eggs clutches laid, caterpillar feeding preference and growth, pupation rate and wing size. While our study shows that both M. celadussa and Z. filipendulae can oviposit and feed on novel high-elevation host plants, we reveal strong preferences towards ovipositing and feeding on current low-elevation host plants. In addition, shifts from current low- to novel high-elevation host plants reduced pupation rates as well as wing size for M. celadussa, while caterpillar growth was unaffected by host plant identity for both species. Our study suggests that populations of M. celadussa and Z. filipendulae have the ability to undergo host plant shifts under climate change. However, these shifts may impact the ability of populations to respond to rapid climate change by altering developmental processes and morphology. Our study highlights the importance of considering altered biotic interactions when predicting consequences for natural populations facing novel abiotic and biotic environments.

8.
Ecol Lett ; 27(5): e14434, 2024 May.
Article in English | MEDLINE | ID: mdl-38716556

ABSTRACT

Anthropogenic habitat modification can indirectly effect reproduction and survival in social species by changing the group structure and social interactions. We assessed the impact of habitat modification on the fitness and life history traits of a cooperative breeder, the Arabian babbler (Argya squamiceps). We collected spatial, reproductive and social data on 572 individuals belonging to 21 social groups over 6 years and combined it with remote sensing to characterize group territories in an arid landscape. In modified resource-rich habitats, groups bred more and had greater productivity, but individuals lived shorter lives than in natural habitats. Habitat modification favoured a faster pace-of-life with lower dispersal and dominance acquisition ages, which might be driven by higher mortality providing opportunities for the dominant breeding positions. Thus, habitat modification might indirectly impact fitness through changes in social structures. This study shows that trade-offs in novel anthropogenic opportunities might offset survival costs by increased productivity.


Subject(s)
Ecosystem , Life History Traits , Animals , Male , Female , Reproduction , Passeriformes/physiology , Genetic Fitness , Anthropogenic Effects
9.
Proc Biol Sci ; 291(2023): 20232604, 2024 May.
Article in English | MEDLINE | ID: mdl-38807521

ABSTRACT

Understanding the organization of mutualistic networks at multiple spatial scales is key to ensure biological conservation and functionality in human-modified ecosystems. Yet, how changing habitat and landscape features affect pollen-bee interaction networks is still poorly understood. Here, we analysed how bee-flower visitation and bee-pollen-transport interactions respond to habitat fragmentation at the local network and regional metanetwork scales, combining data from 29 fragments of calcareous grasslands, an endangered biodiversity hotspot in central Europe. We found that only 37% of the total unique pairwise species interactions occurred in both pollen-transport and flower visitation networks, whereas 28% and 35% were exclusive to pollen-transport and flower visitation networks, respectively. At local level, network specialization was higher in pollen-transport networks, and was negatively related to the diversity of land cover types in both network types. At metanetwork level, pollen transport data revealed that the proportion of single-fragment interactions increased with landscape diversity. Our results show that the specialization of calcareous grasslands' plant-pollinator networks decreases with landscape diversity, but network specialization is underestimated when only based on flower visitation information. Pollen transport data, more than flower visitation, and multi-scale analyses of metanetworks are fundamental for understanding plant-pollinator interactions in human-dominated landscapes.


Subject(s)
Flowers , Pollen , Pollination , Bees/physiology , Animals , Ecosystem , Grassland , Biodiversity
10.
J Exp Zool A Ecol Integr Physiol ; 341(7): 753-765, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38651613

ABSTRACT

Amphibian larvae inhabiting temporary ponds often exhibit the capacity to accelerate development and undergo metamorphosis in challenging conditions like desiccation. However, not all species exhibit this ability, the yellow-bellied toad (Bombina variegata) is one such example. The underlying mechanisms behind the inability to accelerate development under desiccation remain largely unexplored. The hypothalamic-pituitary-interrenal (HPI) axis and corticosterone (CORT), which act synergistically with thyroid hormone, are thought to facilitate metamorphosis in response to desiccation stress. In this study, we aimed to investigate whether modification in the HPI axis, particularly CORT levels, contributes to the absence of adaptive plasticity in B. variegata under desiccation stress. The study design included four treatments: high water level, high water level with exogenous CORT, low water level, and low water level with metyrapone (a CORT synthesis inhibitor). The main objective was to evaluate the effects of these treatments on whole-body corticosterone levels, life history, morphological traits, and oxidative stress parameters during the prometamorphic and metamorphic climax developmental stages. While low water level had no effect on total corticosterone levels, larval period, body condition index, and metamorphic body shape, it negatively affected metamorph size, mass, and growth rate. Our findings suggest that constant exposure to desiccation stress over generations may have led to modifications in the HPI axis activity in B. variegata, resulting in adaptation to changes in water level, evident through the absence of stress response. Consequently, CORT may not be a relevant stress indicator in desiccation conditions for this species.


Subject(s)
Anura , Corticosterone , Larva , Animals , Corticosterone/pharmacology , Larva/growth & development , Larva/physiology , Larva/drug effects , Anura/physiology , Anura/growth & development , Adaptation, Physiological , Ponds , Bufonidae/physiology , Metamorphosis, Biological/drug effects
11.
PeerJ ; 12: e17161, 2024.
Article in English | MEDLINE | ID: mdl-38560466

ABSTRACT

The life history of a parasite describes its partitioning of assimilated resources into growth, reproduction, and transmission effort, and its precise timing of developmental events. The life cycle, in contrast, charts the sequence of morphological stages from feeding to the transmission forms. Phenotypic plasticity in life history traits can reveal how parasites confront variable environments within hosts. Within the protist phylum Apicomplexa major clades include the malaria parasites, coccidians, and most diverse, the gregarines (with likely millions of species). Studies on life history variation of gregarines are rare. Therefore, life history traits were examined for the gregarine Monocystis perplexa in its host, the invasive earthworm Amynthas agrestis at three sites in northern Vermont, United States of America. An important value of this system is the short life-span of the hosts, with only seven months from hatching to mass mortality; we were thus able to examine life history variation during the entire life cycle of both host and parasite. Earthworms were collected (N = 968 over 33 sample periods during one host season), then parasites of all life stages were counted, and sexual and transmission stages measured, for each earthworm. All traits varied substantially among individual earthworm hosts and across the sites. Across sites, timing of first appearance of infected earthworms, date when transmission stage (oocysts packed within gametocysts) appeared, date when number of both feeding (trophic) cells and gametocysts were at maximum, and date when 100% of earthworms were infected differed from 2-8 weeks, surprising variation for a short season available for parasite development. The maximal size of mating cells varied among hosts and across sites and this is reflected in the number of oocysts produced by the gametocyst. A negative trade-off was observed for the number of oocysts and their size. Several patterns were striking: (1) Prevalence reached 100% at all sites by mid season, only one to three weeks after parasites first appeared in the earthworms. (2) The number of parasites per host was large, reaching 300 × 103 cells in some hosts, and such high numbers were present even when parasites first appeared in the host. (3) At one site, few infected earthworms produced any oocysts. (4) The transmission rate to reach such high density of parasites in hosts needed to be very high for a microbe, from >0.33% to >34.3% across the three sites. Monocystis was one of the first protist parasites to have its life cycle described (early 19th century), but these results suggest the long-accepted life cycle of Monocystis could be incomplete, such that the parasites may be transmitted vertically (within the earthworm's eggs) as well as horizontally (leading to 100% prevalence) and merogony (asexual replication) could be present, not recognized for Monocystis, leading to high parasitemia even very early in the host's season.


Subject(s)
Apicomplexa , Life History Traits , Oligochaeta , Parasites , Animals , Oligochaeta/parasitology , Reproduction , Life Cycle Stages , Oocysts
12.
Ecol Evol ; 14(4): e11273, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38601853

ABSTRACT

Many tropical species show declining populations. The pantropical order Trogoniformes has 76% of its species ranked as declining, reflecting a worldwide problem. Here, we report on the reproductive ecology and life history traits of the declining and near-threatened old world Whitehead's Trogon (Harpactes whiteheadi), the declining new world Collared Trogon (Trogon collaris), and the stable Masked Trogon (T. personatus). We also reviewed the literature on reproductive ecology and life history traits of trogons to assess possible commonalities that might help explain population declines. We found that the declining Whitehead's and Collared Trogons had reasonable nest success (32% and 25%, respectively), while the stable Masked Trogon had poor reproductive success (9%), all contrary to population trends. However, the limited literature data suggested that poor reproductive success may be common among trogons, which may contribute to population declines. Parents fed young at a low rate and had long on-bouts for incubation and nestling warming that reduced activity at the nest, as favored by high nest predation risk over evolutionary time. We found that young fledged from the nest with poorly developed wings, as also favored by high nest predation risk. Evolved nestling periods among trogon species suggests that poor wing development is likely common. Wing development has been shown to affect juvenile survival after leaving the nest. The poor wing development may be an important contributor to population declines that deserves more attention. Evolved life history traits are important to recognize as creating population vulnerabilities in a changing world.

13.
R Soc Open Sci ; 11(3): 230740, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38571911

ABSTRACT

Social competence-defined as the ability to optimize social behaviour according to available social information-can be influenced by the social environment experienced in early life. In cooperatively breeding vertebrates, the current group size influences behavioural phenotypes, but it is not known whether the group size experienced in early life influences behavioural phenotypes generally or social competence specifically. We tested whether being reared in large versus small groups for the first two months of life affects social behaviours, and associated life-history traits, in the cooperatively breeding cichlid Neolamprologus pulcher between the ages of four and twelve months. As we predicted, fish raised in larger and more complex groups showed higher social competence later in life. This was shown in several ways: they exhibited more, and earlier, submissive behaviour in response to aggression from a dominant conspecific, and-in comparison to fish raised in small groups-they exhibited more flexibility in the expression of submissive behaviour. By contrast, there was no evidence that early social complexity, as captured by the group size, affects aggression or exploration behaviour nor did it influence the propensity to disperse or show helping behaviour. Our results emphasize the importance of early-life social complexity for the development of social competence.

14.
Ecology ; 105(5): e4289, 2024 May.
Article in English | MEDLINE | ID: mdl-38578245

ABSTRACT

Climate warming is predicted to increase mean temperatures and thermal extremes on a global scale. Because their body temperature depends on the environmental temperature, ectotherms bear the full brunt of climate warming. Predicting the impact of climate warming on ectotherm diversity and distributions requires a framework that can translate temperature effects on ectotherm life-history traits into population- and community-level outcomes. Here we present a mechanistic theoretical framework that can predict the fundamental thermal niche and climate envelope of ectotherm species based on how temperature affects the underlying life-history traits. The advantage of this framework is twofold. First, it can translate temperature effects on the phenotypic traits of individual organisms to population-level patterns observed in nature. Second, it can predict thermal niches and climate envelopes based solely on trait response data and, hence, completely independently of any population-level information. We find that the temperature at which the intrinsic growth rate is maximized exceeds the temperature at which abundance is maximized under density-dependent growth. As a result, the temperature at which a species will increase the fastest when rare is lower than the temperature at which it will recover from a perturbation the fastest when abundant. We test model predictions using data from a naturalized-invasive interaction to identify the temperatures at which the invasive can most easily invade the naturalized's habitat and the naturalized is most likely to resist the invasive. The framework is sufficiently mechanistic to yield reliable predictions for individual species and sufficiently broad to apply across a range of ectothermic taxa. This ability to predict the thermal niche before a species encounters a new thermal environment is essential to mitigating some of the major effects of climate change on ectotherm populations around the globe.


Subject(s)
Climate Change , Ecosystem , Models, Biological , Temperature , Animals
15.
16.
Environ Toxicol Chem ; 43(6): 1320-1331, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38661473

ABSTRACT

Apis mellifera was used as a model species for ecotoxicological testing. In the present study, we tested the effects of acetone (0.1% in feed), a solvent commonly used to dissolve pesticides, on bees exposed at different developmental stages (larval and/or adult). Moreover, we explored the potential effect of in vitro larval rearing, a commonly used technique for accurately monitoring worker exposure at the larval stage, by combining acetone exposure and treatment conditions (in vitro larval rearing vs. in vivo larval rearing). We then analyzed the life-history traits of the experimental bees using radio frequency identification technology over three sessions (May, June, and August) to assess the potential seasonal dependence of the solvent effects. Our results highlight the substantial influence of in vitro larval rearing on the life cycle of bees, with a 47.7% decrease in life span, a decrease of 0.9 days in the age at first exit, an increase of 57.3% in the loss rate at first exit, and a decrease of 40.6% in foraging tenure. We did not observe any effect of exposure to acetone at the larval stage on the capacities of bees reared in vitro. Conversely, acetone exposure at the adult stage reduced the bee life span by 21.8% to 60%, decreased the age at first exit by 1.12 to 4.34 days, and reduced the foraging tenure by 30% to 37.7%. Interestingly, we found a significant effect of season on acetone exposure, suggesting that interference with the life-history traits of honey bees is dependent on season. These findings suggest improved integration of long-term monitoring for assessing sublethal responses in bees following exposure to chemicals during both the larval and adult stages. Environ Toxicol Chem 2024;43:1320-1331. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Acetone , Ecotoxicology , Larva , Animals , Bees/drug effects , Larva/drug effects , Larva/growth & development , Acetone/toxicity , Pesticides/toxicity , Life Cycle Stages/drug effects , Solvents/toxicity , Environmental Pollutants/toxicity , Life History Traits
17.
Insects ; 15(3)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38535402

ABSTRACT

As the human population in urban areas is continuously growing, urbanization is one of the greatest threats to biodiversity. To mitigate the negative effects, the inclusion of blue zones (aquatic habitats) in modern urban development practices is strongly recommended, as they could be beneficial for the local biodiversity conservation. Odonata are a flagship group and are widely used in freshwater conservation as ecological indicators of habitat integrity and health. However, our understanding of their ecological requirements in urban landscapes is not yet complete. Therefore, we analyzed the taxonomic and functional diversity of Odonata in a semi-natural wetland in the Croatian capital. This study was conducted in the summers of 2020 and 2023. Most taxonomic and functional assemblage metrics were comparable between the two main habitat types, anthropogenically disturbed and natural oxbow lakes. However, significant differences were found in relation to the time scale, where most metrics were lower in 2023, indicating the negative impact of extreme climate events (including droughts) that occurred in this region after 2020. With 19 species recorded, our results indicate that semi-natural urban wetlands, especially natural oxbow lakes, have great potential to function as good habitats for Odonata, where even some species of conservation concern were detected. When developing landscape management plans in urban areas, it is essential to consider the importance of habitat heterogeneity in terms of good structure of aquatic macrophytes (presence of submerged, emergent and floating vegetation), which would ensure the most suitable habitat conditions for local Odonata species.

18.
Front Immunol ; 15: 1286352, 2024.
Article in English | MEDLINE | ID: mdl-38515744

ABSTRACT

The world's largest extant carnivorous marsupial, the Tasmanian devil, is challenged by Devil Facial Tumor Disease (DFTD), a fatal, clonally transmitted cancer. In two decades, DFTD has spread across 95% of the species distributional range. A previous study has shown that factors such as season, geographic location, and infection with DFTD can impact the expression of immune genes in Tasmanian devils. To date, no study has investigated within-individual immune gene expression changes prior to and throughout the course of DFTD infection. To explore possible changes in immune response, we investigated four locations across Tasmania that differed in DFTD exposure history, ranging between 2 and >30 years. Our study demonstrated considerable complexity in the immune responses to DFTD. The same factors (sex, age, season, location and DFTD infection) affected immune gene expression both across and within devils, although seasonal and location specific variations were diminished in DFTD affected devils. We also found that expression of both adaptive and innate immune genes starts to alter early in DFTD infection and continues to change as DFTD progresses. A novel finding was that the lower expression of immune genes MHC-II, NKG2D and CD8 may predict susceptibility to earlier DFTD infection. A case study of a single devil with regressed tumor showed opposite/contrasting immune gene expression patterns compared to the general trends observed across devils with DFTD infection. Our study highlights the complexity of DFTD's interactions with the host immune system and the need for long-term studies to fully understand how DFTD alters the evolutionary trajectory of devil immunity.


Subject(s)
Daunorubicin/analogs & derivatives , Facial Neoplasms , Marsupialia , Animals , Facial Neoplasms/genetics , Facial Neoplasms/veterinary , Immune System/pathology , Gene Expression , Marsupialia/genetics
19.
Evol Appl ; 17(3): e13681, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38516205

ABSTRACT

Populations composed of individuals descended from multiple distinct genetic lineages often feature significant differences in phenotypic frequencies. We considered hatchery production of steelhead, the migratory anadromous form of the salmonid species Oncorhynchus mykiss, and investigated how differences among genetic lineages and environmental variation impacted life history traits. We genotyped 23,670 steelhead returning to the four California Central Valley hatcheries over 9 years from 2011 to 2019, confidently assigning parentage to 13,576 individuals to determine age and date of spawning and rates of iteroparity and repeat spawning within each year. We found steelhead from different genetic lineages showed significant differences in adult life history traits despite inhabiting similar environments. Differences between coastal and Central Valley steelhead lineages contributed to significant differences in age at return, timing of spawning, and rates of iteroparity among programs. In addition, adaptive genomic variation associated with life history development in this species varied among hatchery programs and was associated with the age of steelhead spawners only in the coastal lineage population. Environmental variation likely contributed to variations in phenotypic patterns observed over time, as our study period spanned both a marine heatwave and a serious drought in California. Our results highlight evidence of a strong genetic component underlying known phenotypic differences in life history traits between two steelhead lineages.

20.
Microbiol Spectr ; 12(4): e0012824, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38483475

ABSTRACT

Two Wolbachia strains, wMel and wAlbB, have been transinfected into Aedes aegypti mosquitoes for population replacement with the aim of reducing dengue transmission. Epidemiological data from various endemic sites suggest a pronounced decrease in dengue transmission after implementing this strategy. In this study, we investigated the impact of the Wolbachia strains wMel and wAlbB on Ae. aegypti fitness in a common genetic background. We found that Ae. aegypti females infected with the wMel strain exhibited several significant differences compared with those infected with the wAlbB strain. Specifically, wMel-infected females laid significantly fewer eggs, ingested a lower amount of blood, had a reduced egg production rate, and exhibited a decreased Wolbachia density at a later age compared with mosquitoes infected with the wAlbB strain. Conversely, the wAlbB strain showed only mild negative effects when compared with Wolbachia-uninfected specimens. These differential effects on Ae. aegypti fitness following infection with either wMel or wAlbB may have important implications for the success of population replacement strategies in invading native Ae. aegypti populations in endemic settings. Further research is needed to better understand the underlying mechanisms responsible for these differences in fitness effects and their potential impact on the long-term efficacy of Wolbachia-based dengue control programs.IMPORTANCEThe transmission of arboviruses such as dengue, Zika, and chikungunya is on the rise globally. Among the most promising strategies to reduce arbovirus burden is the release of one out of two strains of Wolbachia-infected Aedes aegypti: wMel and wAlbB. One critical aspect of whether this approach will succeed involves the fitness cost of either Wolbachia strains on mosquito life history traits. For instance, we found that wMel-infected Ae. aegypti females laid significantly fewer eggs, ingested a lower amount of blood, had a reduced egg production rate, and exhibited a decreased Wolbachia density at a later age compared with mosquitoes infected with the wAlbB strain. Conversely, the wAlbB strain showed only mild negative effects when compared with Wolbachia-uninfected specimens. These differential effects on mosquito fitness following infection with either wMel or wAlbB may have important implications for the success of population replacement strategies in invading native Ae. aegypti populations.


Subject(s)
Aedes , Dengue , Wolbachia , Zika Virus Infection , Zika Virus , Animals , Female , Fertility , Dengue/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...