Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Biotechnol J ; 19(1): e2300251, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37974555

ABSTRACT

Tendon/ligament (T/L) injuries are a worldwide health problem that affects millions of people annually. Due to the characteristics of tendons, the natural rehabilitation of their injuries is a very complex and lengthy process. Surgical treatment of a T/L injury frequently necessitates using autologous or allogeneic grafts or synthetic materials. Nonetheless, these alternatives have limitations in terms of mechanical properties and histocompatibility, and they do not permit the restoration of the original biological function of the tissue, which can negatively impact the patient's quality of life. It is crucial to find biological materials that possess the necessary properties for the successful surgical treatment of tissues and organs. In recent years, the in vitro regeneration of tissues and organs from stem cells has emerged as a promising approach for preparing autologous tissue and organs, and cell culture scaffolds play a critical role in this process. However, the biological traits and serviceability of different materials used for cell culture scaffolds vary significantly, which can impact the properties of the cultured tissues. Therefore, this review aims to analyze the differences in the biological properties and suitability of various materials based on scaffold characteristics such as cell compatibility, degradability, textile technologies, fiber arrangement, pore size, and porosity. This comprehensive analysis provides valuable insights to aid in the selection of appropriate scaffolds for in vitro tissue and organ culture.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Humans , Quality of Life , Ligaments , Tendons
3.
Eur Spine J ; 30(10): 3043-3058, 2021 10.
Article in English | MEDLINE | ID: mdl-33977348

ABSTRACT

PURPOSE: We present a unique opportunity to compare standard neck injury criteria (used by the automotive industry to predict injury) with real-life injuries. The injuries sustained during, and the overall kinematics of, a television demonstration of whiplash mechanics were used to inform and validate a vertebral level model of neck mechanics to examine the relevance of current injury criteria used by the automotive industry. METHODS: Frontal and rear impact pulses, obtained from videos of sled motion, were used to drive a MADYMO human model to generate detailed segmental level biomechanics. The maximum amplitude of the frontal and rear crash pulses was 166 ms-2 and 196 ms-2, respectively, both with a duration of 0.137 s. The MADYMO model was used to predict standard automotive neck injury criteria as well as detailed mechanics of each cervical segment. RESULTS: Whilst the subject suffered significant upper neck injuries, these were not predicted by conventional upper neck injury criteria (Nij and Nkm). However, the model did predict anterior accelerations of C1 and C2 of 40 g, which is 5 times higher than the threshold of the acceleration for alar ligament injury. Similarly, excessive anterior shear displacement (15 mm) of the skull relative to C2 was predicted. Predictions of NIC, an injury criterion relevant to the lower neck, as well as maximum flexion angles for the lower cervical segments (C3-T1) exceeded injury thresholds. CONCLUSION: The criteria used by the automotive industry as standard surrogates for upper neck injury (Nij and Nkm) did not predict the significant cranio-cervical junction injury observed clinically.


Subject(s)
Neck Injuries , Whiplash Injuries , Accidents, Traffic , Biomechanical Phenomena , Humans , Neck , Neck Injuries/etiology
4.
Journal of Medical Biomechanics ; (6): E078-E082, 2016.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-804072

ABSTRACT

Ankle sprains are one of the most common surgical injuries in clinic. In this article, the foot anatomy structure was elaborated, and the biomechanics of ankle ligaments during sports was mainly reviewed. At the same time, the mechanism of ankle sprains was analyzed, the principal means of ankle sprains, prevention and rehabilitation at present were summarized, and the use of ankle braces to prevent ankle sprains as well as its research progress were introduced emphatically. The classification and characteristics of ankle braces were then summarized, and the prevention of ankle sprains and development of ankle braces were prospected. The multiple ankle lateral ligament damage was due to the physiological structure differences between lateral and medial ligaments of the ankle joints, and such structure characteristic should be considered while improving ankle braces and designing new ankle braces. Wearing ankle braces plays a key role in ankle sprains protection, which can shorten the recovery time and avoid re-injury in clinical rehabilitation. For rehabilitation of severe ankle sprains, semi-rigid ankle braces are better than elastic ones.

SELECTION OF CITATIONS
SEARCH DETAIL
...