Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 866
Filter
1.
Phytochemistry ; 226: 114208, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972441

ABSTRACT

Acanthopanacis cortex (the dried root bark of Acanthopanax gracilistylus W. W. Smith) has been used for the treatment of rheumatic diseases in China for over 2000 years. Four previously undescribed lignans (1-4) and 12 known lignans (5-16) were isolated from Acanthopanacis cortex. In this study, the inhibitory activities of compounds 1-16 against neutrophil elastase (NE), cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) are reported. The results show that compounds 1-16 exhibit weak inhibitory activities against NE and COX-1. However, compounds 2, 6-8 and 13-16 demonstrate better COX-2 inhibitory effects with IC50 values from 0.75 to 8.17 µΜ. These findings provide useful information for the search for natural selective COX-2 inhibitors.

2.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000185

ABSTRACT

Furofuran lignans have been identified as the main substances responsible for the biological activities of the plant genus Phryma. Here, four new phrymarolin-type leptolignans A-D (7-10) and eight previously known lignans were isolated from P. leptostachya. Of these, nine exhibited significant antifeedant activity against armyworm (Mythimna separata) through a dual-choice bioassay, with the EC50 values ranging from 0.58 to 10.08 µg/cm2. In particular, the newly identified lignan leptolignan A (7) showed strong antifeedant activity, with an EC50 value of 0.58 ± 0.34 µg/cm2. Further investigation found that leptolignan A can inhibit the growth and nutritional indicators in the armyworm M. separata. The concentrations of two molting hormones, 20-hydroxyecdysone and ecdysone, were also found to decrease significantly following the treatment of the armyworms with the lignan, implying that the target of the P. leptostachya lignan may be involved in 20-hydroxyecdysone and ecdysone synthesis. These results enrich our knowledge of P. leptostachya metabolite structural diversity, and provide a theoretical basis for the control of armyworm using lignans.


Subject(s)
Lignans , Animals , Lignans/pharmacology , Lignans/chemistry , Ecdysterone/pharmacology , Ecdysterone/metabolism , Moths/drug effects , Moths/growth & development , Moths/metabolism , Ecdysone/metabolism , Molting/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry
3.
Crit Rev Food Sci Nutr ; : 1-21, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38952149

ABSTRACT

The enterolignans, enterolactone and enterodiol, the main metabolites produced from plant lignans by the gut microbiota, have enhanced bioavailability and activity compared to their precursors, with beneficial effects on metabolic and cardiovascular health. Although extensively studied, the biosynthesis, cardiometabolic effects, and other therapeutic implications of mammalian lignans are still incompletely understood. The aim of this review is to provide a comprehensive overview of these phytoestrogen metabolites based on up-to-date information reported in studies from a wide range of disciplines. Established and novel synthetic strategies are described, as are the various lignan precursors, their dietary sources, and a proposed metabolic pathway for their conversion to enterolignans. The methodologies used for enterolignan analysis and the available data on pharmacokinetics and bioavailability are summarized and their cardiometabolic bioactivity is explored in detail. The special focus given to research on the health benefits of microbial-derived lignan metabolites underscores the critical role of lignan-rich diets in promoting cardiovascular health.

4.
Phytochemistry ; 226: 114217, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38972442

ABSTRACT

Anemone vitifolia is a small herb found in Asia that is used to treat a range of diseases in Chinese traditional medicine. GNPS-based molecular networking of an Anemone vitifolia specimen revealed the presence of a network containing numerous ions indicating the presence of lignans, several of which suggested that there might be previously undescribed compounds in the extract. Fractionation of the organic extract yielded five undescribed lignans, the vitifolignans, together with one known. The structures were identified based on extensive spectroscopic data analysis (NMR, HR-ESI-MS, and UV), coupling constant calculation and comparison with reported data. Their absolute configurations were determined by comparison of experimental ECD spectra with calculated spectra. Compounds 4/5 showed weak inhibition of LPS-induced NO production in mouse mononuclear macrophages.

5.
Molecules ; 29(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38999055

ABSTRACT

Lignans, a class of secondary metabolites found in plants, along with their derivatives, exhibit diverse pharmacological activities, including antioxidant, antimicrobial, anti-inflammatory, and antiangiogenic ones. Angiogenesis, the formation of new blood vessels from pre-existing ones, is a crucial process for cancer growth and development. Several studies have elucidated the synergistic relationship between angiogenesis and inflammation in various inflammatory diseases, highlighting a correlation between inflammation and vascular endothelial growth factor (VEGF)-induced angiogenesis. Thus, the identification of novel molecules capable of modulating VEGF effects presents promising prospects for developing therapies aimed at stabilizing, reversing, or even arresting disease progression. Lignans often suffer from low aqueous solubility and, for their use, encapsulation in a delivery system is needed. In this research, a bioinspired benzoxantene has been encapsulated in solid lipid nanoparticles that have been characterized for their pharmacotechnical properties and their thermotropic behavior. The effects of these encapsulated nanoparticles on angiogenic parameters and inflammation in VEGF-induced angiogenesis were evaluated using human brain microvascular endothelial cells (HBMECs) as a human blood-brain barrier model.


Subject(s)
Blood-Brain Barrier , Inflammation , Nanoparticles , Vascular Endothelial Growth Factor A , Humans , Nanoparticles/chemistry , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Vascular Endothelial Growth Factor A/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Lipids/chemistry , Neovascularization, Physiologic/drug effects , Angiogenesis , Liposomes
6.
Microb Cell Fact ; 23(1): 193, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970026

ABSTRACT

BACKGROUND: Due to the complexity of the metabolic pathway network of active ingredients, precise targeted synthesis of any active ingredient on a synthetic network is a huge challenge. Based on a complete analysis of the active ingredient pathway in a species, this goal can be achieved by elucidating the functional differences of each enzyme in the pathway and achieving this goal through different combinations. Lignans are a class of phytoestrogens that are present abundantly in plants and play a role in various physiological activities of plants due to their structural diversity. In addition, lignans offer various medicinal benefits to humans. Despite their value, the low concentration of lignans in plants limits their extraction and utilization. Recently, synthetic biology approaches have been explored for lignan production, but achieving the synthesis of most lignans, especially the more valuable lignan glycosides, across the entire synthetic network remains incomplete. RESULTS: By evaluating various gene construction methods and sequences, we determined that the pCDF-Duet-Prx02-PsVAO gene construction was the most effective for the production of (+)-pinoresinol, yielding up to 698.9 mg/L after shake-flask fermentation. Based on the stable production of (+)-pinoresinol, we synthesized downstream metabolites in vivo. By comparing different fermentation methods, including "one-cell, one-pot" and "multicellular one-pot", we determined that the "multicellular one-pot" method was more effective for producing (+)-lariciresinol, (-)-secoisolariciresinol, (-)-matairesinol, and their glycoside products. The "multicellular one-pot" fermentation yielded 434.08 mg/L of (+)-lariciresinol, 96.81 mg/L of (-)-secoisolariciresinol, and 45.14 mg/L of (-)-matairesinol. Subsequently, ultilizing the strict substrate recognition pecificities of UDP-glycosyltransferase (UGT) incorporating the native uridine diphosphate glucose (UDPG) Module for in vivo synthesis of glycoside products resulted in the following yields: (+)-pinoresinol glucoside: 1.71 mg/L, (+)-lariciresinol-4-O-D-glucopyranoside: 1.3 mg/L, (+)-lariciresinol-4'-O-D-glucopyranoside: 836 µg/L, (-)-secoisolariciresinol monoglucoside: 103.77 µg/L, (-)-matairesinol-4-O-D-glucopyranoside: 86.79 µg/L, and (-)-matairesinol-4'-O-D-glucopyranoside: 74.5 µg/L. CONCLUSIONS: By using various construction and fermentation methods, we successfully synthesized 10 products of the lignan pathway in Isatis indigotica Fort in Escherichia coli, with eugenol as substrate. Additionally, we obtained a diverse range of lignan products by combining different modules, setting a foundation for future high-yield lignan production.


Subject(s)
Biosynthetic Pathways , Escherichia coli , Glycosides , Lignans , Lignans/biosynthesis , Lignans/metabolism , Glycosides/biosynthesis , Glycosides/metabolism , Escherichia coli/metabolism , Escherichia coli/genetics , Metabolic Engineering/methods , Fermentation , Synthetic Biology/methods , Furans/metabolism
7.
Front Nutr ; 11: 1409309, 2024.
Article in English | MEDLINE | ID: mdl-38933882

ABSTRACT

Lignans are phytoestrogens found in various forms such as glycosides, ester-linked oligomers, and aglycones in a variety of foods, including soy products, legumes, grains, nuts, vegetables, and fruits. This study aimed to optimize the extraction of lignans from cereal grains using response surface methodology (RSM). Lignans, including secoisolariciresinol (Seco), matairesinol (Mat), pinoresinol (Pin), lariciresinol (Lar), and syringaresinol (Syr), were quantified using high-performance liquid chromatography-tandem mass spectrometry. A Box-Behnken design was employed to determine the optimal values for three extraction parameters: temperature (X1: 20°C-60°C), methanol concentration (X2: 60%-100%), and extraction time (X3: 30-90 min). The highest lignan contents were obtained at X1 = 44.24°C, X2 = 84.64%, and X3 = 53.63 min. To apply these experimental conditions to the actual experiment, the optimal conditions were slightly adjusted to X1 = 40°C, X2 = 80%, and X3 = 60 min. The predicted results closely matched the experimental results obtained using the modified optimal extraction conditions. The highest lignan content found in barley sprouts (85.930 µg/100 g), however, most grains exhibited relatively low concentrations of lignans. These findings provide valuable insights into the lignan content of grains and contribute to the generation of reliable data in this field.

8.
J Ethnopharmacol ; 333: 118483, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38914150

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Acetaminophen (APAP) induced liver injury (AILI) is a common cause of clinical hepatic damage and even acute liver failure. Our previous research has shown that Schisandra chinensis lignan extract (SLE) can exert a hepatoprotective effect by regulating lipid metabolism. Although polysaccharides from Schisandra chinensis (S. chinensis), like lignans, are important components of S. chinensis, their pharmacological activity and target effects on AILI have not yet been explored. AIM OF THE STUDY: This study aims to quantitatively reveal the role of SCP in the pharmacological activity of S. chinensis, and further explore the pharmacological components, potential action targets and mechanisms of S. chinensis in treating AILI. MATERIALS AND METHODS: The therapeutic effect of SCP on AILI was systematically determined via comparing the efficacy of SCP and SLE on in vitro and in vivo models. Network pharmacology, molecular docking and multi-omics techniques were then used to screen and verify the action targets of S. chinensis against AILI. RESULTS: SCP intervention could significantly improve AILI, and the therapeutic effect was comparable to that of SLE. Notably, the combination of SCP and SLE did not produce mutual antagonistic effects. Subsequently, we found that both SCP and SLE could significantly reverse the down-regulation of GPX4 caused by the APAP modeling, and then further improving lipid metabolism abnormalities. CONCLUSIONS: Hepatoprotective effects of SCP and SLE is most correlated with their regulation of GSH/GPX4-mediated lipid accumulation. This is the first exploration of the hepatoprotective effect and potential mechanism of SCP in treating AILI, which is crucial for fully utilizing S. chinensis and developing promising AILI therapeutic agents.

9.
Funct Integr Genomics ; 24(3): 112, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38849609

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC), a globally common cancer, often presents late and shows high resistance to chemotherapy, resulting in suboptimal treatment efficacy. Components from traditional Chinese medicines have been recognized for their anti-cancer properties. OBJECTIVE: Exploring the mechanism of Schisandra chinensis lignans and acteoside in suppressing Epithelial-Mesenchymal Transition (EMT) in hepatoma cells through the Extracellular signal-Regulated Kinases (ERK)1/2 pathway and identifying biomarkers, molecular subtypes, and targets via multi-omics for precision oncology. METHODS: Proliferation was assessed using cell counting kit-8 (CCK-8) assays, with scratch and transwell assays for evaluating invasion and migration. Flow cytometry quantified apoptosis rates. Expression levels of CCL20, p-ERK1/2, c-Myc, Vimentin, and E-cadherin/N-cadherin were analyzed by real-time PCR and Western blot. Tumor volume was calculated with a specific formula, and growth. RESULTS: The Schisandra chinensis lignans and acteoside combination decreased CCL20 expression, inhibited hepatoma proliferation and migration, and enhanced apoptosis in a dose- and time-dependent manner. Molecular analysis revealed increased E-cadherin and decreased N-cadherin, p-ERK1/2, c-Myc, and Vimentin expression, indicating ERK1/2 pathway modulation. In vivo, treated nude mice showed significantly reduced tumor growth and volume. CONCLUSION: Schisandra chinensis lignans and acteoside potentially counteract CCL20-induced EMT, invasion, and migration in hepatocellular carcinoma cells via the ERK1/2 pathway, enhancing apoptosis. Multi-omics analysis further aids in pinpointing novel biomarkers for precision cancer therapy.


Subject(s)
Apoptosis , Carcinoma, Hepatocellular , Cell Proliferation , Epithelial-Mesenchymal Transition , Glucosides , Lignans , Liver Neoplasms , MAP Kinase Signaling System , Phenols , Schisandra , Epithelial-Mesenchymal Transition/drug effects , Humans , Lignans/pharmacology , Schisandra/chemistry , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Animals , Mice , Cell Proliferation/drug effects , MAP Kinase Signaling System/drug effects , Phenols/pharmacology , Glucosides/pharmacology , Apoptosis/drug effects , Cell Movement/drug effects , Mice, Nude , Cell Line, Tumor , Chemokine CCL20/metabolism , Chemokine CCL20/genetics , Mice, Inbred BALB C , Hep G2 Cells , Multiomics , Polyphenols
10.
Inflammation ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38878150

ABSTRACT

Neuroinflammation is a causative factor in neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease and amyotrophic lateral sclerosis. Previous studies have shown that Artemisia mongolica has anti-inflammatory properties. Aschantin (AM3) has been shown to have anti-inflammatory effects. However, the mechanism of AM3 and its epimer epi-aschantin (AM2) remains controversial. Therefore, the present study explored the mechanism of neuroinflammation by AM2 and AM3 and attempted to reveal the relationship between the structure of AM2 and AM3 and anti-neuroinflammatory activity. We isolated for the first time 12 lignans from A. mongolica that inhibited NO content at 10 µM in LPS-stimulated BV2 cells. Among them, epi-aschantin (AM2) and Aschantin (AM3) showed significant inhibition in NO screening. With further studies, we found that both AM2 and AM3 effectively inhibited the overproduction of NO, PGE2, IL-6, TNF-α and MCP-1, as well as the overexpression of COX-2 and iNOS. Mechanistic studies have shown AM2 and AM3 significantly inhibited the phosphorylation of ERK, JNK and P-38 in the MAPK signaling pathway and p-IκBα,p-p65 and blocked p65 entry into the nucleus. The results suggested that the pair of epimers (AM2 and AM3) can be used as potential therapeutic agents in the treatment of various brain disorders and that structural differences do not differ in anti-neuroinflammatory effects.

11.
Article in English | MEDLINE | ID: mdl-38935211

ABSTRACT

In this work the influence of o-fluorine substituents on the photo-dehydro-Diels-Alder (PDDA) reaction was investigated and the findings of this study were applied to the total synthesis of natural products. The reactant molecules consisted of two alkyl arylpropiolates, connected by a suberic acid tether and bearing fluorine substituents in each of the o-positions. While quantum chemical calculations suggested that a fluorine substituent prevents an attack of the adjacent carbon atom in the second C-C bond forming step of the PDDA reaction, this attack took place nevertheless. The subsequent fluoride elimination, assisted by protic solvents or trialkylsilanes, resulted in an "Umpolung" of the 4-position of the cycloallene intermediate enabling the introduction of nucleophiles at this position. The nucleophilic replacement of the second fluorine substituent could also be triggered photochemically. After removal of the tether, the two arene moieties stand nearly perpendicular to each other and a selective excitation of the naphthalene moiety was possible. This led to an intramolecular photoinduced electron transfer (PET) followed by a nucleophilic replacement of the fluoride according to a SR+N1Ar* mechanism. The formed phenolic hydroxyl group underwent spontaneous lactonization with the adjacent ester group. Based on these results, the first total synthesis of the lignan Comfreyn A and some structural analogues were developed.

12.
Cell Biochem Biophys ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914838

ABSTRACT

This study aims to investigate the therapeutic potential of herbal remedies, specifically resveratrol and lignans, as alternative treatments for tuberculosis (TB), given the challenges posed by drug-resistant strains and adverse effects of conventional therapies. A comprehensive review of the literature was conducted to analyze the mechanisms of action, safety profiles, and efficacy of resveratrol and lignans in the context of TB management. This review focused on the bactericidal and bacteriostatic effects of these compounds, examining their interaction with Mycobacterium tuberculosis within macrophages. Resveratrol and lignans were found to exhibit significant antibacterial properties through mechanisms such as SIRT1 modulation, coenzyme A transferase inhibition, suppression of intracellular bacterial proliferation in macrophages, and induction of autophagy. These mechanisms contribute to their effectiveness in combating TB and highlight their potential as alternative therapeutic agents.

13.
Nat Prod Res ; : 1-7, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771007

ABSTRACT

Phytochemical study of the leaves of Styrax annamensis Guillaumin resulted in the isolation of a new natural product egonol-3''-sulphate (1), and two new derivatives egonol-3-methyl-D-galactopyranoside (2) and 7-methoxy-2-(3',4'-methylenedioxyphenyl)-benzofuran-5-carboxamide (3). Their chemical structures were -elucidated by spectroscopic data. Compounds 1 and 3 significantly established a great role for the chemotaxonomic aspect. Compound 1 showed cytotoxicity against four cancer cell lines KB, HepG2, Lu, and MCF7 with the IC50 values of 84.90-101.69 µg/mL, and exhibited acetylcholinesterase (AChE) inhibitory activity with the IC50 value of 97.08 µg/mL.

14.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2640-2647, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812164

ABSTRACT

Sinopodophylli Fructus is a traditional medicine used by the Tibetan people. It is known for its ability to regulate menstruation and promote blood circulation. Presently, bioactive constituents that have been isolated and identified from Sinopodophylli Fructus mainly include 15 lignans(e.g., podophyllotoxin, deoxypodophyllotoxin, and 4'-demethylpodophyllotoxin) and 20 flavonoids(e.g., quercetin, kaempferol, and rutin). These components exhibit pharmacological effects such as anticancer, antibacterial, and lipid-lowering activities. Additionally, Sinopodophylli Fructus contains other components such as proteins, fatty acids, polysaccharides, vitamins, amino acids, and trace elements. According to the relevant literature reports in China and abroad, this article reviewed the chemical constituents and pharmacological effects of Sinopodophylli Fructus, aiming to provide references for the development and rational clinical application of this medicinal resource.


Subject(s)
Drugs, Chinese Herbal , Medicine, Tibetan Traditional , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Animals , Flavonoids/chemistry , Flavonoids/pharmacology , Fruit/chemistry
15.
Fitoterapia ; 177: 106040, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38801892

ABSTRACT

Four new lignans named cephaliverins A-D (1-4), along with seven known analogues (5-11), were isolated from Cephalotaxus oliveri Mast. Their structures were elucidated on the basis of HR-ESI-MS and NMR analyses, and their absolute configurations were determined by ECD comparison. Cephaliverin A (1), herpetotriol (5) and hedyotol A (6) exhibited moderate antitumor activity against HepG2 and A549 cell lines.

16.
Article in English | MEDLINE | ID: mdl-38695909

ABSTRACT

Lignans are biologically active compounds widely distributed, recognized, and identified in seeds, fruits, and vegetables. Lignans have several intriguing bioactivities, including anti-inflammatory, antioxidant, and anticancer activities. Nrf2 controls the expression of many cytoprotective genes. Activation of Nrf2 is a promising therapeutic approach for treating and preventing diseases resulting from oxidative injury and inflammation. Lignans have been demonstrated to stimulate Nrf2 signaling in a variety of in vitro and experimental animal models. The review summarizes the findings of fourteen lignans (Schisandrin A, Schisandrin B, Schisandrian C, Magnolol, Honokiol, Sesamin, Sesamol, Sauchinone, Pinoresinol, Phyllanthin, Nectandrin B, Isoeucommin A, Arctigenin, Lariciresinol) as antioxidative and anti-inflammatory agents, affirming how Nrf2 activation affects their pharmacological effects. Therefore, lignans may offer therapeutic candidates for the treatment and prevention of various diseases and may contribute to the development of effective Nrf2 modulators.

17.
J Dairy Sci ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38762110

ABSTRACT

Flaxseed is the richest source of secoisolariciresinol diglucoside, which is converted by ruminal microorganisms primarily to the mammalian lignan enterolactone. Our objective was to investigate the effect of diets containing soybean meal or flaxseed meal (FM) supplemented with sucrose, flaxseed oil, or both on milk enterolactone concentration and yield, diversity and relative abundance of ruminal bacterial taxa, ruminal fermentation profile, production performance, milk fatty acid (FA) yield, and nutrient utilization in dairy cows. Sixteen Holstein cows [8 multiparous (4 ruminally-cannulated) and 8 primiparous] averaging (mean ± SD) 134 ± 54.1 DIM and 679 ± 78.9 kg of BW in the beginning of the study were assigned to treatment sequences in a replicated 4 × 4 Latin square design. Each experimental period lasted 25 d with 18 d for diet adaptation and 7 d for data and sample collection. Diets were formulated to contain a 60:40 forage:concentrate ratio and included (DM basis): 1) 8% soybean meal and 23% ground corn (SBM), 2) 15% FM, 10.7% ground corn, and 5% sucrose (FLX+S), 3) 15% FM, 15.4% ground corn, and 3% flaxseed oil (FLX+O), and 4) 15% FM, 10.2% ground corn, 5% sucrose, and 3% flaxseed oil (FLX+SO). Compared with SBM, the concentration and yield of milk enterolactone increased in cows fed the FM diets, but did not differ among FLX+S, FLX+O, and FLX+SO. The relative abundances of the phyla Firmicutes, Verrucomicrobiota, and Actinobacteriota and those of the bacterial genera Lachnospiraceae NK3A20 group, Eubacterium coprostanoligenes group, Anaeromusa-Anaeroarcus, WCHB1-41, and p-251-o5 decreased, whereas Prevotella and NK4A214 group increased when comparing SBM against at least 1 diet containing FM. Furthermore, the relative abundances of Firmicutes and Actinobacteriota and those of Prevotella, Lachnospiraceae NK3A20 group, Eubacterium coprostanoligenes group, Acetitomaculum, Lachnospiraceae unclassified, NK4A214 group, and Anaeromusa-Anaeroarcus changed (increased or decreased) across the FLX+S, FLX+O, and FLX+SO diets. However, all these changes in the relative abundance of the ruminal bacterial taxa were not conclusively associated with the effect of diets on milk enterolactone. Diets did not affect ruminal pH and concentrations of NH3-N and total VFA. Dry matter intake and yields of milk, milk fat, and milk true protein all decreased in cows fed FLX+O or FLX+SO. Yields of milk total odd-chain FA, branched-chain FA, total < 16C FA, and total 16C FA all decreased with feeding FLX+O and FLX+SO. The apparent total-tract digestibilities of DM and OM were lowest in the FLX+S and FLX+O diets, with CP and ADF digestibilities lowest in cows receiving FLX+S or FLX+O, respectively. Urinary excretion of total N was lowest with feeding SBM. Contrarily, diets did not affect the urinary excretion of total purine derivatives. In brief, despite the effect of diets on the relative abundance of several ruminal microbiota phyla and genera, we were unable to conclusively associate these changes with increased milk enterolactone in FM-containing diets versus SBM.

18.
Nat Prod Res ; : 1-9, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767208

ABSTRACT

A new lignan phyllanins A (1) and a lignan phyllanins B (2) for which the absolute configuration was determined for the first time, along with four known lignans (3-6) were isolated from the branch and leaf extracts of Phyllanthodendron dunnianum. Their planar structures were mainly determined by a combination of 1D and 2D NMR, HRESIMS spectral analyses, and the absolute configurations of the compounds 1 and 2 were established by DFT GIAO 13C NMR and electronic circular dichroism (ECD) calculations. In addition, all these six lignans were firstly tested for the antibacterial activities against MRSA, Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa and Escherichia coli. Among these compounds, 2 and 5 showed potential antibacterial activities against MRSA and S. aureus with MIC values of 4 and 8 µg/mL, respectively.

19.
Sci Rep ; 14(1): 11568, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773157

ABSTRACT

Artemisia cina (Ac) is a plant with anthelmintic compounds such as 3'-demethoxy-6-O-demethylisoguaiacin (D) and norisoguaiacin (N). Three major objectives were proposed: (1) To evaluate biochemical parameters in blood (2) to determine the tissue oxidative stress by biomarkers as TBARS and glutathione peroxidase activity, and (3) to evaluate anatomopathological changes in organs such as the brain, liver, kidney, and lung after oral administration of n-hexane extract of Ac and D and N. D and N were administrated following the OECD guides for acute oral toxicity evaluation (Guide 420). Fifty Wistar rats were distributed into ten groups as follows: Group 1 (G1): 4 mg/Kg; G2: 40 mg/Kg; G3: 240 mg/Kg; G4: 1600 mg/Kg of n-hexane extract of Ac. G5: 2 mg/Kg; G6: 20 mg/Kg; G7: 120 mg/Kg; G8: 800 mg/Kg of D and N, G9: water and G10: polyvinylpyrrolidone at 2000 mg/Kg. At 14 days, the rats were euthanized, and the blood, liver, brain, kidney, and lung were taken for biochemical analysis, anatomopathological changes, and TBARS and GSH evaluation. Glucose, cholesterol, and phosphorus were altered. Histopathological analysis showed multifocal neuronal degeneration in the brain (G2). The kidney and lungs had changes in G7. The GSH and TBARS increased in G6 and G7. The TBARS activity was higher in G1 and G2. In conclusion, extract and D and N of Ac did not have damage at therapeutic doses. D, N, and n-hexane extract of A. cina do not cause histopathological damage at pharmaceutical doses. Still, the brain, kidney, and liver are related to biochemical parameters at higher doses. However, compounds are proposed as antioxidant agents.


Subject(s)
Biomarkers , Oxidative Stress , Plant Extracts , Rats, Wistar , Animals , Oxidative Stress/drug effects , Rats , Plant Extracts/pharmacology , Plant Extracts/chemistry , Male , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Brain/pathology , Brain/drug effects , Brain/metabolism , Liver/drug effects , Liver/pathology , Liver/metabolism , Glutathione Peroxidase/metabolism , Thiobarbituric Acid Reactive Substances/metabolism
20.
Plant Foods Hum Nutr ; 79(2): 497-502, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38589624

ABSTRACT

Metabolites of the edible and medicinal plant Arctium have been shown to possess beneficial activities. The phytochemical profile of Arctium lappa is well-explored and its fruits are known to contain mainly lignans, fatty acids, and sterols. But the fruits of other Arctium species have not been thoroughly investigated. Therefore, this study compares the metabolic profiles of the fruits of A. lappa, Arctium tomentosum, and Arctium minus. Targeted metabolomics led to the putative identification of 53 metabolites in the fruit extracts, the majority of these being lignans and fatty acids. Quantification of the major lignans showed that the year of collection had a significant effect on the lignan content. Furthermore, A. lappa fruits contained lesser amounts of arctigenin but greater amounts of arctigenin glycoside than A. minus fruits. Regarding the profile of fatty acids, A. minus fruits differed from the others in the presence of linolelaidic acid.


Subject(s)
Arctium , Fatty Acids , Fruit , Lignans , Plant Extracts , Arctium/chemistry , Fruit/chemistry , Lignans/analysis , Fatty Acids/analysis , Fatty Acids/metabolism , Plant Extracts/analysis , Plant Extracts/chemistry , Furans/analysis , Furans/metabolism , Phytochemicals/analysis , Metabolome , Metabolomics
SELECTION OF CITATIONS
SEARCH DETAIL
...