Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58.064
Filter
1.
J Colloid Interface Sci ; 675: 580-591, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38986331

ABSTRACT

Single-atom nanozymes (SANZs) have emerged as new media for enhancing chemodynamic therapy (CDT) to achieve desirable enzyme-like effects and excellent nanoscale specificity. However, non-optimal adsorption of Fenton-like reaction intermediates prevents SANZs from exerting kinetic activity and hinders the CDT effect. Herein, we demonstrate that heteroatom-doped Co single-atom nanozymes (SACNZs) with intrinsic charge transfer exhibit peroxidase-like properties and significantly improve the ability of CDT to treat Staphylococcus aureus-infected wounds. Density functional theory calculations showed that the S-induced charge transfer effect regulated the electronic distribution of the central metal more efficiently than P, thereby lowering the energy levels for the generation of OH and increasing the catalytic effect. Polyvinylpyrrolidone-modified SACNZs showed effects consistent with this theory in both in vitro antibacterial and in vivo ward management assays. This study systematically investigated the relationship between heteroatom-doping and the catalytic activity of metal centres, opening a new perspective for the application of CDT.

2.
Zhongguo Zhen Jiu ; 44(7): 757-61, 2024 Jul 12.
Article in Chinese | MEDLINE | ID: mdl-38986587

ABSTRACT

OBJECTIVE: To observe the clinical effect of the row-like needling along the spleen meridian combined with autonomous functional exercise in treatment of postpartum diastasis recti abdominis. METHODS: A total of 72 patients with postpartum diastasis recti abdominis were randomly divided into an observation group (36 cases, 3 cases excluded) and a control group (36 cases, 3 cases dropped out). In the control group, the autonomous functional exercise was performed on the rectus abdominis. In the observation group, on the basis of the treatment as the control group, the row-like needling along the spleen meridian was delivered. Along the distribution of the spleen meridian on the abdomen, besides Daheng (SP 15), acupuncture was operated at the sites 3 cm and 6 cm directly above and below Daheng (SP 15) bilaterally. Five points on each side were stimulated along the meridian. Acupuncture was delivered once every two days, 3 interventions a week. One course of treatment, composed of 10 treatments, was required. Before treatment and after 5 and 10 treatments, the inter-rectus distance (IRD) and the score of the medical outcomes study 36-item short form health survey (SF-36) were observed in the two groups, respectively. RESULTS: After 5 and 10 treatments, the IRD at the sites 3 cm above the umbilicus, in the center of the umbilicus and below the umbilicus was reduced when compared with that before treatment in the observation group, respectively (P<0.01); and the IRD at the site 3 cm above the umbilicus was decreased in comparison with that before treatment in the control group (P<0.05). After treated for 5 times, compared with the control group, the IRD at the site 3 cm below the umbilicus was reduced in the observation group (P<0.05); and after treated for 10 times, compared with the control group, the IRD at the sites 3 cm above the umbilicus, in the center of the umbilicus and below the umbilicus was reduced in the observation group (P<0.01). After the completion of 5 and 10 treatments, the scores of physical functioning (PF), role-physical (RP), role-emotional (RE) and health change (HC), as well as the total score of SF-36 were all higher than those before treatment in the observation group (P<0.01); while in the control group, the scores of PF, RP and RE, as well as the total score of SF-36 were increased in comparison with those before treatment (P<0.01). After 5 treatments, the scores of general health (GH) and HC in the observation group were higher than those of the control group (P<0.05, P<0.01); and after 10 treatments, the score of PF, GH and HC, as well as the total score of SF-36 in the observation group were higher than those of the control group (P<0.01). CONCLUSION: On the basis of autonomous functional exercise, the row-like needling along the spleen meridian can promote the recovery of postpartum diastasis recti abdominis and improve the quality of life of the patients.


Subject(s)
Acupuncture Therapy , Rectus Abdominis , Spleen , Humans , Female , Adult , Spleen/physiopathology , Young Adult , Postpartum Period , Diastasis, Muscle/therapy , Acupuncture Points , Exercise Therapy , Pregnancy
3.
J Am Pharm Assoc (2003) ; : 102185, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992739

ABSTRACT

OBJECTIVES: Glucagon-like peptide-1 receptor agonist (GLP-1 RA) therapy has demonstrated an increased risk of thyroid C-cell hyperplasia and C-cell tumors in rodents. Due to this risk, a boxed warning for this drug class exists for people with a personal or family history of medullary thyroid carcinoma or multiple endocrine neoplasia syndrome type 2. There is a lack of data regarding any possible effect of GLP-1 RA therapy on serum thyroid levels. The objective of this case report is to describe a case of suppressed thyroid stimulating hormone levels after initiation of a subcutaneous semaglutide in a post-total thyroidectomy patient managed with levothyroxine in order to highlight the need for closer monitoring of these patients and further research in this area. CASE SUMMARY: The patient described in the case underwent a total thyroidectomy in 2015 with stable thyroid hormone replacement requirements with levothyroxine for 5 years until the initiation and titration of subcutaneous semaglutide. The reduction in thyroid stimulating hormone (TSH) after starting GLP-1 RA therapy necessitated a 25 percent dose reduction of levothyroxine from her original dose. PRACTICE IMPLICATIONS: This patient experienced suppressed TSH levels following initiation and titration of subcutaneous semaglutide. The etiology of these changes may be related to the direct effects of GLP-1 RA therapy on TSH levels, changes in absorption related to delayed gastric emptying rates, secondary to GLP-1 RA-associated weight loss, or a combination of these proposed mechanisms. It may be prudent to exercise more frequent monitoring of medications that require weight-based dosing and those with a narrow therapeutic index when initiating and titrating GLP-1 RA-based therapies and is an area of potential study.

4.
J Zhejiang Univ Sci B ; : 1-13, 2024 Jul 09.
Article in English, Chinese | MEDLINE | ID: mdl-38993052

ABSTRACT

Diabetes mellitus (DM) is a disease syndrome characterized by chronic hyperglycaemia. A long-term high-glucose environment leads to reactive oxygen species (ROS) production and nuclear DNA damage. Human umbilical cord mesenchymal stem cell (HUcMSC) infusion induces significant antidiabetic effects in type 2 diabetes mellitus (T2DM) rats. Insulin-like growth factor 1 (IGF1) receptor (IGF1R) is important in promoting glucose metabolism in diabetes; however, the mechanism by which HUcMSC can treat diabetes through IGF1R and DNA damage repair remains unclear. In this study, a DM rat model was induced with high-fat diet feeding and streptozotocin (STZ) administration and rats were infused four times with HUcMSC. Blood glucose, interleukin-6 (IL-6), IL-10, glomerular basement membrane, and renal function were examined. Proteins that interacted with IGF1R were determined through coimmunoprecipitation assays. The expression of IGF1R, phosphorylated checkpoint kinase 2 (p-CHK2), and phosphorylated protein 53 (p-p53) was examined using immunohistochemistry (IHC) and western blot analysis. Enzyme-linked immunosorbent assay (ELISA) was used to determine the serum levels of 8-hydroxydeoxyguanosine (8-OHdG). Flow cytometry experiments were used to detect the surface markers of HUcMSC. The identification of the morphology and phenotype of HUcMSC was performed by way of oil red "O" staining and Alizarin red staining. DM rats exhibited abnormal blood glucose and IL-6/10 levels and renal function changes in the glomerular basement membrane, increased the expression of IGF1 and IGF1R. IGF1R interacted with CHK2, and the expression of p-CHK2 was significantly decreased in IGF1R-knockdown cells. When cisplatin was used to induce DNA damage, the expression of p-CHK2 was higher than that in the IGF1R-knockdown group without cisplatin treatment. HUcMSC infusion ameliorated abnormalities and preserved kidney structure and function in DM rats. The expression of IGF1, IGF1R, p-CHK2, and p-p53, and the level of 8-OHdG in the DM group increased significantly compared with those in the control group, and decreased after HUcMSC treatment. Our results suggested that IGF1R could interact with CHK2 and mediate DNA damage. HUcMSC infusion protected against kidney injury in DM rats. The underlying mechanisms may include HUcMSC-mediated enhancement of diabetes treatment via the IGF1R-CHK2-p53 signalling pathway.

5.
Plant Cell Rep ; 43(7): 187, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958739

ABSTRACT

KEY MESSAGE: MdERF023 is a transcription factor that can reduce salt tolerance by inhibiting ABA signaling and Na+/H+ homeostasis. Salt stress is one of the principal environmental stresses limiting the growth and productivity of apple (Malus × domestica). The APETALA2/ethylene response factor (AP2/ERF) family plays key roles in plant growth and various stress responses; however, the regulatory mechanism involved has not been fully elucidated. In the present study, we identified an AP2/ERF transcription factor (TF), MdERF023, which plays a negative role in apple salt tolerance. Stable overexpression of MdERF023 in apple plants and calli significantly decreased salt tolerance. Biochemical and molecular analyses revealed that MdERF023 directly binds to the promoter of MdMYB44-like, a positive modulator of ABA signaling-mediated salt tolerance, and suppresses its transcription. In addition, MdERF023 downregulated the transcription of MdSOS2 and MdAKT1, thereby reducing the Na+ expulsion, K+ absorption, and salt tolerance of apple plants. Taken together, these results suggest that MdERF023 reduces apple salt tolerance by inhibiting ABA signaling and ion transport, and that it could be used as a potential target for breeding new varieties of salt-tolerant apple plants via genetic engineering.


Subject(s)
Abscisic Acid , Gene Expression Regulation, Plant , Malus , Plant Proteins , Plants, Genetically Modified , Salt Tolerance , Signal Transduction , Sodium , Transcription Factors , Malus/genetics , Malus/metabolism , Malus/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Transcription Factors/metabolism , Transcription Factors/genetics , Salt Tolerance/genetics , Sodium/metabolism , Promoter Regions, Genetic/genetics
6.
Sci Rep ; 14(1): 16240, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39004635

ABSTRACT

To achieve precise grasping and spreading of irregular sheet-like soft objects (such as leather) by robots, this study addresses several challenges, including the irregularity of leather edges and the ambiguity of feature recognition points. To tackle these issues, this paper proposes an innovative method that involves alternately grasping the lowest point twice and using planar techniques to effectively spread the leather. We improved the YOLOV8 algorithm by incorporating the BIFPN network structure and the WIOU loss function, and trained a dedicated dataset for the lowest grasping points and planar grasping points, thereby achieving high-precision recognition. Additionally, we determined the optimal posture for grasping the lowest point and constructed an experimental platform, successfully conducting multiple rounds of leather grasping and spreading experiments with a success rate of 72%. Through an in-depth analysis of the failed experiments, this study reveals the limitations of the current methods and provides valuable guidance for future research.

7.
Expert Opin Pharmacother ; 25(9): 1249-1263, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38954663

ABSTRACT

INTRODUCTION: Metabolic dysfunction-associated steatotic liver disease (MASLD) is defined by hepatic steatosis and cardiometabolic risk factors like obesity, type 2 diabetes, and dyslipidemia. Persistent metabolic injury may promote inflammatory processes resulting in metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis. Mechanistic insights helped to identify potential drug targets, thereby supporting the development of novel compounds modulating disease drivers. AREAS COVERED: The U.S. Food and Drug Administration has recently approved the thyroid hormone receptor ß-selective thyromimetic resmetirom as the first compound to treat MASH and liver fibrosis. This review provides a comprehensive overview of current and potential future pharmacotherapeutic options and their modes of action. Lessons learned from terminated clinical trials are discussed together with the first results of trials investigating novel combinational therapeutic approaches. EXPERT OPINION: Approval of resmetirom as the first anti-MASH agent may revolutionize the therapeutic landscape. However, long-term efficacy and safety data for resmetirom are currently lacking. In addition, heterogeneity of MASLD reflects a major challenge to define effective agents. Several lead compounds demonstrated efficacy in reducing obesity and hepatic steatosis, while anti-inflammatory and antifibrotic effects of monotherapy appear less robust. Better mechanistic understanding, exploration of combination therapies, and patient stratification hold great promise for MASLD therapy.


Subject(s)
Fatty Liver , Humans , Animals , Fatty Liver/drug therapy , Fatty Liver/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Obesity/drug therapy , Obesity/complications , Obesity/metabolism , Drug Development , Metabolic Diseases/drug therapy , Pyridazines , Uracil/analogs & derivatives
8.
Biomaterials ; 311: 122701, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38981152

ABSTRACT

Cuproptosis in antitumor therapy faces challenges from copper homeostasis efflux mechanisms and high glutathione (GSH) levels in tumor cells, hindering copper accumulation and treatment efficacy. Herein, we propose a strategy of "adding fuel to the flames" for potent antitumor therapy through a self-accelerating cycle of ferroptosis-cuproptosis. Disulfiram (DSF) loaded hollow mesoporous copper-iron sulfide (HMCIS) nanoparticle with conjugation of polyethylene glycol (PEG) and folic acid (FA) (i.e., DSF@HMCIS-PEG-FA) was developed to swiftly release DSF, H2S, Cu2+, and Fe2+ in the acidic tumor microenvironment (TME). The hydrogen peroxide (H2O2) levels and acidity within tumor cells enhanced by the released H2S induce acceleration of Fenton (Fe2+) and Fenton-like (Cu2+) reactions, enabling the powerful tumor ferroptosis efficacy. The released DSF acts as a role of "fuel", intensifying catalytic effect ("flame") in tumor cells through the sustainable Fenton chemistry (i.e., "add fuel to the flames"). Robust ferroptosis in tumor cells is characterized by serious mitochondrial damage and GSH depletion, leading to excess intracellular copper that triggers cuproptosis. Cuproptosis disrupts mitochondria, compromises iron-sulfur (Fe-S) proteins, and elevates intracellular oxidative stress by releasing free Fe3+. These interconnected processes form a self-accelerating cycle of ferroptosis-cuproptosis with potent antitumor capabilities, as validated in both cancer cells and tumor-bearing mice.

9.
Open Biol ; 14(7): 240089, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38981514

ABSTRACT

Rheumatoid arthritis is a chronic inflammatory disease that shows characteristic diurnal variation in symptom severity, where joint resident fibroblast-like synoviocytes (FLS) act as important mediators of arthritis pathology. We investigate the role of FLS circadian clock function in directing rhythmic joint inflammation in a murine model of inflammatory arthritis. We demonstrate FLS time-of-day-dependent gene expression is attenuated in arthritic joints, except for a subset of disease-modifying genes. The deletion of essential clock gene Bmal1 in FLS reduced susceptibility to collagen-induced arthritis but did not impact symptomatic severity in affected mice. Notably, FLS Bmal1 deletion resulted in loss of diurnal expression of disease-modulating genes across the joint, and elevated production of MMP3, a prognostic marker of joint damage in inflammatory arthritis. This work identifies the FLS circadian clock as an influential driver of daily oscillations in joint inflammation, and a potential regulator of destructive pathology in chronic inflammatory arthritis.


Subject(s)
ARNTL Transcription Factors , Arthritis, Experimental , Circadian Rhythm , Fibroblasts , Synoviocytes , Animals , Synoviocytes/metabolism , Synoviocytes/pathology , Mice , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Arthritis, Experimental/pathology , Arthritis, Experimental/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Circadian Clocks/genetics , Matrix Metalloproteinase 3/metabolism , Matrix Metalloproteinase 3/genetics , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Mice, Knockout , Disease Models, Animal , Gene Expression Regulation , Male
10.
Cell Rep ; 43(7): 114426, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38959109

ABSTRACT

Understanding the role of B cells in tuberculosis (TB) is crucial for developing new TB vaccines. However, the changes in B cell immune landscapes during TB and their functional implications remain incompletely explored. Using high-dimensional flow cytometry to map the immune landscape in response to Mycobacterium tuberculosis (Mtb) infection, our results show an accumulation of marginal zone B (MZB) cells and other unconventional B cell subsets in the lungs and spleen, shaping an unconventional B cell landscape. These MZB cells exhibit activated and memory-like phenotypes, distinguishing their functional profiles from those of conventional B cells. Notably, functional studies show that MZB cells produce multiple cytokines and contribute to systemic protection against TB by shaping cytokine patterns and cell-mediated immunity. These changes in the immune landscape are reversible upon successful TB chemotherapy. Our study suggests that, beyond antibody production, targeting the regulatory function of B cells may be a valuable strategy for TB vaccine development.

11.
Article in English | MEDLINE | ID: mdl-38991010

ABSTRACT

The biology of CDKL (Cyclin-Dependent Kinase-Like) kinase family remains enigmatic. Contrary to their nomenclature, CDKLs do not rely on cyclins for activation and are not involved in cell cycle regulation. Instead, they share structural similarities with MAPKs (Mitogen-Activated Protein Kinases) and GSK3 (glycogen synthase kinase 3), though their specific functions and associated signaling pathways are still unknown. Previous studies have shown that the activation of CDKL5 kinase contributes to the development of acute kidney injury (AKI) by suppressing the protective SOX9-dependent transcriptional program in tubular epithelial cells. In the current study, we measured the functional activity of all the five CDKL kinases and discovered that, in addition to CDKL5, CDKL1 is also activated in tubular epithelial cells during AKI. To explore the role of CDKL1, we generated a germline knockout mouse which exhibited no abnormalities under normal conditions. Notably, when these mice were challenged with bilateral ischemia reperfusion and rhabdomyolysis, they were found to be protected from AKI. Further mechanistic investigations revealed that CDKL1 phosphorylates and destabilizes SOX11, contributing to tubular dysfunction. In summary, these studies have unveiled a previously unknown CDKL1-SOX11 axis that drives tubular dysfunction during AKI.

12.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000094

ABSTRACT

The aim of the present study was to analyze the association of the TLR2 (Toll-like receptor 2 gene) 2258G>A (rs5743708), TLR4 (Toll-like receptor 4 gene) 896A>G (rs4986790), and TLR4 1196C>T (rs4986791) polymorphisms with dental caries in Polish children. The participants, 261 15-year-old children, were divided into two groups: 82 cases (i.e., children with DMFT (Decayed, Missing, and Filled Teeth) index >5, having either moderate or high caries experience, assigned as the "higher" caries experience group) and 179 controls (i.e., children with DMFT ≤ 5, having either low or very low caries experience, assigned as the "lower" caries experience group). Genomic DNA was isolated from buccal swabs, and genotyping was determined by means of real-time PCR (polymerase chain reaction). There were no significant differences in the genotype or allele distributions in all tested SNPs (single nucleotide polymorphisms) between children with "higher" caries experience and those with "lower" caries experience. TLR4 haplotype frequencies did not differ significantly between cases and controls. In an additional analysis with another case definition applied (subjects with DMFT ≥ 1 were assigned as "cases", whereas children with DMFT = 0 were assigned as "controls"), no significant differences in the TLR2 and TLR4 genotype, allele frequencies, and TLR4 haplotype frequencies were found between the case and the control groups. The results of the present study broaden our knowledge on the potential genetic factors that might affect caries risk and suggest that TLR2 rs5743708 and TLR4 rs4986790 and rs4986791 SNPs are not associated with dental caries susceptibility in Polish children.


Subject(s)
Dental Caries , Gene Frequency , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Toll-Like Receptor 2 , Toll-Like Receptor 4 , Humans , Toll-Like Receptor 4/genetics , Toll-Like Receptor 2/genetics , Dental Caries/genetics , Dental Caries/epidemiology , Poland/epidemiology , Male , Female , Adolescent , Case-Control Studies , Child , Genotype , Haplotypes , Alleles
13.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000127

ABSTRACT

The prevalence of prenatal alcohol exposure (PAE) is increasing, with evidence suggesting that PAE is linked to an increased risk of infections. PAE is hypothesized to affect the innate immune system, which identifies pathogens through pattern recognition receptors, of which toll-like receptors (TLRs) are key components. We hypothesized that light-to-moderate PAE would impair immune responses, as measured by a heightened response in cytokine levels following TLR stimulation. Umbilical cord samples (10 controls and 8 PAE) from a subset of the Ethanol, Neurodevelopment, Infant and Child Health Study-2 cohort were included. Peripheral blood mononuclear cells (PMBCs) were stimulated with one agonist (TLR2, TLR3, TLR4, or TLR9). TLR2 agonist stimulation significantly increased pro-inflammatory interleukin-1-beta in the PAE group after 24 h. Pro- and anti-inflammatory cytokines were increased following stimulation with the TLR2 agonists. Stimulation with TLR3 or TLR9 agonists displayed minimal impact overall, but there were significant increases in the percent change of the control compared to PAE after 24 h. The results of this pilot investigation support further work into the impact on TLR2 and TLR4 response following PAE to delineate if alterations in levels of pro- and anti-inflammatory cytokines have clinical significance that could be used in patient management and/or attention to follow-up.


Subject(s)
Fetal Blood , Toll-Like Receptors , Humans , Female , Pregnancy , Fetal Blood/metabolism , Pilot Projects , Toll-Like Receptors/metabolism , Toll-Like Receptors/agonists , Cytokines/metabolism , Cytokines/blood , Adult , Infant, Newborn , Prenatal Exposure Delayed Effects/metabolism , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/drug effects , Male , Ethanol/pharmacology , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/agonists
14.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000291

ABSTRACT

Urinary bladder cancer (BC) inflicts a significant impairment of life quality and poses a high mortality risk. Schistosoma haematobium infection can cause BC, and the urinary microbiota of BC patients differs from healthy controls. Importantly, intravesical instillation of the bacterium Bacillus Calmette-Guerin stands as the foremost therapy for non-muscle invasive BC. Hence, studying the receptors and signaling molecules orchestrating bacterial recognition and the cellular response in the context of BC is of paramount importance. Thus, we challenged Toll-like receptor 4 (Tlr4) and myeloid differentiation factor 88 (Myd88) knock-out (KO) mice with N-butyl-N-(4-hydroxylbutyl)-nitrosamine (BBN), a well-known urinary bladder carcinogen. Gut microbiota, gene expression, and urinary bladder pathology were followed. Acute exposure to BBN did not reveal a difference in bladder pathology despite differences in the animal's ability to recognize and react to bacteria. However, chronic treatment resulted in reduced cancer invasiveness among Myd88KO mice while the absence of functional Tlr4 did not influence BC development or progression. These differences correlate with a heightened abundance of the Faecalibaculum genus and the lowest microbial diversity observed among Myd88KO mice. The presented data underscore the important role of microbiota composition and MyD88-mediated signaling during bladder carcinogenesis.


Subject(s)
Gastrointestinal Microbiome , Mice, Knockout , Myeloid Differentiation Factor 88 , Signal Transduction , Toll-Like Receptor 4 , Urinary Bladder Neoplasms , Animals , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/microbiology , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/genetics , Mice , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Butylhydroxybutylnitrosamine/toxicity , Carcinogenesis , Urinary Bladder/pathology , Urinary Bladder/microbiology , Urinary Bladder/metabolism , Female , Mice, Inbred C57BL , Microbiota , Humans
15.
Int J Mol Sci ; 25(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39000337

ABSTRACT

Few efficacious treatment options are available for patients with small cell lung carcinoma (SCLC), indicating the need to develop novel therapeutic approaches. In this study, we explored kinesin family member 11 (KIF11), a potential therapeutic target in SCLC. An analysis of publicly available data suggested that KIF11 mRNA expression levels are significantly higher in SCLC tissues than in normal lung tissues. When KIF11 was targeted by RNA interference or a small-molecule inhibitor (SB743921) in two SCLC cell lines, Lu-135 and NCI-H69, cell cycle progression was arrested at the G2/M phase with complete growth suppression. Further work suggested that the two cell lines were more significantly affected when both KIF11 and BCL2L1, an anti-apoptotic BCL2 family member, were inhibited. This dual inhibition resulted in markedly decreased cell viability. These findings collectively indicate that SCLC cells are critically dependent on KIF11 activity for survival and/or proliferation, as well as that KIF11 inhibition could be a new strategy for SCLC treatment.


Subject(s)
Cell Survival , Kinesins , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Kinesins/metabolism , Kinesins/genetics , Kinesins/antagonists & inhibitors , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/metabolism , Small Cell Lung Carcinoma/pathology , Cell Line, Tumor , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Cell Survival/drug effects , Cell Survival/genetics , Cell Proliferation , bcl-X Protein/metabolism , bcl-X Protein/genetics , Gene Expression Regulation, Neoplastic , Apoptosis/genetics , Benzamides , Quinazolines
16.
Int J Mol Sci ; 25(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39000460

ABSTRACT

Aberrant aggregation of misfolded alpha-synuclein (α-syn), a major pathological hallmark of related neurodegenerative diseases such as Parkinson's disease (PD), can translocate between cells. Ubiquitin-like 3 (UBL3) is a membrane-anchored ubiquitin-fold protein and post-translational modifier. UBL3 promotes protein sorting into small extracellular vesicles (sEVs) and thereby mediates intercellular communication. Our recent studies have shown that α-syn interacts with UBL3 and that this interaction is downregulated after silencing microsomal glutathione S-transferase 3 (MGST3). However, how MGST3 regulates the interaction of α-syn and UBL3 remains unclear. In the present study, we further explored this by overexpressing MGST3. In the split Gaussia luciferase complementation assay, we found that the interaction between α-syn and UBL3 was upregulated by MGST3. While Western blot and RT-qPCR analyses showed that silencing or overexpression of MGST3 did not significantly alter the expression of α-syn and UBL3, the immunocytochemical staining analysis indicated that MGST3 increased the co-localization of α-syn and UBL3. We suggested roles for the anti-oxidative stress function of MGST3 and found that the effect of MGST3 overexpression on the interaction between α-syn with UBL3 was significantly rescued under excess oxidative stress and promoted intracellular α-syn to extracellular transport. In conclusion, our results demonstrate that MGST3 upregulates the interaction between α-syn with UBL3 and promotes the interaction to translocate intracellular α-syn to the extracellular. Overall, our findings provide new insights and ideas for promoting the modulation of UBL3 as a therapeutic agent for the treatment of synucleinopathy-associated neurodegenerative diseases.


Subject(s)
Glutathione Transferase , Oxidative Stress , Ubiquitins , alpha-Synuclein , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Humans , Glutathione Transferase/metabolism , Glutathione Transferase/genetics , Ubiquitins/metabolism , Ubiquitins/genetics , Up-Regulation , Protein Transport , Parkinson Disease/metabolism , Parkinson Disease/genetics , Parkinson Disease/pathology , Protein Binding
17.
Int J Mol Sci ; 25(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39000536

ABSTRACT

Immune engineering and modulation are the basis of a novel but powerful tool to treat immune diseases using virus-like particles (VLPs). VLPs are formed by the viral capsid without genetic material making them non-infective. However, they offer a wide variety of possibilities as antigen-presenting platforms, resulting in high immunogenicity and high efficacy in immune modulation, with low allergenicity. Both animal and plant viruses are being studied for use in the treatment of food allergies. These formulations are combined with adjuvants, T-stimulatory epitopes, TLR ligands, and other immune modulators to modulate or enhance the immune response toward the presented allergen. Here, the authors present an overview of VLP production systems, their immune modulation capabilities, and the applicability of actual VLP-based formulations targeting allergic diseases.


Subject(s)
Allergens , Vaccines, Virus-Like Particle , Humans , Vaccines, Virus-Like Particle/immunology , Animals , Allergens/immunology , Food Hypersensitivity/therapy , Food Hypersensitivity/immunology , Hypersensitivity/therapy , Hypersensitivity/immunology , Adjuvants, Immunologic
18.
Int J Mol Sci ; 25(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39000545

ABSTRACT

Chemotherapy treatment against pancreatic ductal adenocarcinoma (PDAC) is thwarted by tumoral activation of multiple therapy resistance pathways. The growth hormone (GH)-GH receptor (GHR) pair is a covert driver of multimodal therapy resistance in cancer and is overexpressed in PDAC tumors, yet the therapeutic potential of targeting the same has not been explored. Here, we report that GHR expression is a negative prognostic factor in patients with PDAC. Combinations of gemcitabine with different GHR antagonists (GHRAs) markedly improve therapeutic outcomes in nude mice xenografts. Employing cultured cells, mouse xenografts, and analyses of the human PDAC transcriptome, we identified that attenuation of the multidrug transporter and epithelial-to-mesenchymal transition programs in the tumors underlie the observed augmentation of chemotherapy efficacy by GHRAs. Moreover, in human PDAC patients, GHR expression strongly correlates with a gene signature of tumor promotion and immune evasion, which corroborate with that in syngeneic tumors in wild-type vs. GH transgenic mice. Overall, we found that GH action in PDAC promoted a therapy-refractory gene signature in vivo, which can be effectively attenuated by GHR antagonism. Our results collectively present a proof of concept toward considering GHR antagonists to improve chemotherapeutic outcomes in the highly chemoresistant PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Deoxycytidine , Gemcitabine , Pancreatic Neoplasms , Receptors, Somatotropin , Xenograft Model Antitumor Assays , Animals , Humans , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Mice , Receptors, Somatotropin/metabolism , Receptors, Somatotropin/antagonists & inhibitors , Receptors, Somatotropin/genetics , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Cell Line, Tumor , Mice, Nude , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Female
19.
Autophagy ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007910

ABSTRACT

The Lassa virus (LASV) is a widely recognized virulent pathogen that frequently results in lethal viral hemorrhagic fever (VHF). Earlier research has indicated that macroautophagy/autophagy plays a role in LASV replication, but, the precise mechanism is unknown. In this present study, we show that LASV matrix protein (LASV-Z) is essential for blocking intracellular autophagic flux. LASV-Z hinders actin and tubulin folding by interacting with CCT2, a component of the chaperonin-containing T-complexes (TRiC). When the cytoskeleton is disrupted, lysosomal enzyme transit is hampered. In addition, cytoskeleton disruption inhibits the merge of autophagosomes with lysosomes, resulting in autophagosome accumulation that promotes the budding of LASV virus-like particles (VLPs). Inhibition of LASV-Z-induced autophagosome accumulation blocks the LASV VLP budding process. Furthermore, it is found that glutamine at position 29 and tyrosine at position 48 on LASV-Z are important in interacting with CCT2. When these two sites are mutated, LASV-mut interacts with CCT2 less efficiently and can no longer inhibit the autophagic flux. These findings demonstrate a novel strategy for LASV-Z to hijack the host autophagy machinery to accomplish effective transportation.

20.
Plant Cell Rep ; 43(8): 195, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008098

ABSTRACT

KEY MESSAGE: ZmRLCK58, a negative growth regulator, reduces tolerance of maize seedlings to low Mg via enhancing H2O2 accumulation in the shoot. Magnesium (Mg) deficiency is one of critical limiting factors for crop production in widespread acidic soils worldwide. However, the molecular mechanism of crop response to Mg deficiency is still largely unclear. Here, we found higher concentrations of H2O2, soluble sugars, and starch (1.5-, 1.9-, and 1.4-fold, respectively) in the shoot of low-Mg-treated maize seedlings, compared with Mg sufficient plants under hydroponic culture. Consistent with over-accumulation of H2O2, transcriptome profiling revealed significant enrichment of 175 differentially expressed genes (DEGs) in "response to oxygen-containing compound" out of 641 DEGs in the shoot under low Mg. Among 175 DEGs, a down-regulated receptor-like cytoplasmic kinase ZmRLCK58 underwent a recent duplication event before Poaceae divergence and was highly expressed in the maize shoot. ZmRLCK58 overexpression enhanced H2O2 accumulation in shoots by 21.3% and 29.8% under control and low-Mg conditions, respectively, while reducing biomass accumulation compared with wild-type plants. Low Mg further led to 39.7% less starch accumulation in the ZmRLCK58 overexpression shoot and lower Mg utilization efficiency. Compared with wild-type plants, overall down-regulated expression of genes related to response to carbohydrate, photosynthesis, H2O2 metabolic, oxidation-reduction, and ROS metabolic processes in ZmRLCK58 overexpression lines preconditioned aforementioned physiological alterations. Together, ZmRLCK58, as a negative growth regulator, reduces tolerance of maize seedlings to low Mg via enhancing H2O2 accumulation.


Subject(s)
Gene Expression Regulation, Plant , Hydrogen Peroxide , Magnesium , Plant Proteins , Seedlings , Zea mays , Zea mays/genetics , Zea mays/metabolism , Zea mays/drug effects , Hydrogen Peroxide/metabolism , Seedlings/genetics , Seedlings/drug effects , Seedlings/metabolism , Gene Expression Regulation, Plant/drug effects , Magnesium/metabolism , Magnesium/pharmacology , Plant Proteins/metabolism , Plant Proteins/genetics , Starch/metabolism , Gene Expression Profiling , Plant Shoots/metabolism , Plant Shoots/genetics , Plant Shoots/drug effects , Plants, Genetically Modified
SELECTION OF CITATIONS
SEARCH DETAIL
...