Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.458
Filter
1.
Syst Biol ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970484

ABSTRACT

Rapidly evolving taxa are excellent models for understanding the mechanisms that give rise to biodiversity. However, developing an accurate historical framework for comparative analysis of such lineages remains a challenge due to ubiquitous incomplete lineage sorting and introgression. Here, we use a whole-genome alignment, multiple locus-sampling strategies, and summary-tree and SNP-based species-tree methods to infer a species tree for eastern North American Neodiprion species, a clade of pine-feeding sawflies (Order: Hymenopteran; Family: Diprionidae). We recovered a well-supported species tree that-except for three uncertain relationships-was robust to different strategies for analyzing whole-genome data. Nevertheless, underlying gene-tree discordance was high. To understand this genealogical variation, we used multiple linear regression to model site concordance factors estimated in 50-kb windows as a function of several genomic predictor variables. We found that site concordance factors tended to be higher in regions of the genome with more parsimony-informative sites, fewer singletons, less missing data, lower GC content, more genes, lower recombination rates, and lower D-statistics (less introgression). Together, these results suggest that incomplete lineage sorting, introgression, and genotyping error all shape the genomic landscape of gene-tree discordance in Neodiprion. More generally, our findings demonstrate how combining phylogenomic analysis with knowledge of local genomic features can reveal mechanisms that produce topological heterogeneity across genomes.

2.
Curr Protoc ; 4(7): e1038, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38967962

ABSTRACT

A variety of metals, e.g., lead (Pb), cadmium (Cd), and lithium (Li), are in the environment and are toxic to humans. Hematopoietic stem cells (HSCs) reside at the apex of hematopoiesis and are capable of generating all kinds of blood cells and self-renew to maintain the HSC pool. HSCs are sensitive to environmental stimuli. Metals may influence the function of HSCs by directly acting on HSCs or indirectly by affecting the surrounding microenvironment for HSCs in the bone marrow (BM) or niche, including cellular and extracellular components. Investigating the impact of direct and/or indirect actions of metals on HSCs contributes to the understanding of immunological and hematopoietic toxicology of metals. Treatment of HSCs with metals ex vivo, and the ensuing HSC transplantation assays, are useful for evaluating the impacts of the direct actions of metals on the function of HSCs. Investigating the mechanisms involved, given the rarity of HSCs, methods that require large numbers of cells are not suitable for signal screening; however, flow cytometry is a useful tool for signal screening HSCs. After targeting signaling pathways, interventions ex vivo and HSCs transplantation are required to confirm the roles of the signaling pathways in regulating the function of HSCs exposed to metals. Here, we describe protocols to evaluate the mechanisms of direct and indirect action of metals on HSCs. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Identify the impact of a metal on the competence of HSCs Basic Protocol 2: Identify the impact of a metal on the lineage bias of HSC differentiation Basic Protocol 3: Screen the potential signaling molecules in HSCs during metal exposure Alternate Protocol 1: Ex vivo treatment with a metal on purified HSCs Alternate Protocol 2: Ex vivo intervention of the signaling pathway regulating the function of HSCs during metal exposure.


Subject(s)
Hematopoietic Stem Cells , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Animals , Metals/toxicity , Mice , Humans , Hematopoietic Stem Cell Transplantation , Flow Cytometry/methods
3.
Soc Sci Med ; 354: 117078, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38968899

ABSTRACT

Previous research has established relationships between lineage and intimate partner violence (IPV). The findings suggest matrilineal women experience less IPV than patrilineal women. However, the IPV outcomes of bilateral women are unknown because of the limited operationalization of lineage with ethnicity. In our study, we used self-reported and multidimensional measures of lineage to explore its relationship with IPV, focusing particularly on the mechanisms linking the two. We hypothesized that wielding resources would be negatively associated with IPV. Furthermore, matrilineal women's access to lineage resources would reduce their vulnerability to IPV relative to patrilineal women. To examine these hypotheses, we collected data from 1700 ever-married Ghanaian women residing in three ecological zones (coastal, middle, northern). Path analysis was used to explore resources as mechanisms linking lineage and IPV. Our findings indicated resources were patterned by lineage. Matrilineal women benefitted more from maternal family members than patrilineal women and vice versa. Consistent with the standard resource theory, women's access to resources protected against IPV, and the effects were stronger for matrilineal than patrilineal women. Irrespective of how lineage was measured, matrilineal women experienced lower levels of IPV than patrilineal women. The IPV outcomes for bilateral women were mixed. Part of matrilineal women's reduced IPV risk was explained through access to maternal resources. While patrilineal women experienced higher levels of IPV, this was reversed with resources from paternal kin members. Our findings suggest that as resources are fundamental to reducing IPV, lineage can serve as a conduit for resource exchange and wealth transfer.

5.
Indian J Microbiol ; 64(2): 762-772, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39011009

ABSTRACT

The thermophilic bacterium Thermosulfidibacter takaii is affiliated to the deep-branching bacterial lineage in the phylum Aquificota. However, the recent taxonomic study of the phylum Aquificota revealed that T. takaii has no specific association with the phylum. The fact that T. takaii is considered an important model organism for studying the evolution and kinetics of ancestral carbon metabolism pathways, its proper classification is therefore of significant interest. In this work, phylogenomics and comparative genomic analyses were employed to ascertain the taxonomic placement of T. takaii. Results from the phylogenetic analyses based on 16S rRNA gene and core genome sequences confirmed the exclusion of T. takaii from the phylum Aquificota and further revealed a phylum-level lineage for T. takaii. The analysis of conserved signature indels (CSIs) specific for the phylum Aquificota also supported the exclusion of T. takaii from the phylum. Pan-genome analysis of T. takaii along with the members of the closely related clade from the phylum Thermodesulfobacteriota revealed that T. takaii was indeed distinct, supporting its phylum-level placement. Furthermore, the presence of CSIs specific to T. takaii, and the results from the average nucleotide identity and average amino acid identity analyses, together with the unique characteristic of T. takaii also provided evidence supporting its assignment to a novel phylum. Based on these results, T. takaii is proposed to be transferred to a novel family, Thermosulfidibacteraceae fam. nov., of a novel order, Thermosulfidibacterales ord. nov., and a novel class, Thermosulfidibacteria classis nov., within a novel phylum Thermosulfidibacterota phyl. nov. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-024-01214-9.

6.
Ecol Evol ; 14(7): e70013, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39011133

ABSTRACT

Amaranthaceae s.l. is a widely distributed family consisting of over 170 genera and 2000 species. Previous molecular phylogenetic studies have shown that Amaranthaceae s.s. and traditional Chenopodiaceae form a monophyletic group (Amaranthaceae s.l.), however, the relationships within this evolutionary branch have yet to be fully resolved. In this study, we assembled the complete plastomes and full-length ITS of 21 Amaranthaceae s.l. individuals and compared them with 38 species of Amaranthaceae s.l. Through plastome structure and sequence alignment analysis, we identified a reverse complementary region approximately 5200 bp long in the genera Atriplex and Chenopodium. Adaptive evolution analysis revealed significant positive selection in eight genes, which likely played a driving role in the evolution of Amaranthaceae s.l., as demonstrated by partitioned evolutionary analysis. Furthermore, we found that about two-thirds of the examined species lack the ycf15 gene, potentially associated with natural selection pressures from their adapted habitats. The phylogenetic tree indicated that some genera (Chenopodium, Halogeton, and Subtr. Salsolinae) are paraphyletic lineages. Our results strongly support the clustering of Amaranthaceae s.l. with monophyletic traditional Chenopodiaceae (Clades I and II) and Amaranthaceae s.s. After a comprehensive analysis, we determined that cytonuclear conflict, gene selection by adapted habitats, and incomplete lineage sorting (ILS) events were the primary reasons for the inconsistent phylogeny of Amaranthaceae s.l. During the last glacial period, certain species within Amaranthaceae s.l. underwent adaptations to different environments and began to differentiate rapidly. Since then, these species may have experienced morphological and genetic changes distinct from those of other genera due to intense selection pressure.

7.
Cells ; 13(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38994968

ABSTRACT

The incorporation of bacterial ribosome has been reported to induce multipotency in somatic and cancer cells which leads to the conversion of cell lineages. Queried on its universality, we observed that bacterial ribosome incorporation into trypsinized mouse adult fibroblast cells (MAF) led to the formation of ribosome-induced cell clusters (RICs) that showed strong positive alkaline phosphatase staining. Under in vitro differentiation conditions, RICs-MAF were differentiated into adipocytes, osteoblasts, and chondrocytes. In addition, RICs-MAF were able to differentiate into neural cells. Furthermore, RICs-MAF expressed early senescence markers without cell death. Strikingly, no noticeable expression of renowned stemness markers like Oct4, Nanog, Sox2, etc. was observed here. Later RNA-sequencing data revealed the expression of rare pluripotency-associated markers, i.e., Dnmt3l, Sox5, Tbx3 and Cdc73 in RICs-MAF and the enrichment of endogenous ribosomal status. These observations suggested that RICs-MAF might have experienced a non-canonical multipotent state during lineage conversion. In sum, we report a unique approach of an exo-ribosome-mediated plastic state of MAF that is amenable to multi-lineage conversion.


Subject(s)
Cell Differentiation , Fibroblasts , Ribosomes , Animals , Mice , Ribosomes/metabolism , Fibroblasts/metabolism , Cell Plasticity , Bacteria/metabolism , Bacteria/genetics , Cell Lineage
8.
J Biol Chem ; : 107566, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002676

ABSTRACT

MLL-fusion proteins (MLL-FPs) are believed to maintain gene activation and induce mixed lineage leukemia (MLL) through aberrantly stimulating transcriptional elongation, but the underlying mechanisms are incompletely understood. Here we show that both MLL1 and AF9, one of the major fusion partners of MLL1, mainly occupy promoters and distal intergenic regions, exhibiting chromatin occupancy patterns resembling that of RNA polymerase II (Pol II) in HEL, a human cell line without MLL1 arrangement (MLLr). MLL1 and AF9 only co-regulate over a dozen genes despite of their co-occupancy on thousands of genes. They do not interact with each other, and their chromatin occupancy is also independent of each other. Moreover, AF9 deficiency in HEL cells decreases global TBP occupancy while decreases CDK9 occupancy on a small number of genes, suggesting an accessory role of AF9 in CDK9 recruitment and a possible major role in transcriptional initiation via initiation factor recruitment. Importantly, MLL1 and MLL-AF9 occupy promoters and distal intergenic regions, exhibiting identical chromatin occupancy patterns in MLL cells, and MLL-AF9 deficiency decreased occupancy of TBP and TFIIE on major target genes of MLL-AF9 in iMA9, a murine acute myeloid leukemia (AML) cell line inducibly expressing MLL-AF9, suggesting that it can also regulate initiation. These results suggest that there is no difference between MLL1 and MLL-AF9 with respect to location and size of occupancy sites, contrary to what people have believed, and that MLL-AF9 may also regulate transcriptional initiation in addition to widely-believed elongation.

9.
J Gene Med ; 26(7): e3716, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961849

ABSTRACT

BACKGROUND: Differentiation of pluripotent stem cells into desired lineages is the key aspect of regenerative medicine and cell-based therapy. Although RNA interference (RNAi) technology is exploited extensively for this, methods for long term silencing of the target genes leading to differentiation remain a challenge. Sustained knockdown of the target gene by RNAi is often inefficient as a result of low delivery efficiencies, protocol induced toxicity and safety concerns related to viral vectors. Earlier, we established octa-arginine functionalized hydroxyapatite nano vehicles (R8HNPs) for delivery of small interfering RNA (siRNA) against a pluripotency marker gene in mouse embryonic stem cells. Although we demonstrated excellent knockdown efficiency of the target gene, sustained gene silencing leading to differentiation was yet to be achieved. METHODS: To establish a sustained non-viral gene silencing protocol using R8HNP, we investigated various methods of siRNA delivery: double delivery of adherent cells (Adh-D), suspension delivery followed by adherent delivery (Susp + Adh), single delivery in suspension (Susp-S) and multiple deliveries in suspension (Susp-R). Sustained knockdown of a pluripotent marker gene followed by differentiation was analysed by reverse transcriptase-PCR, fluoresence-activated cell sorting and immunofluorescence techniques. Impact on cell viability as a result of repeated exposure of the R8HNP was also tested. RESULTS: Amongst the protocols tested, the most efficient knockdown of the target gene for a prolonged period of time was obtained by repeated suspension delivery of the R8HNP-siRNA conjugate. The long-term silencing of a pluripotency marker gene resulted in differentiation of R1 ESCs predominantly towards the extra embryonic and ectodermal lineages. Cells displayed excellent tolerance to repeated exposures of R8HNPs. CONCLUSIONS: The results demonstrate that R8HNPs are promising, biocompatible, non-viral alternatives for prolonged gene silencing and obtaining differentiated cells for therapeutics.


Subject(s)
Cell Differentiation , Durapatite , Mouse Embryonic Stem Cells , RNA, Small Interfering , Animals , Mice , Durapatite/chemistry , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/drug effects , RNA, Small Interfering/genetics , Gene Silencing , Biocompatible Materials/chemistry , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Nanoparticles/chemistry , Transduction, Genetic , RNA Interference , Gene Knockdown Techniques
10.
Health Sci Rep ; 7(7): e2158, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952402

ABSTRACT

Background and Aims: Knowing the regional variants of distinct human papillomavirus (HPV) types is valuable as it can be beneficial for studying their epidemiology, pathogenicity, and evolution. For this reason, the sequence variations of the E6 gene of HPV 52 were investigated among women with normal cervical cytology and premalignant/malignant cervical samples. Methods: Sixty-four HPV 52-positive samples were analyzed using semi-nested PCR and sequencing. Results: Our findings showed that all samples belonged to lineage A (61%) or B (39%). Among samples that were infected with the A lineage, sublineages A1 and A2 were detected and sublineage A1 was dominant. No association was found between lineages and stage of disease (p > 0.05). Conclusion: Our results revealed that the A lineage, sublineage A1, and B lineage were common in Iranian women. Nevertheless, more studies with larger sample sizes are required to estimate the pathogenicity risk of HPV 52 lineages in Iranian women with cervical cancer.

11.
Proc Natl Acad Sci U S A ; 121(28): e2402514121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38959034

ABSTRACT

Leaves of flowering plants are characterized by diverse venation patterns. Patterning begins with the selection of vein-forming procambial initial cells from within the ground meristem of a developing leaf, a process which is considered to be auxin-dependent, and continues until veins are anatomically differentiated with functional xylem and phloem. At present, the mechanisms responsible for leaf venation patterning are primarily characterized in the model eudicot Arabidopsis thaliana which displays a reticulate venation network. However, evidence suggests that vein development may proceed via a different mechanism in monocot leaves where venation patterning is parallel. Here, we employed Molecular Cartography, a multiplexed in situ hybridization technique, to analyze the spatiotemporal localization of a subset of auxin-related genes and candidate regulators of vein patterning in maize leaves. We show how different combinations of auxin influx and efflux transporters are recruited during leaf and vein specification and how major and minor vein ranks develop with distinct identities. The localization of the procambial marker PIN1a and the spatial arrangement of procambial initial cells that give rise to major and minor vein ranks further suggests that vein spacing is prepatterned across the medio-lateral leaf axis prior to accumulation of the PIN1a auxin transporter. In contrast, patterning in the adaxial-abaxial axis occurs progressively, with markers of xylem and phloem gradually becoming polarized as differentiation proceeds. Collectively, our data suggest that both lineage- and position-based mechanisms may underpin vein patterning in maize leaves.


Subject(s)
In Situ Hybridization , Indoleacetic Acids , Plant Leaves , Zea mays , Zea mays/genetics , Zea mays/growth & development , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/genetics , Indoleacetic Acids/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Plant Proteins/genetics , Xylem/metabolism , Xylem/growth & development , Xylem/cytology , Xylem/genetics
12.
Adv Sci (Weinh) ; : e2400586, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984490

ABSTRACT

Electrical conductivity is a pivotal biophysical factor for neural interfaces, though optimal values remain controversial due to challenges isolating this cue. To address this issue, conductive substrates made of carbon nanotubes and graphene oxide nanoribbons, exhibiting a spectrum of conductivities from 0.02 to 3.2 S m-1, while controlling other surface properties is designed. The focus is to ascertain whether varying conductivity in isolation has any discernable impact on neural lineage specification. Remarkably, neural-tissue-like low conductivity (0.02-0.1 S m-1) prompted neural stem/progenitor cells to exhibit a greater propensity toward neuronal lineage specification (neurons and oligodendrocytes, not astrocytes) compared to high supraphysiological conductivity (3.2 S m-1). High conductivity instigated the apoptotic process, characterized by increased apoptotic fraction and decreased neurogenic morphological features, primarily due to calcium overload. Conversely, cells exposed to physiological conductivity displayed epigenetic changes, specifically increased chromatin openness with H3acetylation (H3ac) and neurogenic-transcription-factor activation, along with a more balanced intracellular calcium response. The pharmacological inhibition of H3ac further supported the idea that such epigenetic changes might play a key role in driving neuronal specification in response to neural-tissue-like, not supraphysiological, conductive cues. These findings underscore the necessity of optimal conductivity when designing neural interfaces and scaffolds to stimulate neuronal differentiation and facilitate the repair process.

13.
Article in English | MEDLINE | ID: mdl-38980692

ABSTRACT

Tissue engineering is theoretically considered a promising approach for repairing osteochondral defects. Nevertheless, the insufficient osseous support and integration of the cartilage layer and the subchondral bone frequently lead to the failure of osteochondral repair. Drawing from this, it was proposed that incorporating glycine-modified attapulgite (GATP) into poly(1,8-octanediol-co-citrate) (POC) scaffolds via the one-step chemical cross-linking is proposed to enhance cartilage and subchondral bone defect repair simultaneously. The effects of the GATP incorporation ratio on the physicochemical properties, chondrocyte and MC3T3-E1 behavior, and osteochondral defect repair of the POC scaffold were also evaluated. In vitro studies indicated that the POC/10% GATP scaffold improved cell proliferation and adhesion, maintained cell phenotype, and upregulated chondrogenesis and osteogenesis gene expression. Animal studies suggested that the POC/10% GATP scaffold has significant repair effects on both cartilage and subchondral bone defects. Therefore, the GATP-incorporated scaffold system with dual-lineage bioactivity showed potential application in osteochondral regeneration.

14.
Methods Mol Biol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38976205

ABSTRACT

The emergence of brain organoids has revolutionized our understanding of neurodevelopment and neurological diseases by providing an in vitro model system that recapitulates key aspects of human brain development. However, conventional organoid protocols often overlook the role of microglia, the resident immune cells of the central nervous system. Microglia dysfunction is implicated in various neurological disorders, highlighting the need for their inclusion in organoid models. Here, we present a novel method for generating neuroimmune assembloids using human-induced pluripotent stem cell (iPSC)-derived cortical organoids and microglia. Building upon our previous work generating myelinating cortical organoids, we extend our methodology to include the integration of microglia, ensuring their long-term survival and maturation within the organoids. We describe two integration methods: one involving direct addition of microglia progenitors to the organoids and an alternative approach where microglia and dissociated neuronal progenitors are aggregated together in a defined ratio. To facilitate downstream analysis, we also describe a dissociation protocol for single-cell RNA sequencing (scRNA-seq) and provide guidance on fixation, cryosectioning, and immunostaining of assembloid structures. Overall, our protocol provides a comprehensive framework for generating neuroimmune assembloids, offering researchers a valuable tool for studying the interactions between neural cell types and immune cells in the context of neurological diseases.

15.
Article in English | MEDLINE | ID: mdl-38991008

ABSTRACT

Fate mapping and genetic manipulation of renin cells have relied on either non-inducible Cre lines that can introduce developmental effects of gene deletion or BAC transgene-based inducible models that may be prone to spurious and/or ectopic gene expression. To circumvent these problems, we generated an inducible mouse model in which CreERT2 is under the control of the endogenous Akr1b7 gene, an independent marker of renin cells that is expressed in a few extrarenal tissues. We confirmed the proper expression of Cre using Akr1b7CreERT2/+;R26RmTmG/+ mice in which Akr1b7+/renin+ cells become GFP+ upon tamoxifen administration. In embryos and neonates, GFP was found in Juxtaglomerular cells, along the arterioles, and in the mesangium, and in adults, GFP was present mainly in Juxtaglomerular cells. In mice treated with captopril and a low salt diet to induce recruitment of renin cells, GFP extended along the afferent arterioles and in the mesangium. We generated Akr1b7CreERT2/+;Ren1cFl/-;R26RmTmG/+ mice to conditionally delete renin in adult mice and found a marked reduction in kidney renin mRNA and protein, and mean arterial pressure in mutant animals. When subjected to a homeostatic threat, mutant mice were unable to recruit renin+ cells. Most importantly, these mice developed concentric vascular hypertrophy ruling out potential developmental effects on the vasculature due to the lack of renin. We conclude that Akr1b7CreERT2 mice constitute an excellent model for the fate mapping of renin cells and for the spatial and temporal control of gene expression in renin cells.

16.
BMC Plant Biol ; 24(1): 658, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38987689

ABSTRACT

BACKGROUND: The taxonomy of Taxus Linn. remains controversial due to its continuous phenotypic variation and unstable topology, thus adversely affecting the formulation of scientific conservation strategies for this genus. Recently, a new ecotype, known as Qinling type, is mainly distributed in the Qinling Mountains and belongs to a monophyletic group. Here, we employed multiple methods including leaf phenotype comparison (leaf shapes and microstructure), DNA barcoding identification (ITS + trnL-trnF + rbcL), and niche analysis to ascertain the taxonomic status of the Qinling type. RESULTS: Multiple comparisons revealed significant differences in the morphological characters (length, width, and length/width ratio) among the Qinling type and other Taxus species. Leaf anatomical analysis indicated that only the Qinling type and T. cuspidata had no papilla under the midvein or tannins in the epicuticle. Phylogenetic analysis of Taxus indicated that the Qinling type belonged to a monophyletic group. Moreover, the Qinling type had formed a relatively independent niche, it was mainly distributed around the Qinling Mountains, Ta-pa Mountains, and Taihang Mountains, situated at an elevation below 1500 m. CONCLUSIONS: Four characters, namely leaf curvature, margin taper, papillation on midvein, and edges were put forward as primary indexes for distinguishing Taxus species. The ecotype Qingling type represented an independent evolutionary lineage and formed a unique ecological niche. Therefore, we suggested that the Qingling type should be treated as a novel species and named it Taxus qinlingensis Y. F. Wen & X. T. Wu, sp. nov.


Subject(s)
DNA Barcoding, Taxonomic , Phylogeny , Plant Leaves , Taxus , Taxus/genetics , Taxus/anatomy & histology , Taxus/classification , Plant Leaves/anatomy & histology , Plant Leaves/genetics , China , DNA, Plant/genetics , Phenotype
17.
Adipocyte ; 13(1): 2376571, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38989805

ABSTRACT

Dedifferentiated adipose tissue (DFAT) has been proposed as a promising source of patient-specific multipotent progenitor cells (MPPs). During induced dedifferentiation, adipocytes exhibit profound gene expression and cell morphology changes. However, dedifferentiation of post-mitotic cells is expected to enable proliferation, which is critical if enough MPPs are to be obtained. Here, lineage tracing was employed to quantify cell proliferation in mouse adipocytes subjected to a dedifferentiation-inducing protocol commonly used to obtain DFAT cells. No evidence of cell proliferation in adipocyte-derived cells was observed, in contrast to the robust proliferation of non-adipocyte cells present in adipose tissue. We conclude that proliferative MPPs derived using the ceiling culture method most likely arise from non-adipocyte cells in adipose tissue.


Subject(s)
Adipocytes , Cell Cycle , Cell Dedifferentiation , Cell Proliferation , Animals , Adipocytes/cytology , Adipocytes/metabolism , Mice , Cells, Cultured , Adipose Tissue/cytology , Adipose Tissue/metabolism , Cell Differentiation , Multipotent Stem Cells/cytology , Multipotent Stem Cells/metabolism
18.
J Genet Genomics ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38996840

ABSTRACT

Genetic lineage tracing has been widely employed to investigate cell lineages and fate. However, conventional reporting systems often label the entire cytoplasm, making it challenging to discern cell boundaries. Additionally, single Cre-loxP recombination systems have limitations in tracing specific cell populations. This study proposes three reporting systems that utilize Cre, Dre and Dre + Cre mediated recombination. These systems incorporate tdTomato expression on the cell membrane and PhiYFP expression within the cell nucleus, allowing for clear observation of the cell nucleus and membrane. The efficacy of these systems is successfully demonstrated by labeling cardiomyocytes and hepatocytes. The potential for dynamic visualization of the cell membrane is showcased using intravital imaging microscopy or three-dimensional imaging. Furthermore, by combining this dual recombinase system with the ProTracer system, hepatocyte proliferation is traced with enhanced precision. This reporting system holds significant importance in advancing the understanding of cell fate studies in development, homeostasis, and diseases.

19.
Int J Biol Sci ; 20(9): 3557-3569, 2024.
Article in English | MEDLINE | ID: mdl-38993575

ABSTRACT

To investigate the cell linkage between tooth dentin and bones, we studied TGF-ß roles during postnatal dentin development using TGF-ß receptor 2 (Tgfßr2) cKO models and cell lineage tracing approaches. Micro-CT showed that the early Tgfßr2 cKO exhibit short roots and thin root dentin (n = 4; p<0.01), a switch from multilayer pre-odontoblasts/odontoblasts to a single-layer of bone-like cells with a significant loss of ~85% of dentinal tubules (n = 4; p<0.01), and a matrix shift from dentin to bone. Mechanistic studies revealed a statistically significant decrease in odontogenic markers, and a sharp increase in bone markers. The late Tgfßr2 cKO teeth displayed losses of odontoblast polarity, a significant reduction in crown dentin volume, and the onset of massive bone-like structures in the crown pulp with high expression levels of bone markers and low levels of dentin markers. We thus concluded that bones and tooth dentin are in the same evolutionary linkage in which TGF-ß signaling defines the odontogenic fate of dental mesenchymal cells and odontoblasts. This finding also raises the possibility of switching the pulp odontogenic to the osteogenic feature of pulp cells via a local manipulation of gene programs in future treatment of tooth fractures.


Subject(s)
Dentin , Odontoblasts , Receptors, Transforming Growth Factor beta , Signal Transduction , Transforming Growth Factor beta , Dentin/metabolism , Transforming Growth Factor beta/metabolism , Animals , Odontoblasts/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Mice , Tooth/metabolism , Bone and Bones/metabolism , X-Ray Microtomography , Receptor, Transforming Growth Factor-beta Type II/metabolism , Receptor, Transforming Growth Factor-beta Type II/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Mice, Knockout
20.
Article in English | MEDLINE | ID: mdl-39004340

ABSTRACT

OBJECTIVES: To investigate the tet(X) gene, a determinant of tigecycline resistance, in the emerging pathogen Elizabethkingia meningoseptica and its association with an ICE. METHODS: All E. meningoseptica genomes from NCBI (n=87) were retrieved and annotated for resistome searching using the CARD database, and a phylogenic analysis was performed based on E. meningoseptica core genome. ICE was identified through comparative genomics with ICEs occurring in Elizabethkingia spp. RESULTS: Phylogenetic analysis showed E. meningoseptica genomes from six countries distributed in different lineages, some of which persisted for years. The common resistome of these genomes included blaBlaB, blaCME, blaGOB, ranA/B, aadS, and catB (genes associated with resistance to ß-lactams, aminoglycosides, and chloramphenicol). Some genomes also presented additional resistance genes (dfrA, ereD, blaVEB, aadS, and tet(X)). Interestingly, the tet(X) and aadS genes were located in an ICE of 49 769 bp (ICEEmSQ101), which was completely obtained from the E. meningoseptica SQ101 genome. We also raised evidence that other 27 genomes also presented this ICE. The distribution of ICEEmSQ101, carrying tet(X), was restricted to a single Chinese lineage. CONCLUSIONS: The tet(X) gene is not prevalent in the species E. meningoseptica, as previously stated for the genus Elizabethkingia since it is present basically in a single Chinese lineage. We identified that several E. meningoseptica genomes harbored an ICE that mobilized the tet(X) gene and exhibited characteristics similar to the ICEs of other Flavobacteria, which would favor their transmission in this bacteria family.

SELECTION OF CITATIONS
SEARCH DETAIL
...