Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Vaccine ; 40(5): 811-818, 2022 01 31.
Article in English | MEDLINE | ID: mdl-34953609

ABSTRACT

We evaluated humoral immune-response elicited by Sputnik-V by measuring anti-Spike (S) IgG antibodies (Abs) and neutralizing antibodies (NAb) prior to, 14 and 42 days after-vaccination. The safety and disease rates among vaccinated individuals were also evaluated. Since SARS-CoV-2 lineage P.1 is rapidly spreading in Argentina, virus-neutralizing activity of Sputnik-V-elicited and infection-elicited NAb faced to P.1 were also assessed. A total of 285 participants were recruited; all reported good tolerance, without any severe adverse event. Nine COVID-19 cases were confirmed in fully vaccinated individuals and viable P.1 variant was successfully isolated from one of them. At day 42, 99.65% of the individuals had anti-S IgG; however, 23.15% had not detectable NAbs. Significantly higher neutralization potency against WT compared to P.1 (p < 0·001) was observed. Some samples failed to neutralize P.1, mainly among vaccinated-naїve subjects; however, no significant differences were observed among previously infected-vaccinated individuals. Our results corroborated that Sputnik-V is safe and induces an efficient humoral immune response, although not all immunized subjects develop Nabs. Herein, we show for the first time, evidence of infectious SARS-CoV-2 shedding from Sputnik-V fully vaccinated individuals, by the isolation of viable virus from the nasopharyngeal swab of one participant of our study, 139 days after receiving the second dose. Thereby, we provide evidence indicating that the vaccine might avoid severe forms of COVID-19 but does not prevent infection nor prevents transmission from a fully vaccinated individual.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Humans
2.
Virus Evol ; 7(2): veab087, 2021.
Article in English | MEDLINE | ID: mdl-34725568

ABSTRACT

The emergence and widespread circulation of severe acute respiratory syndrome coronavirus 2 variants of concern (VOCs) or interest impose an enhanced threat to global public health. In Brazil, one of the countries most severely impacted throughout the pandemic, a complex dynamics involving variants co-circulation and turnover events has been recorded with the emergence and spread of VOC Gamma in Manaus in late 2020. In this context, we present a genomic epidemiology investigation based on samples collected between December 2020 and May 2021 in the second major Brazilian metropolis, Rio de Janeiro. By sequencing 244 novel genomes through all epidemiological weeks in this period, we were able to document the introduction and rapid dissemination of VOC Gamma in the city, driving the rise of the third local epidemic wave. Molecular clock analysis indicates that this variant has circulated locally since the first weeks of 2021 and only 7 weeks were necessary for it to achieve a frequency above 70 per cent, consistent with rates of growth observed in Manaus and other states. Moreover, a Bayesian phylogeographic reconstruction indicates that VOC Gamma spread throughout Brazil between December 2020 and January 2021 and that it was introduced in Rio de Janeiro through at least 13 events coming from nearly all regions of the country. Comparative analysis of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) cycle threshold (Ct) values provides further evidence that VOC Gamma induces higher viral loads (N1 target; mean reduction of Ct: 2.7, 95 per cent confidence interval = ± 0.7). This analysis corroborates the previously proposed mechanistic basis for this variant-enhanced transmissibility and distinguished epidemiological behavior. Our results document the evolution of VOC Gamma and provide independent assessment of scenarios previously studied in Manaus, therefore contributing to the better understanding of the epidemiological dynamics currently being surveyed in other Brazilian regions.

3.
Virus Evol ; 7(2): veab091, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35039782

ABSTRACT

One of the most remarkable severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC) features is the significant number of mutations they acquired. However, the specific factors that drove the emergence of such variants since the second half of 2020 are not fully resolved. In this study, we describe a new SARS-CoV-2 P.1 sub-lineage circulating in Brazil, denoted here as Gamma-like-II, that as well as the previously described lineage Gamma-like-I shares several lineage-defining mutations with the VOC Gamma. Reconstructions of ancestor sequences support that most lineage-defining mutations of the Spike (S) protein, including those at the receptor-binding domain (RBD), accumulated at the first P.1 ancestor. In contrast, mutations outside the S protein were mostly fixed at subsequent steps. Our evolutionary analyses estimate that P.1-ancestral strains carrying RBD mutations of concern probably circulated cryptically in the Amazonas for several months before the emergence of the VOC Gamma. Unlike the VOC Gamma, the other P.1 sub-lineages displayed a much more restricted dissemination and accounted for a low fraction (<2 per cent) of SARS-CoV-2 infections in Brazil in 2021. The stepwise diversification of lineage P.1 through multiple inter-host transmissions is consistent with the hypothesis that partial immunity acquired from natural SARS-CoV-2 infections in heavily affected regions might have been a major driving force behind the natural selection of some VOCs. The lag time between the emergence of the P.1 ancestor and the expansion of the VOC Gamma and the divergent epidemic trajectories of P.1 sub-lineages support a complex interplay between the emergence of mutations of concern and viral spread in Brazil.

4.
Preprint in English | Fiocruz Preprints | ID: ppf-52434

ABSTRACT

Neste relatório (pre-print), são apresentados três casos de reinfecção causados pela Variante de Preocupação (VOC) P.1, também conhecida como "cepa de Manaus". As três pacientes eram mulheres adultas, e tiveram a primeira infecção durante a primeira onda da pandemia na primeira metade de 2020. Nos três casos, a linhagem detectada no primeiro diagnóstico molecular era diferente da encontrada posteriormente, evidência da reinfecção. Dois dos casos de reinfecção tiveram apresentação de sintomas leves, enquanto o terceiro foi assintomático, apesar de a quantidade de material genético viral detectado sugerir cargas virais elevadas. As evidências aqui apresentadas sugerem que a imunidade após infecção primária por linhagens anteriores à circulação daquelas contendo a mutação E484K não impede uma nova infecção pela variante P.1, e nem mesmo que pessoas reinfectadas por esta variante espalhem o vírus, embora seja possível que tenha protegido estas três pacientes do desenvolvimento de sintomas graves.

SELECTION OF CITATIONS
SEARCH DETAIL
...