Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 148
Filter
1.
Biometals ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713412

ABSTRACT

Inflammatory bowel disease (IBD) is a non-specific chronic inflammatory disorder of the gastrointestinal tract, imposing significant burdens on both society and individuals. As a new type of regulated cell death (RCD), ferroptosis is different from classic RCDs such as apoptosis and necrosis in cell morphology, biochemistry and genetics. The main molecular mechanisms of ferroptosis include dysregulation of iron metabolism, impaired antioxidant capacity, mitochondrial dysfunction, accumulation of lipid-associated super-oxides, and membrane disruption. In recent years, increasing evidence has shown that ferroptosis is involved in the pathophysiology of inflammatory bowel disease. However, the exact roles and underlying molecular mechanisms have not been fully elucidated. This article reviews the mechanism of ferroptosis in the occurrence and development of inflammatory bowel disease, in order to provide new ideas for the pathophysiological research of inflammatory bowel disease. Additionally, we discuss potential strategies for the prevention and treatment of inflammatory bowel disease by targeting ferroptosis.

2.
Int Immunopharmacol ; 133: 112155, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38688134

ABSTRACT

BACKGROUND: Ferroptosis is an iron-dependent and cystathione-non-dependent non-apoptotic cell death characterized by elevated intracellular free iron levels and reduced antioxidant capacity, leading to the accumulation of lipid peroxides. Nuclear receptor coactivator 4 (NCOA4) mediates ferritinophagy, increasing labile iron levels, which can result in oxidative damage. However, the specific mechanism of NCOA4-mediated ferritinophagy in intestinal ischemia-reperfusion and the underlying mechanisms have not been reported in detail. OBJECT: 1. To investigate the role of NCOA4 in ferroptosis of intestinal epithelial cells induced by II/R injury in mouse. 2. To investigate the mechanism of action of NCOA4-induced ferroptosis. METHODS: 1. Construct a mouse II/R injury model and detect ferroptosis related markers such as HE staining, immunohistochemistry, ELISA, and WB methods. 2. Detect expression of NCOA4 in the intestine of mouse with II/R injury model and analyze its correlation with intestinal ferroptosis in mouse with II/R injury model. 3. Construct an ischemia-reperfusion model at the cellular level through hypoxia and reoxygenation, and overexpress/knockdown NCOA4 to detect markers related to ferroptosis. Based on animal experimental results, analyze the correlation and mechanism of action between NCOA4 and intestinal epithelial ferroptosis induced by II/R injury in mouse. RESULTS: 1. Ferroptosis occurred in the intestinal epithelial cells of II/R-injured mouse, and the expression of critical factors of ferroptosis, ACSL4, MDA and 15-LOX, was significantly increased, while the levels of GPX4 and GSH were significantly decreased. 2. The expression of NCOA4 in the intestinal epithelium of mouse with II/R injure was significantly increased, the expression of ferritin was significantly decreased, and the level of free ferrous ions was significantly increased; the expression of autophagy-related proteins LC3 and Beclin-1 protein was increased, and the expression of P62 was decreased, and these changes were reversed by autophagy inhibitors. 3. Knockdown of NCOA4 at the cellular level resulted in increased ferritin expression and decreased ferroptosis, and CO-IP experiments suggested that NCOA4 can bind to ferritin, which suggests that NCOA4 most likely mediates ferritinophagy to induce ferroptosis. CONCLUSION: This thesis explored the role of NCOA4 in II/R injury in mice and the mechanism of action. The research results suggest that NCOA4 can mediate ferritinophagy to induce ferroptosis during II/R injury. This experiment reveals the pathological mechanism of II/R injury and provides some scientific basis for the development of drugs for the treatment of II/R injury based on the purpose of alleviating ferroptosis.


Subject(s)
Ferroptosis , Intestinal Mucosa , Nuclear Receptor Coactivators , Reperfusion Injury , Animals , Humans , Male , Mice , Disease Models, Animal , Ferritins/metabolism , Ferroptosis/genetics , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Iron/metabolism , Mice, Inbred C57BL , Nuclear Receptor Coactivators/metabolism , Nuclear Receptor Coactivators/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/pathology
3.
Adv Sci (Weinh) ; 11(23): e2310134, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38634567

ABSTRACT

Intraperitoneal dissemination is the main method of epithelial ovarian cancer (EOC) metastasis, which is related to poor prognosis and a high recurrence rate. Circular RNAs (circRNAs) are a novel class of endogenous RNAs with covalently closed loop structures that are implicated in the regulation of tumor development. In this study, hsa_circ_0001546 is downregulated in EOC primary and metastatic tissues vs. control tissues and this phenotype has a favorable effect on EOC OS and DFS. hsa_circ_0001546 can directly bind with 14-3-3 proteins to act as a chaperone molecule and has a limited positive effect on 14-3-3 protein stability. This complex recruits CAMK2D to induce the Ser324 phosphorylation of Tau proteins, changing the phosphorylation status of Tau bound to 14-3-3 and ultimately forming the hsa_circ_0001546/14-3-3/CAMK2D/Tau complex. The existence of this complex stimulates the production of Tau aggregation, which then induces the accumulation of lipid peroxides (LPOs) and causes LPO-dependent ferroptosis. In vivo, treatment with ferrostatin-1 and TRx0237 rescued the inhibitory effect of hsa_circ_0001546 on EOC cell spreading. Therefore, based on this results, ferroptosis caused by Tau aggregation occurs in EOC cells, which is not only in Alzheimer's disease- or Parkinson's disease-related cells and this kind of ferroptosis driven by the hsa_circ_0001546/14-3-3/CAMK2D/Tau complex is LPO-dependent rather than GPX4-dependent is hypothesized.


Subject(s)
Carcinoma, Ovarian Epithelial , Ovarian Neoplasms , RNA, Circular , tau Proteins , Female , Humans , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/metabolism , Carcinoma, Ovarian Epithelial/pathology , tau Proteins/metabolism , tau Proteins/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Mice , Peritoneal Neoplasms/metabolism , Peritoneal Neoplasms/genetics , Peritoneal Neoplasms/secondary , 14-3-3 Proteins/metabolism , 14-3-3 Proteins/genetics , Animals , Disease Models, Animal , Cell Line, Tumor , Lipid Peroxidation/genetics
4.
Cell Biochem Funct ; 42(2): e3985, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38509716

ABSTRACT

Autophagy is a process in which cells degrade intracellular substances and play a variety of roles in cells, such as maintaining intracellular homeostasis, preventing cell overgrowth, and removing pathogens. It is highly conserved during the evolution of eukaryotic cells. So far, the study of autophagy is still a hot topic in the field of cytology. Ferroptosis is an iron-dependent form of cell death, accompanied by the accumulation of reactive oxygen species and lipid peroxides. With the deepening of research, it has been found that ferroptosis, like autophagy, is involved in the occurrence and development of cardiovascular diseases. The relationship between autophagy and ferroptosis is complex, and the association between the two in cardiovascular disease remains to be clarified. This article reviews the mechanism of autophagy and ferroptosis and their correlation, and discusses the relationship between them in cardiovascular diseases, which is expected to provide new and important treatment strategies for cardiovascular diseases.


Subject(s)
Cardiovascular Diseases , Ferroptosis , Humans , Iron/metabolism , Cell Death , Reactive Oxygen Species/metabolism , Autophagy
5.
Phytomedicine ; 128: 155384, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38547620

ABSTRACT

BACKGROUND: Ferroptosis is a type of cell death caused by excessive iron-induced peroxidation. It has been found to be involved in a variety of diseases, and natural products can be used to target ferroptosis in treatments. Natural products are biologically active compounds extracted or synthesized from nature. It is an important resource for the discovery of skeletons with a high degree of structural diversity and a wide range of bioactivities, which can be developed directly or used as a starting point for the optimization of new drugs. PURPOSE: In this review, we aim to discuss the interactions between natural products and ferroptosis in the treatment of human diseases. METHODS: Literature was searched in Pubmed, Science Direct, and Web of Science databases for the 11-year period from 2012 to 2023 using the search terms "natural products", "ferroptosis", "human disease", "neurodegenerative disease", "cardiovascular disease", and "cancer". RESULTS: In this research, the roles of natural products and ferroptosis were investigated. We suggest that natural products, such as terpenoids, flavonoids, polyphenols, alkaloids, and saponins, can be used in therapeutic applications for human diseases, as well as in ferroptosis. Additionally, the main mechanisms of ferroptosis were summarized and discussed. Furthermore, we propose that natural products can be utilized to enhance the sensitivity of cancer cells to ferroptosis, thus helping to overcome drug resistance and inhibit metastasis. Moreover, natural products have the potential to modulate the expression levels of ferroptosis-related factors. Finally, the future directions of this field were highlighted. CONCLUSION: The potential of natural products which focus on ferroptosis to treat human illnesses, particularly cancer, is very encouraging for human wellbeing.


Subject(s)
Biological Products , Ferroptosis , Neoplasms , Ferroptosis/drug effects , Humans , Biological Products/pharmacology , Neoplasms/drug therapy , Neurodegenerative Diseases/drug therapy , Cardiovascular Diseases/drug therapy
6.
Front Pharmacol ; 15: 1260603, 2024.
Article in English | MEDLINE | ID: mdl-38323083

ABSTRACT

Background: Wendan Decoction (WDD) is a six-herb Chinese medicine recipe that was first mentioned in about 652 AD. It is frequently used to treat hyperlipidemic patients' clinical complaints. According to reports, oxidative stress has a significant role in hyperlipidemia. Purpose: There has not yet been a thorough pharmacokinetic-pharmacodynamic (PK-PD) examination of the clinical efficacy of WDD in the context of hyperlipemia-related oxidative stress. Therefore, the goal of this research is to explore the antioxidant essence of WDD by developing a PK-PD model, ordering to assure its implication in treating hyperlipidemia in medical practice. Methods: The model rats of foodborne hyperlipidemia were established by feeding with high-fat feed, and the lipid-lowering effect of WDD was explored. The plasma drug concentration of rats at different doses were measured by UPL-MS/MS technology, and PK parameters were calculated using Phoenix WinNonlin 8.1 software. The level of lipid peroxide (LPO) in plasma at different time points was measured by enzyme labeling instrument. Finally, the PK-PD model was established by using Phoenix WinNonlin 8.1 software, to explore the lipid-lowering effect of WDD and the relation between the dynamic changes of chemical components and antioxidant effect. Results: The findings suggested that, WDD can reduce the levels of triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) in plasma, and high-density lipoprotein cholesterol (HDL-C) was related to the dosage. Between the peak drug levels and the WDD's maximal therapeutic response, there existed a hysteresis. WDD's effect-concentration curves displayed a counterclockwise delaying loop. Alternatively, among the ten components of WDD, hesperetin, quercetin, naringenin and tangeretin might exert more significant effects in regulating the LPO levels in hyperlipidemic rats. Conclusion: This study can be helpful for other investigators to study the lipid-lowering effect of WDD.

7.
Phytochemistry ; 219: 114002, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38286199

ABSTRACT

It has been 11 years since ferroptosis, a new mode of programmed cell death, was first proposed. Natural products are an important source of drug discovery. In the past five years, natural product-derived ferroptosis regulators have been discovered in an endless stream. Herein, 178 natural products discovered so far to trigger or resist ferroptosis are classified into 6 structural classes based on skeleton type, and the mechanisms of action that have been reported are elaborated upon. If pharmacodynamic data are sufficient, the structure and bioactivity relationship is also presented. This review will provide medicinal chemists with some effective ferroptosis regulators, which will promote the research of natural product-based treatment of ferroptosis-related diseases in the future.


Subject(s)
Biological Products , Ferroptosis , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/pharmacology , Lipid Peroxidation , Apoptosis , Biological Products/pharmacology
8.
Adv Mater ; 36(2): e2304098, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37689975

ABSTRACT

Ferroptosis-related cancer therapy is limited by insufficient Fe2+ /Fe3+ redox pair and hydrogen peroxide (H2 O2 ) for producing lethal hydroxyl radicals (·OH). Although exogenous iron or ROS-producing drugs can enhance ferroptosis, exploiting endogenous iron (labile iron pool, LIP) stored in ferritin and promoting ROS generation may be safer. Herein, a metal/drug-free nanomedicine is developed for responsive LIP release and H2 O2 generation on the mitochondria membranes, amplifying hydroxyl radical production to enhance ferroptosis-mediated antitumor effects. A glutathione(GSH)/pH dual activatable fluorinated and cross-linked polyethyleneimine (PEI) with dialdehyde polyethylene glycol layer nanocomplex loaded with MTS-KR-SOD (Mitochondria-targeting-sequence-KillerRed-Superoxide Dismutase) and CRISPR/Cas9-CA IX (Carbonic anhydrase IX (CA IX)) plasmids (FP@MC) are developed for enhanced ferroptosis through endogenous iron de-hijacking and in situ ROS amplification. Two plasmids are constructed to knockdown CA IX and translate KillerRed-SOD recombinant protein specifically on mitochondria membranes, respectively. The CA IX knockdown acidifies the intracellular environment, leading the release of LIP from ferritin as a "flare" to initiate endogenous chemodynamic therapy. Meanwhile, MTS-KR-SOD generates H2 O2 when irradiated by a 590 nm laser to assist chemodynamic therapy, leading to ROS amplification for mitochondria damage and lipid peroxide accumulation. The combined therapeutic effects aggravate cancer ferroptosis and suppress tumor growth, providing a new paradigm for amplifying ROS and iron ions to promote ferroptosis-related cancer therapy.


Subject(s)
Iron , Neoplasms , Humans , Polyethyleneimine , Reactive Oxygen Species , Ferritins , Glutathione , Hydrogen Peroxide , Hydroxyl Radical , Superoxide Dismutase/genetics , Genes, Neoplasm , Hydrogen-Ion Concentration , Cell Line, Tumor
9.
Redox Biol ; 66: 102850, 2023 10.
Article in English | MEDLINE | ID: mdl-37586249

ABSTRACT

Long-chain acyl-CoA synthetase (ACSL) 4 converts polyunsaturated fatty acids (PUFAs) into their acyl-CoAs and plays an important role in maintaining PUFA-containing membrane phospholipids. Here we demonstrated decreases in various kinds of PUFA-containing phospholipid species in ACSL4-deficient murine lung. We then examined the effects of ACSL4 gene deletion on lung injury by treating mice with two pulmonary toxic chemicals: paraquat (PQ) and methotrexate (MTX). The results showed that ACSL4 deficiency attenuated PQ-induced acute lung lesion and decreased mortality. PQ-induced lung inflammation and neutrophil migration were also suppressed in ACSL4-deficient mice. PQ administration increased the levels of phospholipid hydroperoxides in the lung, but ACSL4 gene deletion suppressed their increment. We further found that ACSL4 deficiency attenuated MTX-induced pulmonary fibrosis. These results suggested that ACSL4 gene deletion might confer protection against pulmonary toxic chemical-induced lung injury by reducing PUFA-containing membrane phospholipids, leading to the suppression of lipid peroxidation. Inhibition of ACSL4 may be promising for the prevention and treatment of chemical-induced lung injury.


Subject(s)
Lung Injury , Mice , Animals , Lipid Peroxidation , Lung Injury/chemically induced , Lung Injury/genetics , Xenobiotics , Gene Deletion , Phospholipids , Fatty Acids, Unsaturated , Lung , Ligases
10.
Ecotoxicol Environ Saf ; 263: 115279, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37480692

ABSTRACT

The growing presence of yttrium (Y) in the environment raises concern regarding its safety and toxicity. However, limited toxicological data are available to determine cardiotoxicity of Y and its underlying mechanisms. In the present study, yttrium chloride (YCl3) intervention with different doses was performed in male Kunming mice for the toxicological evaluation of Y in the heart. After 28 days of intragastric administration, 500 mg/kg·bw YCl3 induces iron accumulation in cardiomyocytes, and triggers ferroptosis through the glutathione peroxidase 4 (GPX4)/glutathione (GSH)/system Xc- axis via the inhibition of Nrf2 signaling pathway. This process led to cardiac lipid peroxidation and inflammatory response. Further RNA sequencing transcriptome analysis found that many genes involved in ferroptosis and lipid metabolism-related pathways were enriched. The ferroptosis induced by YCl3 in cardiomyocytes ultimately caused cardiac injury and dysfunction in mice. Our findings assist in the elucidation of the potential subacute cardiotoxicity of Y3+ and its underlying mechanisms.


Subject(s)
Ferroptosis , Myocytes, Cardiac , Male , Mice , Animals , Lipid Peroxidation , Cardiotoxicity , Yttrium , Inflammation , Iron
11.
Adv Healthc Mater ; 12(28): e2301292, 2023 11.
Article in English | MEDLINE | ID: mdl-37458333

ABSTRACT

As a distinctly different way from apoptosis, ferroptosis can cause cell death through excessive accumulation of lipid peroxide (LPO) and show great potential for cancer therapy. However, efficient strategies for ferroptosis therapy are still facing great challenges, mainly due to insufficient endogenous H2 O2 or relatively high pH value for Fenton reaction-dependent ferroptosis, and the high redox level of tumor cells attenuates the oxidation therapy. Herein, an efficient lipid-based delivery system to load oxidation catalyst and glutathione peroxidase 4 (Gpx4) inhibitor is orchestrated, intending to amplify Fenton reaction-independent ferroptosis by bidirectional regulation of LPO accumulation. Ferric ammonium citrate (FAC), Gpx4 inhibitor sorafenib (SF), and unsaturated lipids are constructed into mPEG2K -DSPE-modified liposomes (Lip@SF&FAC). Influenced by the high level of intratumoral glutathione, FAC can be converted into Fe2+ , and subsequently the formed iron redox pair (Fe2+ /Fe3+ ) catalyzes unsaturated phospholipids of liposomes into LPO via a Fenton reaction-independent manner. Meanwhile, SF can downregulate LPO reduction by inhibiting Gpx4 activation. In vitro and in vivo antitumor experiments show that Lip@SF&FAC induces massive LPO accumulation in tumor cells and ultimately exhibits strong tumor-killing ability with negligible side effect. Consequently, this two-pronged approach provides a new ferroptosis strategy for predominant LPO accumulation and enhanced cancer therapy.


Subject(s)
Ferroptosis , Neoplasms , Humans , Liposomes/pharmacology , Oxidation-Reduction , Apoptosis , Lipid Peroxides , Sorafenib/pharmacology , Sorafenib/therapeutic use , Neoplasms/drug therapy , Cell Line, Tumor
12.
Biomaterials ; 300: 122205, 2023 09.
Article in English | MEDLINE | ID: mdl-37348324

ABSTRACT

The use of overwhelming reactive oxygen species (ROS) attack has shown great potential for treating aggressive malignancies; however, targeting this process for further applications is greatly hindered by inefficiency and low selectivity. Here, a novel strategy for ROS explosion induced by tumor microenvironment-initiated lipid redox cycling was proposed, which was developed by using soybean phosphatidylcholine (SPC) to encapsulate lactate oxidase (LOX) and sorafenib (SRF) self-assembled nanoparticles (NPs), named LOX/SRF@Lip. SPC is not only the delivery carrier but an unsaturated lipid supplement for ROS explosion. And LOX catalyzes excessive intratumoral lactate to promote the accumulation of large amounts of H2O2. Then, H2O2 reacts with excessive endogenous iron ions to generate amounts of hydroxyl radical for the initiation of SPC peroxidation. Once started, the reaction will proceed via propagation to form new lipid peroxides (LPO), resulting to devastating LPO explosion and widespread oxidative damage in tumor cells. Furthermore, SRF makes contribution to mass LPO accumulation by inhibiting LPO elimination. Compared to normal tissue, tumor tissue has higher levels of lactate and iron ions. Therefore, LOX/SRF@Lip shows low toxicity in normal tissues, but generates efficient inhibition on tumor proliferation and metastasis, enabling excellent and safe tumor-specific therapy. This work offers new ideas on how to magnify anticancer effect of ROS through rational nanosystem design and tumor-specific microenvironment utilization.


Subject(s)
Nanoparticles , Triple Negative Breast Neoplasms , Humans , Reactive Oxygen Species , Hydrogen Peroxide , Triple Negative Breast Neoplasms/drug therapy , Tumor Microenvironment , Oxidation-Reduction , Lipid Peroxides , Sorafenib , Iron , Cell Line, Tumor
13.
Gene ; 876: 147515, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37247796

ABSTRACT

Ovarian cancer (OC) is a malignant gynecologic tumor with high morbidity and mortality. As a newly discovered mode of programmed cell death, ferroptosis has been involved in various pathological processes of kinds of tumors in recent years. Aldehyde dehydrogenase 3 family member A2 (ALDH3A2) catalyzes the oxidation of long-chain aliphatic aldehydes to fatty acid. ALDH3A2 has been shown to be associated with ferroptosis in acute myeloid leukemia (AML), but the mechanism remains unclear. In this study, we analyzed the TCGA and GTEx databases and showed that high ALDH3A2 expression predicted poor prognosis in ovarian cancer. Further studies found that knockout or overexpression of ALDH3A2 correspondingly increased or attenuated the ferroptosis sensitivity of ovarian cancer cells. And sequencing revealed that ALDH3A2 knockout led to the activation of lipid metabolic, GSH metabolic, phospholipid metabolic, and aldehyde metabolic pathways, suggesting that ALDH3A2 induced changes in the sensitivity of ovarian cancer cells to ferroptosis by affecting these metabolic processes. Our results provide a new promising therapeutic strategy for the treatment of OC.


Subject(s)
Ferroptosis , Ovarian Neoplasms , Humans , Female , Apoptosis , Aldehydes
14.
Zhongguo Zhong Yao Za Zhi ; 48(3): 811-822, 2023 Feb.
Article in Chinese | MEDLINE | ID: mdl-36872245

ABSTRACT

Children's fever is often accompanied by food accumulation. Traditional Chinese medicine believes that removing food stagnation while clearing heat of children can effectively avoid heat damage. To systematically evaluate the efficacy of Xiaoer Chiqiao Qingre Granules(XRCQ) in clearing heat and removing food accumulation and explore its potential mechanism, this study combined suckling SD rats fed with high-sugar and high-fat diet with injection of carrageenan to induce rat model of fever and food accumulation. This study provided references for the study on the pharmacodynamics and mechanism of XRCQ. The results showed that XRCQ effectively reduced the rectal temperature of suckling rats, improved the inflammatory environment such as the content of interleukin-1ß(IL-1ß), interleukin-2(IL-2), interferon-γ(IFN-γ), white blood cells, and monocytes. XRCQ also effectively repaired intestinal injury and enhanced intestinal propulsion function. According to the confirmation of its efficacy of clearing heat, the thermolytic mechanism of XRCQ was further explored by non-targeted and targeted metabolomics methods based on LTQ-Orbitrap MS/MS and UPLC-QQQ-MS/MS. Non-target metabolomics analysis of brain tissue samples was performed by QI software combined with SIMCA-P software, and 22 endogenous metabolites that could be significantly regulated were screened out. MetaboAnalyst pathway enrichment results showed that the intervention mechanism was mainly focused on tyrosine metabolism, tricarboxylic acid cycle, inositol phosphate metabolism, and other pathways. At the same time, the results of targeted metabolomics of brain tissue samples showed that XRCQ changed the vitality of digestive system, and inhibited abnormal energy metabolism and inflammatory response, playing a role in clearing heat and removing food stagnation from multiple levels.


Subject(s)
Hot Temperature , Tandem Mass Spectrometry , Animals , Rats , Rats, Sprague-Dawley , Metabolomics , Food , Fever , Interferon-gamma
15.
Biomater Adv ; 147: 213323, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36764198

ABSTRACT

The cancer chemodynamic therapy based on the Fenton reaction has been attracting more and more attention. However, the performance of the Fenton reaction is restricted by the unsuitable physiological pH value and inadequate H2O2 content in the tumor microenvironment (TME). In this study, we proposed a novel method of inducing lipid peroxide (LPO) of the cancer cell membrane, whose performance is not limited by the pH value and H2O2 in the TME. The activatable LPO-inducing liposomes were constructed by encapsulating Fe3+-containing compound ferric ammonium citrate (FC) in the unsaturated soybean phospholipids (SPC). It was found that the FC could be reduced by the overexpressed glutathione (GSH) in the TME and produce iron redox couple. The Fe3+/Fe2+ mediated the peroxidation of the unsaturated SPC and induced the LPO in the cancer cells. Finally, LPO accumulation led to cancer cell death and tumor growth inhibition. Furthermore, the activatable liposomes did not damage healthy tissues because of the low GSH content in normal tissues and the GSH-triggered activation of the nanocarrier. Together, our findings revealed that FC-SPC-lipo displayed excellent anti-tumor performance and its therapeutic effects are less influenced by the TME, compared with the traditional ferroptosis.


Subject(s)
Lipid Peroxides , Neoplasms , Humans , Lipid Peroxides/pharmacology , Lipid Peroxides/therapeutic use , Liposomes/therapeutic use , Hydrogen Peroxide/metabolism , Neoplasms/drug therapy , Cell Membrane/metabolism , Tumor Microenvironment
16.
Med Res Rev ; 43(3): 683-712, 2023 05.
Article in English | MEDLINE | ID: mdl-36658745

ABSTRACT

Cardio-metabolic-diseases (cardio-metabolic-diseases) are leading causes of death and disability worldwide and impose a tremendous burden on whole society as well as individuals. As a new type of regulated cell death (RCD), ferroptosis is distinct from several classical types of RCDs such as apoptosis and necroptosis in cell morphology, biochemistry, and genetics. The main molecular mechanisms of ferroptosis involve iron metabolism dysregulation, mitochondrial malfunction, impaired antioxidant capacity, accumulation of lipid-related peroxides and membrane disruption. Within the past few years, mounting evidence has shown that ferroptosis contributes to the pathophysiological process in cardio-metabolic-diseases. However, the exact roles and underlying molecular mechanisms have not been fully elucidated. This review comprehensively summarizes the mechanism of ferroptosis in the development and progression of cardio-metabolic-diseases, so as to provide new insights for cardio-metabolic-diseases pathophysiology. Moreover, we highlight potential druggable molecules in ferroptosis signaling pathway, and discuss recent advances in management strategies by targeting ferroptosis for prevention and treatment of cardio-metabolic-diseases.


Subject(s)
Ferroptosis , Metabolic Diseases , Humans , Apoptosis , Metabolic Diseases/drug therapy , Antioxidants , Lipid Peroxides
17.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-970551

ABSTRACT

Children's fever is often accompanied by food accumulation. Traditional Chinese medicine believes that removing food stagnation while clearing heat of children can effectively avoid heat damage. To systematically evaluate the efficacy of Xiaoer Chiqiao Qingre Granules(XRCQ) in clearing heat and removing food accumulation and explore its potential mechanism, this study combined suckling SD rats fed with high-sugar and high-fat diet with injection of carrageenan to induce rat model of fever and food accumulation. This study provided references for the study on the pharmacodynamics and mechanism of XRCQ. The results showed that XRCQ effectively reduced the rectal temperature of suckling rats, improved the inflammatory environment such as the content of interleukin-1β(IL-1β), interleukin-2(IL-2), interferon-γ(IFN-γ), white blood cells, and monocytes. XRCQ also effectively repaired intestinal injury and enhanced intestinal propulsion function. According to the confirmation of its efficacy of clearing heat, the thermolytic mechanism of XRCQ was further explored by non-targeted and targeted metabolomics methods based on LTQ-Orbitrap MS/MS and UPLC-QQQ-MS/MS. Non-target metabolomics analysis of brain tissue samples was performed by QI software combined with SIMCA-P software, and 22 endogenous metabolites that could be significantly regulated were screened out. MetaboAnalyst pathway enrichment results showed that the intervention mechanism was mainly focused on tyrosine metabolism, tricarboxylic acid cycle, inositol phosphate metabolism, and other pathways. At the same time, the results of targeted metabolomics of brain tissue samples showed that XRCQ changed the vitality of digestive system, and inhibited abnormal energy metabolism and inflammatory response, playing a role in clearing heat and removing food stagnation from multiple levels.


Subject(s)
Animals , Rats , Rats, Sprague-Dawley , Hot Temperature , Tandem Mass Spectrometry , Metabolomics , Food , Fever , Interferon-gamma
18.
Redox Biol ; 58: 102538, 2022 12.
Article in English | MEDLINE | ID: mdl-36417796

ABSTRACT

Sarcopenia is prevalent in patients with hepatocellular carcinoma (HCC), and can adversely affect their outcomes. This study aims to explore the key mechanisms in the crosstalk between sarcopenia and HCC based on multi-omics profiling. A total of 136 male patients with HCC were enrolled. Sarcopenia was an independent risk factor for poor outcomes after liver transplantation (p < 0.05). Inflammatory cytokine and metabolomic profiling on these patients identified elevated plasma sTNF-R1/CHI3L1 and dysregulated lipid metabolism as related to sarcopenia and tumor recurrence risk concurrently (p < 0.05). Integrated analysis revealed close relationship between CHI3L1 and fatty acid metabolism. In mouse cachectic models by intraperitoneal injection of H22 cells, CHI3L1 was significantly elevated in the atrophic muscle tissue, as well as in circulation. In-vitro, CHI3L1 was up-regulated in muscle cells to protect itself from inflammatory damage through TNF-α/TNF-R1 signaling. CHI3L1 secreted by the muscle cells promoted the invasion of co-cultured HCC cells. Tumor tissue transcriptome data for 73 out of the 136 patients revealed that CHI3L1 may regulate fatty acid metabolism and oxidative stress. In vitro, CHI3L1 caused ROS and lipid accumulation. Targeted lipid profiling further proved that CHI3L1 was able to activate arachidonic acid metabolism, leading to lipid peroxide (LPO) accumulation. Meanwhile, LPO inhibition could compromise the remarkable pro-cancerous effects of CHI3L1. In conclusion, sarcopenia adversely affects the outcomes of liver transplantation for HCC. In sarcopenic patients, CHI3L1 was up-regulated and secreted by the skeletal muscle to protect itself through TNF-α/TNF-R1 signaling, which, in turn, can promote HCC tumor progression by inducing LPO accumulation.


Subject(s)
Carcinoma, Hepatocellular , Chitinases , Liver Neoplasms , Sarcopenia , Animals , Male , Mice , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Chitinase-3-Like Protein 1 , Fatty Acids , Lipids , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Receptors, Tumor Necrosis Factor, Type I , Sarcopenia/genetics , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Humans
19.
Redox Biol ; 58: 102520, 2022 12.
Article in English | MEDLINE | ID: mdl-36334379

ABSTRACT

While it is generally accepted that oxidative stress impacts the diabetic kidney and contributes to pathogenesis, there is a substantial lack of knowledge about the molecular entity and anatomic location of a variety of reactive species. Here we provide a novel "oxidative stress map" of the diabetic kidney - the first of its kind, and identify specific, oxidized and other reactive lipids and their location. We used the db/db mouse model and Desorption Electrospray Ionization (DESI) mass spectrometry combined with heatmap image analysis. We analyzed a comprehensive array of phospholipid peroxide species in normal (db/m) and diabetic (db/db) kidneys using DESI imaging. Oxilipidomics heatmaps of the kidneys were generated focusing on phospholipids and their potential peroxidized products. We identified those lipids that undergo peroxidation in diabetic nephropathy. Several phospholipid peroxides and their spatial distribution were identified that were specific to the diabetic kidney, with significant enrichment in oxygenated phosphatidylethanolamines (PE) and lysophosphatidylethanolamine. Beyond qualitative and semi-quantitative information about the targets, the approach also reveals the anatomic location and the extent of lipid peroxide signal propagation across the kidney. Our approach provides novel, in-depth information of the location and molecular entity of reactive lipids in an organ with a very heterogeneous landscape. Many of these reactive lipids have been previously linked to programmed cell death mechanisms. Thus, the findings may be relevant to understand what impact phospholipid peroxidation has on cell and mitochondria membrane integrity and redox lipid signaling in diabetic nephropathy.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Mice , Animals , Phospholipids/metabolism , Diabetic Nephropathies/metabolism , Oxidation-Reduction , Spectrometry, Mass, Electrospray Ionization/methods , Kidney/metabolism , Diabetes Mellitus/metabolism
20.
JACC Basic Transl Sci ; 7(8): 800-819, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36061338

ABSTRACT

Ischemia-reperfusion (I/R) injury is a promising therapeutic target to improve clinical outcomes after acute myocardial infarction. Ferroptosis, triggered by iron overload and excessive lipid peroxides, is reportedly involved in I/R injury. However, its significance and mechanistic basis remain unclear. Here, we show that glutathione peroxidase 4 (GPx4), a key endogenous suppressor of ferroptosis, determines the susceptibility to myocardial I/R injury. Importantly, ferroptosis is a major mode of cell death in I/R injury, distinct from mitochondrial permeability transition (MPT)-driven necrosis. This suggests that the use of therapeutics targeting both modes is an effective strategy to further reduce the infarct size and thereby ameliorate cardiac remodeling after I/R injury. Furthermore, we demonstrate that heme oxygenase 1 up-regulation in response to hypoxia and hypoxia/reoxygenation degrades heme and thereby induces iron overload and ferroptosis in the endoplasmic reticulum (ER) of cardiomyocytes. Collectively, ferroptosis triggered by GPx4 reduction and iron overload in the ER is distinct from MPT-driven necrosis in both in vivo phenotype and in vitro mechanism for I/R injury. The use of therapeutics targeting ferroptosis in conjunction with cyclosporine A can be a promising strategy for I/R injury.

SELECTION OF CITATIONS
SEARCH DETAIL
...