Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Immunol Lett ; 268: 106885, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38901739

ABSTRACT

Leishmaniasis is a collective term for several tropical, neglected diseases caused by protozoans of the species Leishmania, 20 of which causing disease in humans ranging from localised self-healing lesions to chronic manifestations which affect the skin or inner organs. Although millions of infections are accounted for annually, treatment options are scarce and limited to medication associated with heavy side-effects and increasing antibiotic resistance. Case studies point towards immunotherapy as effective alternative treatment relying on immunomodulatory properties of e.g., the Bacillus Calmette-Guérin vaccine. Leishmania parasites are also known to modulate the immune system, yet the underlying macromolecules and surface molecules remain widely under characterised. With this short review, we aim to provide a complete summary of the existing literature describing one of the most expressed surface molecule on Leishmania spp, lipophosphoglycan (LPG), which shows great variability between different lifecycle stages and different Leishmania spp. Complete characterisation of LPG may aid to improve treatment and aid the development of vaccination strategies, and open new avenues to exploit the immunomodulatory properties of LPG in unrelated conditions.


Subject(s)
Glycosphingolipids , Immunomodulation , Leishmania , Leishmaniasis , Leishmania/immunology , Humans , Glycosphingolipids/immunology , Glycosphingolipids/metabolism , Animals , Leishmaniasis/immunology , Leishmaniasis/parasitology
2.
Pathog Dis ; 812023 01 17.
Article in English | MEDLINE | ID: mdl-37604789

ABSTRACT

Visceral leishmaniasis (VL) is a severe form of leishmaniasis, primarily affecting the poor in developing countries. Although several studies have highlighted the importance of toll-like receptors (TLRs) in the pathophysiology of leishmaniasis, the role of specific TLRs and their binding partners involved in Leishmania donovani uptake are still elusive. To investigate the mechanism of L. donovani entry inside the macrophages, we found that the parasite lipophosphoglycan (LPG) interacted with the macrophage TLR4, leading to parasite uptake without any significant alteration of macrophage cell viability. Increased parasite numbers within macrophages markedly inhibited lipopolysachharide-induced pro-inflammatory cytokines gene expression. Silencing of macrophage-TLR4, or inhibition of parasite-LPG, significantly stemmed parasite infection in macrophages. Interestingly, we observed a significant enhancement of macrophage migration, and generation of reactive oxygen species (ROS) in the parasite-infected TLR4-silenced macrophages, whereas parasite infection in TLR4-overexpressed macrophages exhibited a notable reduction of macrophage migration and ROS generation. Moreover, mutations in the leucine-rich repeats (LRRs), particularly LRR5 and LRR6, significantly prevented TLR4 interaction with LPG, thus inhibiting cellular parasite entry. All these results suggest that parasite LPG recognition by the LRR5 and LRR6 of macrophage-TLR4 facilitated parasite entry, and impaired macrophage functions. Therefore, targeting LRR5/LRR6 interactions with LPG could provide a novel option to prevent VL.


Subject(s)
Leishmania donovani , Leishmaniasis, Visceral , Parasites , Animals , Toll-Like Receptor 4 , Reactive Oxygen Species , Macrophages
3.
Cytokine ; 169: 156301, 2023 09.
Article in English | MEDLINE | ID: mdl-37515982

ABSTRACT

Leishmania infection of macrophages results in altered Ras isoforms expression and Toll-like receptor-2 (TLR2) expression and functions. Therefore, we examined whether TLR2 would selectively alter Ras isoforms' expression in macrophages. We observed that TLR2 ligands- Pam3CSK4, peptidoglycan (PGN), and FSL- selectively modulated the expression of Ras isoforms in BALB/c-derived elicited macrophages. Lentivirally-expressed TLR1-shRNA significantly reversed this Ras isoforms expression profile. TLR2-deficient L. major-infected macrophages and the lymph node cells from the L. major-infected mice showed similarly reversed Ras isoforms expression. Transfection of the macrophages with the siRNAs for the adaptors- Myeloid Differentiation factor 88 (MyD88) and Toll-Interleukin-1 Receptor (TIR) domain-containing adaptor protein (TIRAP)- or Interleukin-1 Receptor-Associated Kinases (IRAKs)- IRAK1 and IRAK4- significantly inhibited the L. major-induced down-regulation of K-Ras, and up-regulation of N-Ras and H-Ras, expression. The TLR1/TLR2-ligand Pam3CSK4 increased IL-10 and TGF-ß expression in macrophages. Pam3CSK4 upregulated N-Ras and H-Ras, but down-regulated K-Ras, expression in C57BL/6 wild-type, but not in IL-10-deficient, macrophages. IL-10 or TGF-ß signaling inhibition selectively regulated Ras isoforms expression. These observations indicate the specificity of the TLR2 regulation of Ras isoforms and their selective modulation by MyD88, TIRAP, and IRAKs, but not IL-10 or TGF-ß, signaling.


Subject(s)
Leishmania major , Leishmaniasis, Cutaneous , Macrophages , Toll-Like Receptor 2 , ras Proteins , Leishmaniasis, Cutaneous/metabolism , Animals , Mice , Mice, Inbred BALB C , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Macrophages/metabolism , Ligands , ras Proteins/metabolism , Peptidoglycan/metabolism , Interleukin-1 Receptor-Associated Kinases , Mice, Inbred C57BL , Protein Isoforms/metabolism , Down-Regulation
4.
Acta Parasitol ; 68(1): 122-129, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36434381

ABSTRACT

PURPOSE: Leishmania transmission by sand flies is detected by dermal cells that recognize ligands, such as lipophosphoglycan (LPG) on the promastigote glycocalyx. Resident dermal cells include γδ T cells, that recognize antigens by TCR or innate receptors, such as TLRs. We analyzed the response of dermal γδ T cells to Leishmania mexicana infections or inoculation of LPG, and whether parasite LPG activates γδ T cells through TLR2. METHODS: We stimulated γδ T cells with LPG and analyzed colocalization of LPG and TLR2 by confocal microscopy. Activation of TLR2 was evaluated by IκBα phosphorylation. BALB/c mice were inoculated with L. mexicana or LPG in the dermis of earlobes, and LPG+ TLR2+ γδ T cells were analyzed by flow cytometry. TNF+ γδ T cells were examined in earlobe dermis by confocal microscopy. RESULTS: Stimulation with purified LPG showed activation of TLR2 with IκBα phosphorylation in γδ T cells. Inoculation of L. mexicana parasites or LPG into earlobe dermis showed co-expression of LPG+ and TLR2+ in γδ T cells, demonstrating their interaction during infections. A subset of γδ T cells (LPG+ and TLR2-) provided evidence that additional receptors recognize LPG. Inoculation of LPG enhanced overall γδ T cell numbers, including those expressing TNF, whereas infection with the parasite mostly enhanced γδ T cells expressing TNF. CONCLUSION: L. mexicana LPG is a ligand recognized by TLR2 on γδ-T cells leading to their activation, although contribution of other receptors cannot be ruled out and need to be analyzed to elucidate their contribution during Leishmania infections.


Subject(s)
Leishmania mexicana , Leishmaniasis , Animals , Mice , Toll-Like Receptor 2 , NF-KappaB Inhibitor alpha , T-Lymphocytes
5.
mBio ; 13(6): e0257822, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36222510

ABSTRACT

Pathogen-specific rewiring of host cell metabolism creates the metabolically adapted microenvironment required for pathogen replication. Here, we investigated the mechanisms governing the modulation of macrophage mitochondrial properties by the vacuolar pathogen Leishmania. We report that induction of oxidative phosphorylation and mitochondrial biogenesis by Leishmania donovani requires the virulence glycolipid lipophosphoglycan, which stimulates the expression of key transcriptional regulators and structural genes associated with the electron transport chain. Leishmania-induced mitochondriogenesis also requires a lipophosphoglycan-independent pathway involving type I interferon (IFN) receptor signaling. The observation that pharmacological induction of mitochondrial biogenesis enables an avirulent lipophosphoglycan-defective L. donovani mutant to survive in macrophages supports the notion that mitochondrial biogenesis contributes to the creation of a metabolically adapted environment propitious to the colonization of host cells by the parasite. This study provides novel insight into the complex mechanism by which Leishmania metacyclic promastigotes alter host cell mitochondrial biogenesis and metabolism during the colonization process. IMPORTANCE To colonize host phagocytes, Leishmania metacyclic promastigotes subvert host defense mechanisms and create a specialized intracellular niche adapted to their replication. This is accomplished through the action of virulence factors, including the surface coat glycoconjugate lipophosphoglycan. In addition, Leishmania induces proliferation of host cell mitochondria as well as metabolic reprogramming of macrophages. These metabolic alterations are crucial to the colonization process of macrophages, as they may provide metabolites required for parasite growth. In this study, we describe a new key role for lipophosphoglycan in the stimulation of oxidative phosphorylation and mitochondrial biogenesis. We also demonstrate that host cell pattern recognition receptors Toll-like receptor 4 (TLR4) and endosomal TLRs mediate these Leishmania-induced alterations of host cell mitochondrial biology, which also require type I IFN signaling. These findings provide new insight into how Leishmania creates a metabolically adapted environment favorable to their replication.


Subject(s)
Leishmania donovani , Organelle Biogenesis , Macrophages/metabolism , Glycosphingolipids
6.
Cell Biol Int ; 46(11): 1947-1958, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35998255

ABSTRACT

Lipophosphoglycan (LPG), the major Leishmania glycoconjugate, induces pro-inflammatory/immunosuppressive innate immune responses. Here, we evaluated functional/biochemical LPG properties from six Leishmania amazonensis strains from different hosts/clinical forms. LPGs from three strains (GV02, BA276, and LV79) had higher pro-inflammatory profiles for most of the mediators, including tumor necrosis factor alpha and interleukin 6. For this reason, glycoconjugates from all strains were biochemically characterized and had polymorphisms in their repeat units. They consisted of three types: type I, repeat units devoid of side chains; type II, containing galactosylated side chains; and type III, containing glucosylated side chains. No relationship was observed between LPG type and the pro-inflammatory properties. Finally, to evaluate the susceptibility against antileishmanial agents, two strains with high (GV02, BA276) and one with low (BA336) pro-inflammatory activity were selected for chemotherapeutic tests in THP-1 cells. All analyzed strains were susceptible to amphotericin B (AmB) but displayed various responses against miltefosine (MIL) and glucantime (GLU). The GV02 strain (canine visceral leishmaniasis) had the highest IC50 for MIL (3.34 µM), whereas diffuse leishmaniasis strains (BA276 and BA336) had a higher IC50 for GLU (6.87-12.19 mM). The highest IC50 against MIL shown by the GV02 strain has an impact on clinical management. Miltefosine is the only drug approved for dog treatment in Brazil. Further studies into drug susceptibility of L. amazonensis strains are warranted, especially in areas where dog infection by this species overlaps with those caused by Leishmania infantum.


Subject(s)
Amphotericin B , Leishmania , Amphotericin B/pharmacology , Animals , Dogs , Glycosphingolipids , Interleukin-6 , Leishmania/genetics , Meglumine Antimoniate/pharmacology , Mice , Mice, Inbred BALB C , Phosphorylcholine/analogs & derivatives , Tumor Necrosis Factor-alpha
7.
Prog Lipid Res ; 87: 101182, 2022 07.
Article in English | MEDLINE | ID: mdl-35901922

ABSTRACT

The inflammatory response is a complex regulated effector mechanism of the innate immune system that is initiated after tissue injury or infection. The NLRP3 inflammasome is an important initiator of inflammation by regulating the activation of caspase-1, the maturation of pro-inflammatory cytokines and the induction of pyroptotic cell death. Numerous studies demonstrate that the NLRP3 inflammasome could be modulated by lipids, existing a relation between lipids and the activation of different inflammatory processes. In this review we will summarize how the mechanism of NLRP3 inflammasome activation is regulated by different lipids and how these lipids control specific cellular localization of NLRP3 during activation. Although being a cytosolic protein, NLRP3 interacts with lipids accessible in neighbor membranes. Also, the modulation of NLRP3 by endogenous lipids has been found causative of different metabolic diseases and bacterial-pathogenic lipids lead to NLRP3 activation during infection. The understanding of the modulation of the NLRP3 inflammasome by lipids has resulted not only in a better knowledge about the mechanism of NLRP3 activation and its implication in disease, but also opens a new avenue for the development of novel therapeutics and vaccines, as NLRP3 could be modulated by synthetic lipids used as adjuvants.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Inflammasomes/metabolism , Inflammation/metabolism , Lipids , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
8.
Front Cell Infect Microbiol ; 12: 788196, 2022.
Article in English | MEDLINE | ID: mdl-35463648

ABSTRACT

Visceral leishmaniasis (VL) is often associated with hematologic manifestations that may interfere with neutrophil response. Lipophosphoglycan (LPG) is a major molecule on the surface of Leishmania promastigotes, which has been associated with several aspects of the parasite-vector-host interplay. Here, we investigated how LPG from Leishmania (L.) infantum, the principal etiological agent of VL in the New World, influences the initial establishment of infection during interaction with human neutrophils in an experimental setting in vitro. Human neutrophils obtained from peripheral blood samples were infected with either the wild-type L. infantum (WT) strain or LPG-deficient mutant (∆lpg1). In this setting, ∆lpg1 parasites displayed reduced viability compared to WT L. infantum; such finding was reverted in the complemented ∆lpg1+LPG1 parasites at 3- and 6-h post-infection. Confocal microscopy experiments indicated that this decreased survival was related to enhanced lysosomal fusion. In fact, LPG-deficient L. infantum parasites more frequently died inside neutrophil acidic compartments, a phenomenon that was reverted when host cells were treated with Wortmannin. We also observed an increase in the secretion of the neutrophil collagenase matrix metalloproteinase-8 (MMP-8) by cells infected with ∆lpg1 L. infantum compared to those that were infected with WT parasites. Furthermore, collagen I matrix degradation was found to be significantly increased in ∆lpg1 parasite-infected cells but not in WT-infected controls. Flow cytometry analysis revealed a substantial boost in production of reactive oxygen species (ROS) during infection with either WT or ∆lpg1 L. infantum. In addition, killing of ∆lpg1 parasites was shown to be more dependent on the ROS production than that of WT L. infantum. Notably, inhibition of the oxidative stress with Apocynin potentially fueled ∆lpg1 L. infantum fitness as it increased the intracellular parasite viability. Thus, our observations demonstrate that LPG may be a critical molecule fostering parasite survival in human neutrophils through a mechanism that involves cellular activation and generation of free radicals.


Subject(s)
Leishmania infantum , Leishmaniasis, Visceral , Parasites , Animals , Glycosphingolipids/metabolism , Humans , Leishmaniasis, Visceral/metabolism , Neutrophils/metabolism , Parasites/metabolism , Reactive Oxygen Species/metabolism
9.
Front Cell Infect Microbiol ; 12: 805720, 2022.
Article in English | MEDLINE | ID: mdl-35402314

ABSTRACT

Interleukin-32 (IL-32) is produced during Leishmania infection, but the components of the parasite that induce its production are unknown. An important multivirulence factor of Leishmania spp. protozoa is the lipophosphoglycan (LPG), which plays a crucial role in the host-parasite interaction. Here, the ability of LPGs from two dermotropic Leishmania species to induce IL-32 production was evaluated in human peripheral blood mononuclear cells (PBMCs). Additionally, the potential receptors involved in this activation were assessed. PBMCs from healthy individuals were stimulated with LPGs from L. amazonensis (La) or L. braziliensis (Lb), live promastigotes of La or Lb and E. coli lipopolysaccharide (LPS, TLR4 agonist) as control. Blockers of TLR4 (Bartonella quintana LPS or monoclonal antibody) and Ponatinib (RIPK2 inhibitor, NOD2 pathway) were used to evaluate the receptors. ELISA was performed for IL-32 expression and cytokine (IL-1ß and IL-6) production in cell lysates and in supernatants, respectively. Expression of TLR4 (2 h, 24 h) was assessed by flow cytometry. IL-32γ mRNA transcript was analyzed by qPCR. It was observed that LPG from Leishmania, like whole parasites, induced the production of IL-32, IL-1ß and IL-6. Both LPGs induced the expression of IL32γ mRNA. The production of IL-32 was earlier detected (6 h) and positively associated with the production of IL-1ß and IL-6. The induction of cytokines (IL-32, IL-1ß and IL-6) was dependent on TLR4 and NOD2. The TLR4 was internalized after interaction with LPG. Therefore, our data suggest that LPGs from La and Lb are components of Leishmania able to upregulate IL-32 and other pro-inflammatory cytokines in a TLR4- and NOD2-dependent manner. In addition, LPG-induced IL-32 seems to be necessary for IL-1ß and IL-6 production. To identify the parasite factors and host receptors involved in IL-32 induction is crucial to reveal potential targets for novel strategies to control leishmaniasis.


Subject(s)
Leishmania , Leishmaniasis , Cytokines/metabolism , Escherichia coli/genetics , Glycosphingolipids , Humans , Interleukin-6/metabolism , Interleukins/metabolism , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides , Nod2 Signaling Adaptor Protein/metabolism , RNA, Messenger , Toll-Like Receptor 4/metabolism
10.
Front Microbiol ; 12: 713531, 2021.
Article in English | MEDLINE | ID: mdl-34394064

ABSTRACT

Trypanosoma brucei brucei is the causative agent of African animal trypanosomosis, which mainly parasitizes the blood of the host. Lipophosphoglycan (LPG), a polymer anchored to the surface of the parasites, activates the host immune response. In this study, we revealed that T. brucei LPG stimulated neutrophils to form neutrophil extracellular traps (NETs) and release the reactive oxygen species (ROS). We further analyzed the involvement of toll-like receptor 2 (TLR2) and toll-like receptor 4 (TLR4) and explored the activation of signaling pathway enzymes in response to LPG stimulation. During the stimulation of neutrophils by LPG, the blockade using anti-TLR2 and anti-TLR4 antibodies reduced the phosphorylation of c-Jun N-terminal kinase (JNK), the release of DNA from the NETs, and the burst of ROS. Moreover, the addition of JNK inhibitor and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor exhibited similar effects. Our data suggest that T. brucei LPG activates the phosphorylation of JNK through TLR2 and TLR4 recognition, which causes the formation of NETs and the burst of ROS.

11.
Article in English | MEDLINE | ID: mdl-32903718

ABSTRACT

On the surface of the Leishmania promastigote, phosphoglycans (PG) such as lipophosphoglycan (LPG), proteophosphoglycan (PPG), free phosphoglycan polymers (PGs), and acid phosphatases (sAP), are dominant and contribute to the invasion and survival of Leishmania within the host cell by modulating macrophage signaling and intracellular trafficking. Phosphoglycan synthesis depends on the Golgi GDP-mannose transporter encoded by the LPG2 gene. Aiming to investigate the role of PG-containing molecules in Leishmania infantum infection process, herein we describe the generation and characterization of L. infantum LPG2-deficient parasites. This gene was unexpectedly identified as duplicated in the L. infantum genome, which impaired gene targeting using the conventional homologous recombination approach. This limitation was circumvented by the use of CRISPR/Cas9 technology. Knockout parasites were selected by agglutination assays using CA7AE antibodies followed by a lectin (RCA 120). Five clones were isolated and molecularly characterized, all revealing the expected edited genome, as well as the complete absence of LPG and PG-containing molecule expression. Finally, the deletion of LPG2 was found to impair the outcome of infection in human neutrophils, as demonstrated by a pronounced reduction (~83%) in intracellular load compared to wild-type parasite infection. The results obtained herein reinforce the importance of LPG and other PGs as virulence factors in host-parasite interactions.


Subject(s)
Leishmania infantum , Leishmania major , CRISPR-Cas Systems , Gene Duplication , Gene Editing , Glycosphingolipids , Humans , Leishmania infantum/genetics , Membrane Proteins/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
12.
Article in English | MEDLINE | ID: mdl-32850481

ABSTRACT

Leishmania infection causes considerable human morbidity and may develop into a deadly visceral form in endemic regions. The parasite infects macrophages where they can replicate intracellularly. Furthermore, they modulate host immune responses by using virulence factors (lipophosphoglycan, glycoprotein-63, and others) that promote survival inside the cells. Extracellular vesicles (EVs) released by parasites are important for cell-cell communication in the proinflammatory milieu modulating the establishment of infection. However, information on the ability of EVs from different Leishmania species to modulate inflammatory responses is scarce, especially from those species causing different clinical manifestations (visceral vs. cutaneous). The purpose of this study was to compare macrophage activation using EVs from three Leishmania species from New World including L. infantum, L. braziliensis, and L. amazonensis. EVs were released from promastigote forms, purified by ultracentrifugation and quantitated by Nanoparticle Tracking Analysis (NTA) prior to murine macrophage exposure. NTA analysis did not show any differences in the EV sizes among the strains. EVs from L. braziliensis and L. infantum failed to induce a pro-inflammatory response. EVs from both L. infantum WT and LPG-deficient mutant (LPG-KO) did not show any differences in their interaction with macrophages, suggesting that LPG solely was not determinant for activation. On the other hand, EVs from L. amazonensis were immunomodulatory inducing NO, TNF-α, IL-6, and IL-10 via TLR4 and TLR2. To determine whether such activation was related to NF-κB p65 translocation, THP-1 macrophage cells were exposed to EVs. In the same way, only EVs from L. amazonensis exhibited a highly percentage of cells positive for NF-κB. Our results suggest an important role of EVs in determining the pattern of immune response depending on the parasite species. For L. infantum, LPG was not determinant for the activation.


Subject(s)
Extracellular Vesicles , Leishmania , Parasites , Animals , Humans , Immunity , Mice , NF-kappa B , Toll-Like Receptors
13.
Carbohydr Polym ; 237: 116120, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32241437

ABSTRACT

Leishmania is an obligate intracellular pathogen that invades phagocytic host cells. Due to its high morbidity and mortality rates, leishmaniasis attracts significant attention. The disease, which is caused by Leishmania parasites, is distributed worldwide, particularly among developing communities, and causes fatal complications if not treated expediently. Unfortunately, the existing treatments are not preventive and do not impede Leishmania infection. Many drugs available for leishmaniasis are becoming less effective due to emerging resistance in some Leishmania species. Other drugs have drawbacks such as low cost-effectiveness, toxicity, and side effects. The World Health Organization (WHO) considers leishmaniasis to be a major public health problem and suggests that the best prevention is to develop a vaccine for this dangerous disease. In this review, we focus on the unique components of lipophosphoglycan (LPG), a component of the Leishmania cell wall, particularly [Galp(1 → 4)-ß-[Manp-(1 → 2)-α-Manp-(1 → 2)-α]-Manp] in the cryptic tetrasaccharide cap, and on synthetic approaches as a potent candidate for a leishmaniasis vaccine.


Subject(s)
Glycoproteins/chemistry , Glycosphingolipids/chemistry , Leishmania/chemistry , Leishmaniasis/parasitology , Humans , Leishmaniasis/prevention & control , Leishmaniasis Vaccines
14.
Parasit Vectors ; 13(1): 44, 2020 Jan 30.
Article in English | MEDLINE | ID: mdl-32000835

ABSTRACT

BACKGROUND: Leishmania spp. are digenetic parasites capable of infecting humans and causing a range of diseases collectively known as leishmaniasis. The main mechanisms involved in the development and permanence of this pathology are linked to evasion of the immune response. Crosstalk between the immune system and particularities of each pathogenic species is associated with diverse disease manifestations. Lipophosphoglycan (LPG), one of the most important molecules present on the surface of Leishmania parasites, is divided into four regions with high molecular variability. Although LPG plays an important role in host-pathogen and vector-parasite interactions, the distribution and phylogenetic relatedness of the genes responsible for its synthesis remain poorly explored. The recent availability of full genomes and transcriptomes of Leishmania parasites offers an opportunity to leverage insight on how LPG-related genes are distributed and expressed by these pathogens. RESULTS: Using a phylogenomics-based framework, we identified a catalog of genes involved in LPG biosynthesis across 22 species of Leishmania from the subgenera Viannia and Leishmania, as well as 5 non-Leishmania trypanosomatids. The evolutionary relationships of these genes across species were also evaluated. Nine genes related to the production of the glycosylphosphatidylinositol (GPI)-anchor were highly conserved among compared species, whereas 22 genes related to the synthesis of the repeat unit presented variable conservation. Extensive gain/loss events were verified, particularly in genes SCG1-4 and SCA1-2. These genes act, respectively, on the synthesis of the side chain attached to phosphoglycans and in the transfer of arabinose residues. Phylogenetic analyses disclosed evolutionary patterns reflective of differences in host specialization, geographic origin and disease manifestation. CONCLUSIONS: The multiple gene gain/loss events identified by genomic data mining help to explain some of the observed intra- and interspecies variation in LPG structure. Collectively, our results provide a comprehensive catalog that details how LPG-related genes evolved in the Leishmania parasite specialization process.


Subject(s)
Genome, Protozoan , Glycosphingolipids/biosynthesis , Glycosphingolipids/genetics , Leishmania/physiology , Trypanosomatina/genetics , Base Sequence , Biological Evolution , Data Mining , Glycosphingolipids/chemistry , Humans , Leishmania/classification , Leishmania/genetics , Likelihood Functions , Phylogeny , RNA, Protozoan/chemistry , Trypanosomatina/classification , Trypanosomatina/physiology
15.
Cytokine X ; 2(4): 100041, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33604563

ABSTRACT

Leishmania are protozoan parasites that predominantly reside in myeloid cells within their mammalian hosts. Monocytes and macrophages play a central role in the pathogenesis of all forms of leishmaniasis, including cutaneous and visceral leishmaniasis. The present review will highlight the diverse roles of macrophages in leishmaniasis as initial replicative niche, antimicrobial effectors, immunoregulators and as safe hideaway for parasites persisting after clinical cure. These multiplex activities are either ascribed to defined subpopulations of macrophages (e.g., Ly6ChighCCR2+ inflammatory monocytes/monocyte-derived dendritic cells) or result from different activation statuses of tissue macrophages (e.g., macrophages carrying markers of of classical [M1] or alternative activation [M2]). The latter are shaped by immune- and stromal cell-derived cytokines (e.g., IFN-γ, IL-4, IL-10, TGF-ß), micro milieu factors (e.g., hypoxia, tonicity, amino acid availability), host cell-derived enzymes, secretory products and metabolites (e.g., heme oxygenase-1, arginase 1, indoleamine 2,3-dioxygenase, NOS2/NO, NOX2/ROS, lipids) as well as by parasite products (e.g., leishmanolysin/gp63, lipophosphoglycan). Exciting avenues of current research address the transcriptional, epigenetic and translational reprogramming of macrophages in a Leishmania species- and tissue context-dependent manner.

16.
Mem. Inst. Oswaldo Cruz ; 115: e200140, 2020. tab, graf
Article in English | LILACS, Sec. Est. Saúde SP | ID: biblio-1135247

ABSTRACT

Although Leishmania infantum is well-known as the aethiological agent of visceral leishmaniasis (VL), in some Central American countries it may cause atypical non-ulcerated cutaneous leishmaniasis (NUCL). However, the mechanisms favoring its establishment in the skin are still unknown. Lipophosphoglycan (LPG) is the major Leishmania multivirulence factor involved in parasite-host interaction. In the case of viscerotropic L. infantum, it causes an immunosuppression during the interaction with macrophages. Here, we investigated the biochemical and functional roles of LPGs from four dermotropic L. infantum strains from Honduras during in vitro interaction with murine macrophages. LPGs were extracted, purified and their repeat units analysed. They did not have side chains consisting of Gal(β1,4)Man(α1)-PO4 common to all LPGs. Peritoneal macrophages from BALB/c and C57BL/6 were exposed to LPG for nitric oxide (NO) and cytokine (TNF-α and, IL-6) production. LPGs from dermotropic strains from Honduras triggered higher NO and cytokine levels compared to those from viscerotropic strains. In conclusion, LPGs from dermotropic strains are devoid of side-chains and exhibit high pro-inflammatory activity.


Subject(s)
Humans , Animals , Male , Mice , Glycosphingolipids , Leishmania infantum/physiology , Central America , Honduras , Macrophages/immunology
17.
Article in English | MEDLINE | ID: mdl-31555609

ABSTRACT

Leishmania (Viannia) braziliensis is responsible for the largest number of American tegumentary leishmaniasis (ATL) in Brazil. ATL can present several clinical forms including typical (TL) and atypical (AL) cutaneous and mucocutaneous (ML) lesions. To identify parasite and host factors potentially associated with these diverse clinical manifestations, we first surveyed the expression of two virulence-associated glycoconjugates, lipophosphoglycan (LPG) and the metalloprotease GP63 by a panel of promastigotes of Leishmania braziliensis (L. braziliensis) strains isolated from patients with different clinical manifestations of ATL and from the sand fly vector. We observed a diversity of expression patterns for both LPG and GP63, which may be related to strain-specific polymorphisms. Interestingly, we noted that GP63 activity varies from strain to strain, including the ability to cleave host cell molecules. We next evaluated the ability of promastigotes from these L. braziliensis strains to modulate phagolysosome biogenesis in bone marrow-derived macrophages (BMM), by assessing phagosomal recruitment of the lysosome-associated membrane protein 1 (LAMP-1) and intraphagosomal acidification. Whereas, three out of six L. braziliensis strains impaired the phagosomal recruitment of LAMP-1, only the ML strain inhibited phagosome acidification to the same extent as the L. donovani strain that was used as a positive control. While decreased phagosomal recruitment of LAMP-1 correlated with higher LPG levels, decreased phagosomal acidification correlated with higher GP63 levels. Finally, we observed that the ability to infect and replicate within host cells did not fully correlate with the inhibition of phagosome maturation. Collectively, our results revealed a diversity of strain-specific phenotypes among L. braziliensis isolates, consistent with the high genetic diversity within Leishmania populations.


Subject(s)
Glycosphingolipids/metabolism , Host-Pathogen Interactions , Leishmania braziliensis/immunology , Leishmaniasis, Mucocutaneous/immunology , Leishmaniasis, Mucocutaneous/parasitology , Metalloendopeptidases/metabolism , Phagosomes/metabolism , Animals , Cells, Cultured , Immune Evasion , Leishmania braziliensis/growth & development , Lysosomal-Associated Membrane Protein 1/antagonists & inhibitors , Macrophages/immunology , Macrophages/parasitology , Mice, Inbred C57BL , Organelle Biogenesis
18.
Article in English | MEDLINE | ID: mdl-31355149

ABSTRACT

Lipophosphoglycan (LPG) is the major Leishmania surface glycoconjugate having importance during the host-parasite interface. Leishmania (Viannia) braziliensis displays a spectrum of clinical forms including: typical cutaneous leishmaniasis (TL), mucocutaneous (ML), and atypical lesions (AL). Those variations in the immunopathology may be a result of intraspecies polymorphisms in the parasite's virulence factors. In this context, we evaluated the role of LPG of strains originated from patients with different clinical manifestations and the sandfly vector. Six isolates of L. braziliensis were used: M2903, RR051 and RR418 (TL), RR410 (AL), M15991 (ML), and M8401 (vector). LPGs were extracted and purified by hydrophobic interaction. Peritoneal macrophages from C57BL/6 and respective knock-outs (TLR2-/- and TLR-4-/-) were primed with IFN-γ and exposed to different LPGs for nitric oxide (NO) and cytokine production (IL-1ß, IL-6, IL-12, and TNF-α). LPGs differentially activated the production of NO and cytokines via TLR4. In order to ascertain if such functional variations were related to intraspecies polymorphisms in the LPG, the purified glycoconjugates were subjected to western blot with specific LPG antibodies (CA7AE and LT22). Based on antibody reactivity preliminary variations in the repeat units were detected. To confirm these findings, LPGs were depolymerized for purification of repeat units. After thin layer chromatography, intraspecies polymorphisms were confirmed especially in the type and/size of sugars branching-off the repeat units motif. In conclusion, different isolates of L. braziliensis from different clinical forms and hosts possess polymorphisms in their LPGs that functionally affected macrophage responses.


Subject(s)
Glycosphingolipids/chemistry , Glycosphingolipids/immunology , Leishmania braziliensis/genetics , Leishmania braziliensis/metabolism , Leishmaniasis, Cutaneous/immunology , Macrophage Activation , Toll-Like Receptor 4/metabolism , Animals , Cytokines/metabolism , Gene Knockout Techniques , Glycosphingolipids/isolation & purification , Host-Pathogen Interactions , Humans , Immunity, Innate , Macrophages/immunology , Macrophages, Peritoneal/parasitology , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide , Psychodidae/parasitology , Toll-Like Receptor 4/genetics , Virulence Factors
19.
Turkiye Parazitol Derg ; 43(2): 83-88, 2019 Jun 17.
Article in English | MEDLINE | ID: mdl-31204461

ABSTRACT

In all major parasite groups, new and surprising evidence is emerging every day about the subtlety, complexity and diversity of avoidance mechanisms from host immune system. In the course of millions of years of evolutionary process, mammalian and sand fly hosts have developed defense systems against Leishmania, but Leishmania has not only escaped from their hosts' defense systems through complex counter-strategies, but has also managed to manipulate them to support their own survival and reproduction. In this study, Leishmania's survival strategies used in the sand fly and mammalian hosts and the mechanisms that underlie these strategies will be summarized.


Subject(s)
Leishmania/physiology , Mammals/parasitology , Psychodidae/parasitology , Animals , Leishmania/immunology , Mammals/immunology , Phlebotomus/immunology , Phlebotomus/parasitology , Psychodidae/immunology
20.
Infect Immun ; 87(5)2019 03.
Article in English | MEDLINE | ID: mdl-30804103

ABSTRACT

CXCL16 is a multifunctional chemokine that is highly expressed by macrophages and other immune cells in response to bacterial and viral pathogens; however, little is known regarding the role of CXCL16 during parasitic infections. The protozoan parasite Leishmania donovani is the causative agent of visceral leishmaniasis. Even though chemokine production is a host defense mechanism during infection, subversion of the host chemokine system constitutes a survival strategy adopted by the parasite. Here, we report that L. donovani promastigotes upregulate CXCL16 synthesis and secretion by bone marrow-derived macrophages (BMDM). In contrast to wild-type parasites, a strain deficient in the virulence factor lipophosphoglycan (LPG) failed to induce CXCL16 production. Consistent with this, cell treatment with purified L. donovani LPG augmented CXCL16 expression and secretion. Notably, the ability of BMDM to promote migration of cells expressing CXCR6, the cognate receptor of CXCL16, was augmented upon L. donovani infection in a CXCL16- and LPG-dependent manner. Mechanistically, CXCL16 induction by L. donovani required the activity of AKT and the mechanistic target of rapamycin (mTOR) but was independent of Toll-like receptor signaling. Collectively, these data provide evidence that CXCL16 is part of the inflammatory response elicited by L. donovani LPG in vitro Further investigation using CXCL16 knockout mice is required to determine whether this chemokine contributes to the pathogenesis of visceral leishmaniasis and to elucidate the underlying molecular mechanisms.


Subject(s)
Chemokine CXCL16/immunology , Chemotaxis/immunology , Glycosphingolipids/immunology , Host-Parasite Interactions/immunology , Leishmania donovani/immunology , Leishmaniasis, Visceral/immunology , Animals , Disease Models, Animal , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...