Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 593
Filter
1.
Water Res ; 261: 122057, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38991246

ABSTRACT

Wave-induced liquefaction is a geological hazard under the action of cyclic wave load on seabed. Liquefaction influences the suspended sediment concentration (SSC), which is essential for sediment dynamics and marine water quality. Till now, the identification of liquefaction state and the effect of liquefaction on SSC have not been sufficiently accounted for in the sediment model. In this study, we introduced a method for simulating the liquefaction-induced resuspension flux into an ocean model. We then simulated a storm north of the Yellow River Delta, China, and validated the results using observational data, including significant wave heights, water levels, excess pore water pressures, and SSCs. The liquefaction areas were mainly distributed in coastal zones with water depths less than 12 m, and the simulated maximum potential soil liquefaction depth was 1.39 m. The liquefaction-induced SSC was separated from the total SSC of both liquefaction- and shear-induced SSCs by the model, yielding a maximum liquefaction-induced SSC of 1.07 kg·m-3. The simulated maximum proportion of liquefaction-induced SSC was 26.2% in regions with water depths of 6-12 m, with a maximum significant wave height of 3.4 m along the 12 m depth contour. The erosion zone at water depths of 8-12 m was reproduced by the model. Within 52.5 h of the storm, the maximum erosion thickness along the 10 m depth contour was enhanced by 33.9%. The model is applicable in the prediction of liquefaction, and provides a new method to simulate the SSC and seabed erosion influenced by liquefaction. Model results show that liquefaction has significant effects on SSC and seabed erosion in the coastal area with depth of 6-12 m. The validity of this method is confined to certain conditions, including a fully saturated seabed exhibiting homogeneity and isotropic properties, small liquefaction depth, residual liquefaction dominating the development of pore pressures, no influence by structures, and the sediment composed of silt and mud that experiences frequent wave-induced liquefaction.

2.
J Environ Manage ; 365: 121668, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38963971

ABSTRACT

An in-depth study of the oxidative liquefaction process has been provided to degrade the polymeric waste from personal protective equipment (PPEs) and wind turbine blades (WTBs). Thermogravimetric investigations demonstrate that WTBs have three prominent peaks throughout the degradation, whereas PPEs display solitary peak features. Experiments are carried out employing specific experimental design approaches, namely the Central Composite Face-Centered Plan (CCF) for WTBs and the Central Composition Design with Fractional Factorial Design for PPEs in a batch-type reactor at temperature ranges of 250-350 °C, pressures of 20-40 bar, residence times of 30-90 min, H2O2 concentrations of 15-45 %, and waste/liquid ratios of 5-25 % for WTBs. These values were 200-300 °C, 30 bar, 45 min, 30-60 % and 5-7 % for PPE. A detailed comparison has been provided in the context of total polymer degradation (TPD) for PPE and WTBs. Liquid products from both types of wastes after the oxidative liquefaction process are subjected to gas chromatography with flame ionization detection (GC-FID) to identify the existence of oxygenated chemical compounds (OCCs). For WTBs, TPD was 20-49 % and this value was 55-96 % for PPE while the OCC yield for WTBs (36.31 g/kg - 210.59 g/kg) and PPEs (39.93 g/kg - 212.66 g/kg) was also calculated. Detailed optimization of experimental plans was carried out by performing the analysis of variance (ANOVA) and optimization goals were maximum TPD and OCCs yields against the minimum energy consumption, though a considerable amount of complex polymer waste can be reduced and high concentrations of OCC can be achieved, which could be applied for commercial and environmental benefits.


Subject(s)
Polymers , Polymers/chemistry , Personal Protective Equipment , Oxidation-Reduction , Wind , Waste Management/methods , Hydrogen Peroxide/chemistry
3.
ACS Appl Mater Interfaces ; 16(29): 38208-38220, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38990047

ABSTRACT

The transition toward a carbon-neutral society based on renewable energies goes hand in hand with the availability of energy-efficient technologies. Magnetocaloric cooling is a very promising refrigeration technology to fulfill this role regarding cryogenic gas liquefaction. However, the current reliance on highly resource critical, heavy rare-earth-based compounds as magnetocaloric material makes global usage unsustainable. Here, we aim to mitigate this limitation through the utilization of a multicaloric cooling concept, which uses the external stimuli of isotropic pressure and magnetic field to tailor and induce magnetostructural phase transitions associated with large caloric effects. In this study, La0.7Ce0.3Fe11.6Si1.4 is used as a nontoxic, low-cost, low-criticality multiferroic material to explore the potential, challenges, and peculiarities of multicaloric cryocooling, achieving maximum isothermal entropy changes up to -28 J (kg K)-1 in the temperature range from 190 K down to 30 K. Thus, the multicaloric cooling approach offers an additional degree of freedom to tailor the phase transition properties and may lead to energy-efficient and environmentally friendly gas liquefaction based on designed-for-purpose, noncritical multiferroic materials.

4.
Int J Biol Macromol ; : 133553, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39030155

ABSTRACT

In this paper, the experiment of cellulose from corn stalk using 1, 2-propylene glycol (PG) and diethylene glycol (DEG) liquefaction catalyzed by phosphoric acid at atmosphere pressure was carried out. The effect of reaction time on the structural changes of cellulose in the liquefaction process of polyhydric alcohols was investigated, aiming at understanding the mechanism of cellulose liquefaction reaction under the action of acid catalyzed polyhydric alcohols. It was found that the liquefaction yield increased first and then decreased with the extension of reaction time, and reached the highest at 150 min (99.34 %). In the phase of increasing liquefaction yield, cellulose was degraded and translated into glucose, which was then converted into plenty of glycosides with PG/DEG. These glycosides were further converted into low molecular weight (LMW) substances such as hydrocarbons, acids, alcohols, esters, ketones, and ethers. At this time, the biofuel contained 70 %-85 % compounds with carbon number less than 25 and 5 %-10 % compounds with carbon number more than 25. As the prolongation of reaction time (after 150 min), quantities of unstable free radicals formed by cellulose degradation could combine with each other or with hydrogen atoms provided by PG/DEG to produce relatively stable macromolecular substances. That is, the polydispersity (Mw/Mn, abbreviated Р= 1.28) of the generated biofuel at this stage no longer decreased. However, liquefaction residue produced at 240 min had changed essentially, which was completely different from the liquefaction residue produced in the early stage of liquefaction. In conclusion, this paper revealed the partial reaction process of cellulose by studying the structural changes in the liquefaction process of polyhydric alcohols, which laid a theoretical foundation for exploring the liquefaction mechanism of cellulose.

5.
J Environ Manage ; 366: 121856, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39032256

ABSTRACT

Efficient domestic wastewater management is essential for mitigating the impact of wastewater on human health and the environment. Wastewater management with conventional technologies generates sewage sludge. The present study considered a modelling approach to evaluate various processing pathways to produce energy from the sewage sludge. Anaerobic digestion, gasification, pyrolysis, and hydrothermal liquefaction are analysed in terms of their energy generation potentials with the Aspen Plus software. A techno-economic assessment is performed to assess the economic viability of each pathway. It reveals that gasification appears as the most promising method to produce electricity, with 0.76 kWh/kgdrysludge, followed by anaerobic digestion (0.53 kWh/kgdrysludge), pyrolysis (0.34 kWh/kgdrysludge), and hydrothermal liquefaction (0.13 kWh/kgdrysludge). In contrast, the techno-economic analysis underscores the viability of anaerobic digestion with levelized cost of electricity as 0.02 $/kWh followed by gasification (0.11 $/kWh), pyrolysis (0.14 $/kWh), and hydrothermal liquefaction (2.21 $/kWh). At the same time, if the products or electricity from the processing unit is sold, equivalent results prevail. The present study is a comprehensive assessment of sludge management for researchers and policymakers. The result of the study can also assist policymakers and industry stakeholders in deciding on alternative options for energy recovery and revenue generation from sewage sludge.

6.
Proc Inst Mech Eng H ; : 9544119241261891, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39045922

ABSTRACT

The pancreas is adjacent to critical organs; excessive microwave ablation (MWA) can result in serious complications. The purpose of this paper is to provide the reference data of pancreas MWA for clinicians, analyze the ablation outcomes under different ablation parameters, and determine the critical temperature of pancreatic surface fat liquefaction outflow. Combinations of two power levels (30 W and 55 W), three antenna diameters (1.3 mm, 1.6 mm, and 1.9 mm), and three ablation times (1 min, 1.5 min, and 2 min) were applied to an ex vivo pig pancreas. Temperature measurements were taken at four thermocouple points. The center point is located 5 mm horizontally from the antenna slot, with a temperature measurement point located 5 mm above, below, and to the right of the center point. Main effect analysis and variance analysis were used to quantify the influences of each factor on the ablation outcomes. At 30 W, the antenna diameter contributing the most at 48.5%. At 30 W-1.3 mm-1 min, the spherical index (1.41) is closest to 1. At 55 W, the coagulation zone size was almost only affected by the ablation time, with a contribution rate of 28.7%, the temperature at point C exceeds point B. On the surface of the ex vivo porcine pancreas, the fat outflow temperature was 54ã. Ablation combinations with low power, short duration, and small antenna diameter results in a more nearly spherical coagulation zone. When performing MWA on the pancreas, it is advisable to avoid areas with higher fat content, while keeping the pancreatic surface temperature below 54°C.

7.
Heliyon ; 10(11): e31992, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38882322

ABSTRACT

Hydrothermal liquefaction aqueous phase (HTL-AP) is a waste product from a thermochemical process where wet biomass is converted into biocrude oil. This nutrient-rich wastewater may be repurposed to benefit society by assisting crop growth after adequate treatment to increase inorganic nitrogen, especially NO3 -. This study aims to increase HTL-AP inorganic nitrogen, specifically NH3/NH4 + and NO3 -, through fungal remediation for further use in hydroponic systems. Trametes versicolor, a white-rot fungus known for degrading a range of organic pollutants, was used to treat a diluted (5 %) HTL-AP for 9 days. No fungal growth was observed, but T. versicolor activity was suspected by laccase activity throughout cultivation time. NO3 --N and NH3/NH4 +-N increased by 17 and 8 times after three days of fungal treatment, which was chosen as the appropriate time for HTL-AP fungal treatment as it resulted in the highest concentration of NO3 --N. The addition of nitrifying bacteria to the fungal treatment resulted in a twofold increase in NO3 --N concentration compared to the fungal treatment alone, indicating an enhancement in treatment efficacy. COD decreased by 51.33 % after 24 h, which may be related to the fungus' capacity to reduce the concentration of organics in the wastewater; nonetheless, COD increased in the following days, which may be related to the release of fungal byproducts. T. versicolor shows promise as a potential candidate for increasing inorganic nitrogen in HTL-AP. However, future studies should primarily address HTL-AP toxicity, reducing NH3/NH4 +-N while increasing NO3 --N, and hydroponics crop production after fungal treatment.

8.
Environ Sci Pollut Res Int ; 31(27): 39760-39773, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38833053

ABSTRACT

The hydrothermal liquefaction (HTL) of composite household waste (CHW) was investigated at different temperatures in the range of 240-360 °C, residence times in the range of 30-90 min, and co-solvent ratios of 2-8 ml/g, by utilising ethanol, glycerol, and produced aqueous phase as liquefaction solvents. Maximum biocrude yield of 46.19% was obtained at 340 °C and 75 min, with aqueous phase recirculation ratio (RR) of 5 ml/g. The chemical solvents such as glycerol and ethanol yielded a biocrude percentage of 45.18% and 42.16% at a ratio of 6 ml/g and 8 ml/g, respectively, for 340 °C and 75 min. The usage of co-solvents as hydrothermal medium increased the biocrude yield by 35.30% and decreased the formation of solid residue and gaseous products by 19.82% and 18.74% respectively. Also, the solid residue and biocrude obtained from co-solvent HTL possessed higher carbon and hydrogen content, thus having a H/C ratio and HHV that is 1.01 and 1.23 times higher than that of water as hydrothermal medium. Among the co-solvents, HTL with aqueous phase recirculation resulted in higher carbon and energy recovery percentages of 9.36% and 9.78% for solid residue and 52.09% and 56.75% for biocrude respectively. Further qualitatively, co-solvent HTL in the presence of obtained aqueous phase yielded 33.43% higher fraction of hydrocarbons than the pure water HTL and 7.70-17.01% higher hydrocarbons when compared with ethanol and glycerol HTL respectively. Nitrogen containing compounds, such as phenols and furfurals, for biocrudes obtained from all HTL processes, were found to be present in the range of 8.30-14.40%.


Subject(s)
Solvents , Solvents/chemistry , Glycerol/chemistry
9.
Exploration (Beijing) ; 4(3): 20230040, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38939863

ABSTRACT

Molecular hydrogen (H2) ortho-para conversion (O/P conversion) proceeds slowly at low temperatures accompanying a heat release. Thus, catalysts for accelerating this conversion rate are highly demanded in terms of the storage and utilization of liquid H2. The catalysts for this purpose are experimentally screened by examining a broad range of materials covering magnetic, non-magnetic, metallic, and nonmetallic oxides. The primary conclusions obtained are summarized below. (1) active materials are required to be non-metallic and to bear the cations with ionic radii smaller than the bond length of H2. (2) Metallic materials have almost no activity irrespective of with or without magnetism (3) The activity of materials belonging to (1) is largely enhanced when the constituting cation has a magnetic moment. In addition, there is a class of materials for which the activity is distinctly enhanced just upon substitution by the foreign ions.

10.
Sci Total Environ ; 945: 173939, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38908600

ABSTRACT

Hydrothermal liquefaction (HTL) is a thermochemical conversion technology that produces bio-oil from wet biomass without drying. However, by-product gases will inevitably be produced, and their formation is unclear. Therefore, an automated machine learning (AutoML) approach, automatically training without human intervention, was used to aid in predicting gaseous production and interpreting the formation mechanisms of four gases (CO2, CH4, CO, and H2). Specifically, four accurate optimal single-target models based on AutoML were developed with elemental compositions and HTL conditions as inputs for four gases. Herein, the gradient boosting machine (GBM) performed excellently with train R2 ≥ 0.99 and test R2 ≥ 0.80. Then, the screened GBM algorithm-based ML multi-target models (maximum average test R2 = 0.89 and RMSE = 0.39) were built to predict four gases simultaneously. Results indicated that biomass carbon, solid content, pressure, and biomass hydrogen were the top four factors for gas production from HTL of biomass. This study proposed an AutoML-aided prediction and interpretation framework, which could provide new insight for rapid prediction and revelation of gaseous compositions from the HTL process.


Subject(s)
Biomass , Machine Learning , Gases/analysis , Biofuels , Methane/analysis , Carbon Dioxide/analysis
11.
Water Res ; 257: 121703, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38723354

ABSTRACT

Hydrothermal liquefaction (HTL) is a promising thermo-chemical technology for municipal sludge treatment due to its potential for biocrude oil recovery and minimizing biosolids management costs. However, the process generates a high volume of an aqueous byproduct that needs to be treated due to its high chemical oxygen demand (COD) and various organic and inorganic compounds. Although the aqueous phase is known to contain recalcitrant and potentially inhibitory substances that may affect its biological treatment, their molecular weight distribution (MwD) and its impact on anaerobic biodegradability are poorly understood. Ultrafiltration (UF) was conducted to fractionate HTL aqueous into different molecular weight (Mw) fractions using 300, 100, 10, and 1 kDa membranes. Mesophilic biochemical methane potential (BMP) assays were conducted to assess the anaerobic biodegradability of each fraction, and the first-order model was used to calculate the degradation kinetics of potential inhibitory compounds. The highest percentage of organics (65 %) was found in the Mw<1 kDa range, whereas the 10>Mw>1 kDa had the lowest percentage (8 %). There was no significant difference in the cumulative specific methane produced from various Mw fractions (p>0.05). The Mw<1 kDa fraction had the highest first-order specific methane production rate (0.53 day-1), whereas the unfiltered HTL had the lowest (0.38 day-1). Although UF fractionation increased the rate of anaerobic degradation of HTL aqueous for the Mw<1 kDa fraction, the observed methane potential was only 55 % of the theoretical value. This implies that 45 % of COD remains undegraded even after permeation through the lowest Mw cut-off membrane. Therefore, further characterization of HTL aqueous is needed for compounds with molecular weights below 1 kDa to fully understand the nature of inhibitory organics and their impact on anaerobic digestion. Furthermore, pretreatments utilizing techniques such as adsorption and advanced oxidation may be necessary to enhance the specific methane yields from various HTL aqueous fractions, thereby bringing them closer to the theoretical yield.


Subject(s)
Methane , Sewage , Ultrafiltration , Sewage/chemistry , Anaerobiosis , Molecular Weight , Waste Disposal, Fluid/methods , Biological Oxygen Demand Analysis , Biodegradation, Environmental
12.
J Environ Manage ; 359: 120961, 2024 May.
Article in English | MEDLINE | ID: mdl-38696851

ABSTRACT

Plastic pollution poses a significant environmental threat, particularly to marine ecosystems, as conventional plastics persist without degradation, accumulating plastic waste in landfills and natural environments. A promising alternative to address this issue involves the use of hydrogen donor solvents in plastic liquefaction, offering a dual benefit of waste reduction and the generation of valuable liquid products with diverse industrial applications. This review delves into plastic recycling methods with a specific focus on liquefaction using hydrogen donating solvents as an innovative approach to waste management. Liquefaction, conducted at moderate to high temperatures (280-450 °C) and pressures (7-30 MPa), yields high oil conversion using various solvents. This study examined the performance of hydrogen-donating solvents, including water, alcohols, decalin, and cyclohexane, in enhancing the oil yield while minimising the oxygen content. Supercritical water, recognised for its effective plastic degradation and chemical production capabilities, and alcohols, with their alkylating and hydrogen-donating properties, have emerged as key solvents in plastic liquefaction. The use of hydrogen donor solvents stabilizes the free radicals, enhancing the conversion of plastic waste into valuable products. In addition, this review addresses the economic efficiency of the liquefaction process.


Subject(s)
Hydrogen , Plastics , Recycling , Solvents , Waste Management , Solvents/chemistry , Waste Management/methods , Plastics/chemistry , Hydrogen/chemistry
13.
Sci Rep ; 14(1): 10799, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734717

ABSTRACT

Liquefaction is a devastating consequence of earthquakes that occurs in loose, saturated soil deposits, resulting in catastrophic ground failure. Accurate prediction of such geotechnical parameter is crucial for mitigating hazards, assessing risks, and advancing geotechnical engineering. This study introduces a novel predictive model that combines Extreme Learning Machine (ELM) with Dingo Optimization Algorithm (DOA) to estimate strain energy-based liquefaction resistance. The hybrid model (ELM-DOA) is compared with the classical ELM, Adaptive Neuro-Fuzzy Inference System with Fuzzy C-Means (ANFIS-FCM model), and Sub-clustering (ANFIS-Sub model). Also, two data pre-processing scenarios are employed, namely traditional linear and non-linear normalization. The results demonstrate that non-linear normalization significantly enhances the prediction performance of all models by approximately 25% compared to linear normalization. Furthermore, the ELM-DOA model achieves the most accurate predictions, exhibiting the lowest root mean square error (484.286 J/m3), mean absolute percentage error (24.900%), mean absolute error (404.416 J/m3), and the highest correlation of determination (0.935). Additionally, a Graphical User Interface (GUI) has been developed, specifically tailored for the ELM-DOA model, to assist engineers and researchers in maximizing the utilization of this predictive model. The GUI provides a user-friendly platform for easy input of data and accessing the model's predictions, enhancing its practical applicability. Overall, the results strongly support the proposed hybrid model with GUI serving as an effective tool for assessing soil liquefaction resistance in geotechnical engineering, aiding in predicting and mitigating liquefaction hazards.

14.
Chemosphere ; 361: 142419, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38789051

ABSTRACT

In light of the substantial global production of biomass waste, effective waste management and energy recovery solutions are of paramount importance. Hydrothermal liquefaction (HTL) and anaerobic digestion (AD) have emerged as innovative techniques for converting biomass waste into valuable resources. Their integration creates a synergistic framework that mitigates inherent limitations, leading to improved efficiency, enhanced product quality, and the comprehensive utilization of biomass. This review paper investigates the integration of HTL and AD, highlighting its significance and potential benefits as well as the optimal sequencing (HTL followed by AD and AD followed by HTL). The review encompasses experimental procedures, factors influencing both sequencing options, energy recovery characterizations, final product outcomes, as well as toxicological assessments and discussions on reduction. Additionally, it delves into the transition towards a circular bioeconomy and discusses the challenges and opportunities intrinsic to these processes. The findings presented in this review offer valuable insights to shape future research in this evolving field.


Subject(s)
Biomass , Waste Management , Anaerobiosis , Waste Management/methods , Biofuels
15.
J Environ Manage ; 361: 121261, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38820789

ABSTRACT

This works proposes a dynamic thermoeconomic analysis of a liquefied biomethane production plant to meet the fuel demand of a fleet of heavy duty trucks in the south of Italy. The biomethane is obtained from the upgrading of the biogas produced by means of anaerobic digestion through a plug flow reactor fed by organic fraction of municipal solid waste. The upgrading of the biogas is realized using a three-stage membrane compression process, producing a 96 % pure biomethane. The biomethane liquefaction is realized using a single-mixed refrigerant process and compared to a Linde cycle process. The whole system is assisted by solar energy to reduce the fossil energy consumption of the process and feed-in tariffs are considered as funding policy. The models for the anaerobic digestion, the biogas upgrading, and the biomethane liquefaction are in detail developed in MatLab. The anaerobic digestion model is based on the ADM1 biological model, integrated with a suitable heat transfer model. The biogas upgrading model is based on a simplified Fick model. The liquefaction model is based on an equivalent two heat-exchangers model, taking into account the transient heat transfer. All the components are then integrated in TRNSYS to perform the dynamic simulation for one operating year of the whole system. Results from the thermoeconomic analysis are outstanding in terms of profitability, showing a payback period of less than 2 years and a Net Present Value of the system of 402 M€. The great environmental impact is also confirmed by a Primary Energy Saving of 91 % and a dramatic reduction of 86 % of the CO2 equivalent emissions.


Subject(s)
Biofuels , Solar Energy , Methane/chemistry , Anaerobiosis , Italy , Models, Theoretical
16.
J Environ Manage ; 361: 121241, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38805962

ABSTRACT

According to the latest reports, estimated values of 50,000-66 000 t of end-of-life wind turbine blades (WTB) are expected to be decommissioned in Europe in 2025-2030, posing a significant threat from the environmental and waste management perspectives. This study aims to present the preliminary Life Cycle Assessment (LCA) with sensitivity and uncertainty analysis of the lab-scale oxidative liquefaction process of the WTB, as the original method to recover the high-quality glass fibers with simultaneous production of the secondary chemicals: phenols, ketones, acids, and fatty acids, from the oxidation of the epoxy resin from the polymer matrix. The LCA is based on the experimental results of the oxidative liquefaction process carried out on a laboratory scale using a Parr 500 ml batch reactor, at two different conditions sets for the functional unit (FU) of 1 kg of treated WTB. Each of the analyzed scenarios resulted in higher impact indicators compared to the landfilling. The highest quality fibers were obtained at 350 °C and 40 wt % H2O2 content resulted in 5.52 ± 1.20 kgCO2 eq Climate change impact and 97.8 ± 20.6 MJ of Resource use, fossil per kg of recycled WTB. The lowest quality fiber recovered in char, yet well separated from the matrix obtained at 250 °C and the lowest H2O2 content resulted in 0.0953 ± 0.487 kgCO2 eq Climate change impact and 8.84 ± 7.90 MJ of Resource use, fossil per kg of recycled WTB. The hot spot and sensitivity analysis indicated, that the oxidizer for the process - hydrogen peroxide, when acquired as a shelf product causes a significant burden on the whole process, with sensitivity ratios on the total impact indicators varying across the categories from 0.56 to 0.99. Substitution of H2O2 with theoretical 0-input oxidizer allowed to significantly lower environmental load of the recycling process, which in all of the analyzed scenarios presented environmental benefits compared to landfilling with recovery of the glass fiber and secondary chemicals.


Subject(s)
Recycling , Waste Management/methods , Wind , Oxidation-Reduction , Hydrogen Peroxide/chemistry
17.
Adv Sci (Weinh) ; 11(26): e2400147, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38704677

ABSTRACT

Crystallization of alloys from a molten state is a fundamental process underpinning metallurgy. Here the direct imaging of an intermetallic precipitation reaction at equilibrium in a liquid-metal environment is demonstrated. It is shown that the outer layers of a solidified intermetallic are surprisingly unstable to the depths of several nanometers, fluctuating between a crystalline and a liquid state. This effect, referred to herein as crystal interface liquefaction, is observed at remarkably low temperatures and results in highly unstable crystal interfaces at temperatures exceeding 200 K below the bulk melting point of the solid. In general, any liquefaction process would occur at or close to the formal melting point of a solid, thus differentiating the observed liquefaction phenomenon from other processes such as surface pre-melting or conventional bulk melting. Crystal interface liquefaction is observed in a variety of binary alloy systems and as such, the findings may impact the understanding of crystallization and solidification processes in metallic systems and alloys more generally.

18.
Front Bioeng Biotechnol ; 12: 1372155, 2024.
Article in English | MEDLINE | ID: mdl-38572362

ABSTRACT

Solid acid catalysts are widely used in the field of biomass catalytic conversion owing to their advantages of low environmental pollution, easy separation and reusability. Nevertheless, there are relatively few studies on the mechanism of solid acid liquefaction for biomass. In this study, the effect of acid strength and acid amount of various solid acids on the liquefaction efficiency has been investigated using waste bamboo sawdust generated from the pulp and paper industry as the raw material. In addition, the physicochemical changes of cellulose, hemicellulose and lignin during the reaction process of bamboo sawdust have been studied, and the liquefaction mechanism of bamboo sawdust under the action of various solid acids has been concluded. As a result, the liquefaction efficiency of bamboo sawdust under the polyol system of PEG400/propanetriol is mainly related to the acid strength of the solid acid, and the greater the acid strength of the solid acid, the better the catalytic effect on the bamboo sawdust, in which the residual amount of bamboo sawdust liquefaction catalyzed by the SPA catalyst is only 17.72%. Noteworthy, the most difficult component to liquefy is the crystallization of natural cellulose I into cellulose II during the reaction process, which is the primary obstacle to the complete liquefaction of bamboo sawdust by solid acid. Overall, these findings are valuable for the high value utilization of waste bamboo sawdust in the pulp and paper industry, as well as the application of solid acid catalytic technology for biomass.

19.
J Hazard Mater ; 471: 134289, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38663294

ABSTRACT

Wastewater resulting from hydrothermal liquefaction (HTL-AP) of biowaste is gaining attention as an emerging hazardous material. However, there is a lack of specific and systematic ecotoxicity studies on HTL-AP. This study addresses this gap by conducting acute toxicity tests on HTL-AP using typical aquatic species and integrating these results with predicted toxicity values from interspecies correlation estimation models to establish aquatic life criteria. HTL-AP exhibited significant toxicity with LC50 of 956.12-3645.4 mg/L, but demonstrated moderate toxicity compared to common freshwater pollutants like commercial microbicides, personal care products, and insect repellents. The resulting hazardous concentration for 5 % of species (HC5), the criterion maximum concentration, and the short-term water quality criteria for aquatic were 506.0, 253.0, and 168.7 mg/L, respectively. Notably, certain organisms like Misgurnus anguillicaudatus and Cipangopaludina chinensis showed high tolerance to HTL-AP, likely due to their metabolic capabilities on HTL-AP components. The significant decrease in HC5 values for some HTL-AP substances compared to pure compounds could indicate the synergistic inhibition effects among HTL-AP compositions. Furthermore, according to the established criteria, HTL-AP required significantly less diluted water (13 t) than carbendazim (1009 t) to achieve biosafety, indicating a safer release. This research establishes a preliminary water quality criterion for HTL-AP, offering a valuable reference for risk assessment and prediction in the utilization of HTL-AP within environmental contexts.


Subject(s)
Wastewater , Water Pollutants, Chemical , Animals , Wastewater/toxicity , Wastewater/chemistry , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry , Toxicity Tests, Acute , Aquatic Organisms/drug effects
20.
J Environ Manage ; 356: 120458, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479286

ABSTRACT

The present study was designed to assess Messastrum gracile SVMIICT7 potential in treating dairy wastewater (autoclaved (ADWW) and raw (DWW)) with relation to nutrient removal, in-vivo Chl-a-based biomass, and bio-oil synthesis. Chlorophyll a fluorescence kinetics revealed improved photochemical efficiency (0.639, Fv/Fm) in M. gracile when grown with DWW. This may be owing to enhanced electron transport being mediated by an effective water-splitting complex at photosystem (PSII) of thylakoids. The increase in ABS/RC observed in DWW can be attributed to the elevated chlorophyll content and reduced light dissipation, as evident by higher values of ETo/RC and a decrease in non-photochemical quenching (NPQ). M. gracile inoculated in DWW had the highest Chl-a-biomass yield (1.8 g L-1) and biomolecules while maximum nutrient removal efficiency was observed in ADWW (83.7% TN and 60.07% TP). M. gracile exhibited substantial bio-oil yield of 29.6% and high calorific value of 37.19 MJ kg-1, predominantly composed of hydrocarbons along with nitrogen and oxygen cyclic compounds. This research offers a thorough investigation into wastewater treatment, illustrating the conversion of algal biomass into valuable energy sources and chemical intermediates within the framework of a biorefinery.


Subject(s)
Chlorophyll , Plant Oils , Polyphenols , Temperature , Biomass , Chlorophyll A
SELECTION OF CITATIONS
SEARCH DETAIL
...