Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.168
Filter
1.
Methods Mol Biol ; 2852: 105-122, 2025.
Article in English | MEDLINE | ID: mdl-39235739

ABSTRACT

In food industry, Listeria monocytogenes contamination can occur accidentally despite the quality control of raw materials and factory. Decontamination processes or inhibitory effects of ingredients/additives in food products are set up to ensure compliance with hygiene and microbiological criteria. These actions represent stresses for the pathogenic agent, causing fluctuations in its physiological states. Moreover, during these environmental stresses, Listeria monocytogenes can enter in a viable but nonculturable (VBNC) state which is not detected by plate counting but by flow cytometry. This technique coupled with cell staining by fluorescent dyes offers the possibility to assess different physiological states based on different cellular parameters: enzymatic activity, transmembrane integrity, membrane potential, and respiratory activity. In this chapter, we present a method to assess the viability of foodborne pathogens using a double-staining principle based on the assessment of membrane integrity and intracellular esterase activity.


Subject(s)
Flow Cytometry , Listeria monocytogenes , Microbial Viability , Listeria monocytogenes/growth & development , Listeria monocytogenes/physiology , Flow Cytometry/methods , Food Microbiology/methods , Fluorescent Dyes/chemistry , Staining and Labeling/methods , Cell Membrane/metabolism
2.
Food Chem ; 462: 140776, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39241687

ABSTRACT

The inability to integrate detection and disinfection hindered building a unified pathogen monitoring platform, risking secondary contamination. Herein, a novel "four - in - one" platform for monitoring foodborne Listeria monocytogenes (L. monocytogenes) was presented. The magnetic daptomycin - functionalized Fe3O4 (Dap/Fe3O4) could selectively bind to L. monocytogenes, enhancing detection accuracy. The separated bacteria were captured by aptamers - functionalized Fe - doped - silica nanoparticles (Apt/Fe@SiNPs) for tri - mode detection. Besides fluorescence, the Apt/Fe@SiNPs converted 3,3',5,5' - tetramethylbenzidine (TMB) to oxidized TMB (oxTMB) via peroxidase activity, allowing colorimetric and subsequent photothermal detection upon irradiation, as low as 2.06 CFU/mL. Magnetic - induced aggregation of Apt/Fe@SiNPs generated toxic hydroxyl radicals around L. monocytogenes, achieving ∼99.6% disinfection. Furthermore, the biofilm of L. monocytogenes was effectively inhibited by the action of hydroxyl radicals. The platform might offer a promising prospect to control L. monocytogenes in food industries.


Subject(s)
Listeria monocytogenes , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Disinfection/instrumentation , Disinfection/methods , Nanoparticles/chemistry , Colorimetry
3.
Article in English | MEDLINE | ID: mdl-39375277

ABSTRACT

The contamination of food with Listeria monocytogenes threatens food safety and human health, and developing a novel, green, and safe antimicrobial substance will offer a new food preservation strategy. FengycinA-M3 is a novel lipid peptide with low cytotoxicity and resistance and has effective antibacterial activity against L. monocytogenes with a minimum inhibitory concentration (MIC) of 4 µg/mL. Further combined transcriptomics and proteomics analysis yielded 20 differentially expressed genes (DEGs). The MICs of the combined use of FengycinA-M3 and Cefalexin on L. monocytogenes were further determined as FengycinA-M3 (2 µg/mL) and Cefalexin (8 µg/mL) using the checkerboard method. In addition, FengycinA-M3 was found to play a role in delaying pork deterioration. This study explored the inhibitory effect of FengycinA-M3 on L. monocytogenes and its mechanism of action. FengycinA-M3 interacted with penicillin-binding protein 2B on the cell membrane of L. monocytogenes, destroying the permeability of the membrane, causing cell membrane rupture, thereby inhibiting the growth of L. monocytogenes. Overall, FengycinA-M3 is a promising candidate for preventing the emergence and spread of L. monocytogenes with potential applications in food processing.

4.
Crit Rev Food Sci Nutr ; : 1-10, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39367886

ABSTRACT

Listeria monocytogenes (L. monocytogenes), a gram-positive foodborne pathogen that can easily cause listeriosis. It secretes extracellular polymers and forms biofilms that are highly resistant to disinfection methods, such as UV light and germicides, posing risks to food processing equipment and food quality. Dispersion of biofilm is the cycle of its formation in which the bacteria return to planktonic state and become susceptible to antimicrobials, the strategic manipulation of biofilm dispersion is thus heralded as a novel and promising approach for the effective control of biofilm-related infections. Compared to the traditional methods, it is more effective to start with the composition of biofilms, cut off the production of their constituent substances, and genetically reduce the probability of biofilm formation. Meanwhile, the dispersion of bacteria can be supplemented with exogenous substances, making long-term control possible. This paper provides a brief but comprehensive overview of the mechanisms of L. monocytogenes biofilms or cross-contamination and their resistance properties, and facilitates our understanding and control of the prevention and containment of L. monocytogenes biofilm contamination based on the biofilm's active and passive diffusion strategies. This work provides practical guidelines for the food industry to guard against the enduring threat to food safety due to L. monocytogenes biofilms.

5.
J Clin Microbiol ; : e0108324, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39365069

ABSTRACT

Whole genome sequencing is an essential cornerstone of pathogen surveillance and outbreak detection. Established sequencing technologies are currently being challenged by Oxford Nanopore Technologies (ONT), which offers an accessible and cost-effective alternative enabling gap-free assemblies of chromosomes and plasmids. Limited accuracy has hindered its use for investigating pathogen transmission, but recent technology updates have brought significant improvements. To evaluate its readiness for outbreak detection, we selected 78 Listeria monocytogenes isolates from diverse lineages or known epidemiological clusters for sequencing with ONT's V14 Rapid Barcoding Kit and R10.4.1 flow cells. The most accurate of several tested workflows generated assemblies with a median of one error (SNP or indel) per assembly. For 66 isolates, the cgMLST profiles from ONT-only assemblies were identical to those generated from Illumina data. Eight assemblies were of lower quality, with more than 20 erroneous sites each, primarily caused by methylations at the GAAGAC motif (5'-GAAG6mAC-3'/5'-GT4mCTTC-3'). This led to inaccurate clustering, failing to group isolates from a persistence-associated clone that carried the responsible restriction-modification system. Out of 50 methylation motifs detected among the 78 isolates, only the GAAGAC motif was linked to substantially increased error rates. Our study shows that most L. monocytogenes genomes assembled from ONT-only data are suitable for high-resolution genotyping, but further improvements of chemistries or basecallers are required for reliable routine use in outbreak and food safety investigations.

6.
Front Med (Lausanne) ; 11: 1440225, 2024.
Article in English | MEDLINE | ID: mdl-39323466

ABSTRACT

Background: Listeria monocytogenes is a Gram-positive bacterium transmitted to humans through contaminated food, water, and animal faeces, posing a public health risk. Listeria monocytogenes is difficult to isolate and is not sensitive to first-line treatment with broad-spectrum cephalosporins for bacterial meningitis. Listeria meningitis is rare but can progress rapidly and may be accompanied by serious complications (hydrocephalus, ventricular inflammation, cerebral palsy, and brain abscess) and a high mortality rate. Case presentation: It is a retrospective analysis of the clinical characteristics and treatment of a rare case of Listeria monocytogenes infection. Using laboratory indicators such as white blood cells (WBC), C-reactive protein (CRP), and procalcitonin (PCT), three detection methods (cerebrospinal fluid/blood culture), Targeted gene sequencing technology (tNGS), and Metagenomic next-generation sequencing technology (mNGS) combined with clinical manifestations of patients, analyze the use plan and prognosis of antibiotics in patients. The patient in this case initially had neurological symptoms such as fever, headache, unclear consciousness, and vomiting; laboratory indicators include elevated WBC, CRP, and PCT. Listeria monocytogenes was cultured in both the patient's cerebrospinal fluid and blood samples. After treatment with penicillin and meropenem, the patient recovered and was discharged without any sequelae. Conclusion: Due to the rarity of Listeria monocytogenes, there may be deficiencies and difficulties in clinical differential diagnosis, making it difficult to achieve targeted antibiotic treatment. Therefore, accurate identification of Listeria monocytogenes and relevant laboratory inflammation indicator testing, combined with traditional culture methods and NGS testing, through empirical coverage of Listeria monocytogenes, targeted antibiotic treatment ultimately impacts clinical outcomes significantly.

7.
AIMS Microbiol ; 10(3): 608-643, 2024.
Article in English | MEDLINE | ID: mdl-39219753

ABSTRACT

Listeria monocytogenes is a concern in seafood and its food processing environment (FPE). Several outbreaks globally have been linked to various types of seafood. Genetic profiling of L. monocytogenes is valuable to track bacterial contamination throughout the FPE and in understanding persistence mechanisms, with limited studies from South Africa. Forty-six L. monocytogenes isolates from origins: Fish/seafood products (n = 32) (salmon, smoked trout, fresh hake, oysters), the FPE (n = 6), and clinical (n = 8) were included in this study. Lineage typing, antibiotic susceptibility testing, and screening for two genes (bcrABC and emrC) conferring sanitizer tolerance was conducted. The seafood and FPE isolates originated from seven different factories processing various seafood products with undetermined origin. All clinical isolates were categorized as lineage I, and seafood and FPE isolates were mostly categorized into lineage II (p < 0.01). Seafood and FPE isolates (53%) carried the bcrABC gene cassette and one fish isolate, the emrC gene. A subset, n = 24, was grouped into serotypes, sequence types (STs), and clonal complexes (CCs) with whole genome sequencing (WGS). Eight CCs and ten STs were identified. All clinical isolates belonged to serogroup 4b, hypervirulent CC1. CC121 was the most prevalent in isolates from food and the FPE. All isolates carried Listeria pathogenicity islands (LIPI) 1 and 2. LIPI-3 and LIPI-4 were found in certain isolates. We identified genetic determinants linked to enhanced survival in the FPE, including stress survival islets (SSI) and genes conferring tolerance to sanitizers. SSI-1 was found in 44% isolates from seafood and the FPE. SSI-2 was found in all the ST121 seafood isolates. Isolates (42%) harbored transposon Tn1688_qac (ermC), conferring tolerance to quaternary ammonium compounds. Five plasmids were identified in 13 isolates from seafood and the FPE. This is the first One Health study reporting on L. monocytogenes genetic diversity, virulence and resistance profiles from various types of seafood and its FPE in South Africa.

8.
Front Vet Sci ; 11: 1413523, 2024.
Article in English | MEDLINE | ID: mdl-39220769

ABSTRACT

Listeriosis is highly prevalent in the animal farming industry, with Listeria monocytogenes as the causative pathogen. To identify potential therapeutic targets for LM infection, we investigated the mechanisms of LM infection in goat uteri. We inoculated a group of goats with LM via jugular vein injection, isolated and raised them, and subsequently collected sterile samples of their uterine tissue after they exhibited clinical symptoms of LM infection. We used Giemsa staining, immunohistochemical staining, real-time qPCR, and Western blotting as experimental methods.First, we investigated the mechanism of Listeria monocytogenes (LM) infection in the goat uterus by examining the expression levels of listeriolysin O, E-cadherin, and tyrosine kinase c-Met in the uterus.Furthermore, we investigated the impact of LM infection on uterine autophagy and cell apoptosis. The results indicate that the injection of LM into the goats' jugular veins leads to LM infection in the goats' uteri. During LM survival inside the goat uterine cells, there is a significant increase in the expression levels of LLO, E-cadherin, and c-Met in the host uterine tissue. This suggests that LM may potentially infect goat uteri through the InlA/E-cadherin and InlB/c-Met pathways. Furthermore, LM infection increases the levels of apoptosis and autophagy in goat uteri. Apoptosis genes Bcl-2 and Bax, as well as autophagy-related genes LC3B, PINK1, and Parkin, exhibit varying degrees of changes in localization and expression in goat uteri, mediating the occurrence of apoptotic and autophagic responses.

9.
Int J Mol Sci ; 25(17)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39273334

ABSTRACT

Listeria pathogenicity island 1 (LIPI-1) is a genetic region containing a cluster of genes essential for virulence of the bacterial pathogen Listeria monocytogenes. Main virulence factors in LIPI-1 include long 5' untranslated regions (5'UTRs), among which is Rli51, a small RNA (sRNA) in the 5'UTR of the Zn-metalloprotease-coding mpl. So far, Rli51 function and molecular mechanisms have remained obscure. Here, we show that Rli51 exhibits a dual mechanism of regulation, functioning as a cis- and as a trans-acting sRNA. Under nutrient-rich conditions, rli51-mpl transcription is prematurely terminated, releasing a short 121-nucleotide-long sRNA. Rli51 is predicted to function as a transcription attenuator that can fold into either a terminator or a thermodynamically more stable antiterminator. We show that the sRNA Rli21/RliI binds to a single-stranded RNA loop in Rli51, which is essential to mediate premature transcription termination, suggesting that sRNA binding could stabilize the terminator fold. During intracellular infection, rli51 transcription is increased, which generates a higher abundance of the short Rli51 sRNA and allows for transcriptional read-through into mpl. Comparative intracellular bacterial transcriptomics in rli51-null mutants and the wild-type reference strain EGD-e suggests that Rli51 upregulates iron-scavenging proteins and downregulates virulence factors from LIPI-1. MS2 affinity purification confirmed that Rli51 binds transcripts of the heme-binding protein Lmo2186 and Lmo0937 in vivo. These results prove that Rli51 functions as a trans-acting sRNA in intracellular bacteria. Our research shows a growth condition-dependent mechanism of regulation for Rli51, preventing unintended mpl transcription in extracellular bacteria and regulating genes important for virulence in intracellular bacteria.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Listeria monocytogenes , RNA, Bacterial , RNA, Small Untranslated , Listeria monocytogenes/pathogenicity , Listeria monocytogenes/genetics , Listeria monocytogenes/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , Genomic Islands/genetics , Transcription, Genetic , 5' Untranslated Regions , Virulence/genetics , Virulence Factors/genetics , Virulence Factors/metabolism , Humans , Listeriosis/microbiology
10.
Int J Food Microbiol ; : 110912, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39317577

ABSTRACT

This study investigated an ultrasound (US) treatment strategy in plasma-activated water (PAW) (UP treatment) to inactivate indigenous aerobic bacteria, Escherichia coli O157:H7, and Listeria monocytogenes in fresh-cut celery. Both plasma discharge and US treatment times contributed to the inactivation of indigenous bacteria in celery. The predicted optimal UP treatment conditions included a discharge time of 61.5 min and treatment time of 338 s, resulting in the inactivation of indigenous bacteria, E. coli O157:H7, and L. monocytogenes by 2.7, 1.7, and 3.2 log CFU/g, respectively. With an increase in plasma discharge time or US treatment time, the oxidation-reduction potential and electrical conductivity values of PAW increased, while the pH decreased. UP treatment effectively inactivated bacteria non-thermally, without altering the color of celery. Furthermore, UP treatment led to an increase in cell lipid peroxidation, reactive oxygen species production, and the number of non-viable E. coli O157:H7 and L. monocytogenes cells with membrane damage. This study highlights the potential of UP treatment for bacterial decontamination of fresh-cut celery.

11.
Food Chem ; 463(Pt 2): 141261, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39321596

ABSTRACT

This study introduces a novel antimicrobial peptide (AMP), WBp-1, isolated from wheat bran and purified via reversed-phase high-performance liquid chromatography. The amino acid sequence, determined as IITGASSGIGKAIAKHFI by LC-MS/MS, was composed predominantly of alkaline and hydrophobic residues. WBp-1 was predicted to be a stable, hydrophobic, cationic peptide with an α-helical structure. Moreover, it displayed significant antibacterial efficacy against Listeria monocytogenes, with a minimum inhibitory concentration of 150 µg/mL. Further mechanistic studies suggest that WBp-1 exerts its bactericidal activity by disrupting cell membrane integrity, impeding peptidoglycan synthesis by binding to penicillin-binding protein 4 via hydrogen bonding, increasing cell permeability, altering membrane potential and fluidity, and altering surface hydrophobicity. Interestingly, WBp-1 showed minimal hemolytic activity and cytotoxicity against LO2 cells, even at 16× MIC. These findings highlight the strong potential of WBp-1 as a novel antibacterial agent and food preservative against Listeria monocytogenes.

12.
Emerg Infect Dis ; 30(11)2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39322417

ABSTRACT

We traced back a nationwide outbreak of human listeriosis in Switzerland to a persisting production line contamination of a factory producing baker's yeast with Listeria monocytogenes serotype 1/2a sequence type 3141. We used whole-genome sequencing to match clinical isolates to isolates from product samples.

13.
Microb Pathog ; 196: 106968, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39307201

ABSTRACT

Foodborne pathogens continue to challenge public health due to their ability to cause severe illness and their increasing resistance to current antimicrobial treatments. Listeria monocytogenes is a resilient foodborne pathogen that poses significant risks to vulnerable populations, leading to severe infections and high hospitalization rates. The emergence of antimicrobial-resistant (AMR) strains of L. monocytogenes underscores the need for novel therapeutic strategies. In this study, we investigated the antimicrobial efficacy of the (2E)-3-(3,5-dibromo-2-hydroxylphenyl)-1-(5-methylfuran-2-yl) prop-2-en-1-one (DK06) against multidrug-resistant L. monocytogenes. DK06 exhibited a significant dose-dependent inhibition of L. monocytogenes growth, achieving a maximum inhibition of 92.9 % at 320 µM. Molecular docking and dynamics simulations revealed high binding affinities for key virulence proteins PlcB and ArgA, with stable protein-ligand interactions. DK06 also disrupted biofilm formation at sub-MIC levels, reducing extracellular polymeric substances (EPS) and biofilm mass, as observed by scanning electron microscopy (SEM) analysis. Furthermore, DK06 downregulated the expression of virulence genes (plcB, argA, and hly) and decreased hemolytic activity. In vivo zebrafish studies confirmed the safety of DK06 up to 80 µM, demonstrating its efficacy in reducing mortality and oxidative stress associated with L. monocytogenes infection. DK06 also attenuated inflammation by downregulating key inflammatory markers (tnfa, il1b, il6, and nfkb). These findings indicate that DK06 is a promising multi-target inhibitor with potential application in treating infections and combating antimicrobial resistance.

14.
J Food Prot ; 87(11): 100361, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39278624

ABSTRACT

Listeria monocytogenes is a pathogen frequently associated with ready-to-eat (RTE) meat and poultry products. Nitrite is a key antimicrobial additive that can offer some degree of protection against L. monocytogenes when included in meat product formulations. The objectives of this study were to determine the potential of nitrite-embedded film to affect the growth of L. monocytogenes following postthermal processing of conventionally-cured and nitrite-free bologna. Two bologna treatment formulations, a conventionally-cured control formulation (CON) and a nitrite-free formulation (UCC), were manufactured, packaged in conventional (CF) or nitrite-embedded (NEF) film, inoculated with 3.5 log CFU/cm2 of a cocktail of L. monocytogenes strains, and stored at 10 ± 1 °C. CON-NEF and UCC-NEF treatments had significantly slower (P < 0.05) growth of L. monocytogenes than CON-CF and UCC-CF, with populations in UCC-CF (which contained no nitrite) increasing by 3.4 logs after 10 d of storage in UCC-CF and 3.6 logs after 50 d in CON-CF (which had formulated nitrite only), while in the NEF-packaged samples, with or without formulated nitrite, they did not exceed the inoculum level until after day 40. Initial (day 0) residual nitrite was significantly greater (P < 0.05) in the control formulation. Packaging in NEF, however, resulted in an increase of 27-28 ppm by day 3, regardless of formulation, after which it decreased rapidly. Results suggest NEF can be used as a post-lethality antimicrobial intervention in food safety intervention strategies, in both cured and uncured processed meat products.

15.
Food Chem ; 463(Pt 1): 141103, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39255706

ABSTRACT

This research used the photocatalyst rGO/TiO2 prepared by hydrothermal method to inhibit the growth of these microorganisms in water and coconut juice. In coconut juice, the initial count of Salmonella typhimurium decreased from 3 × 105 CFU /mL to 6.3 × 104 CFU /mL, and the initial count of L. monocytogenes was reduced from 3 × 105 CFU/mL to 1.2 × 105 CFU/mL. Moreover, the chemical structure characterization rGO/TiO2 showed that the doping of rGO formed a compact composite, enhanced the transfer of photogenerated electrons, and improved the photocatalytic efficiency of TiO2. The active substances ·OH and ·O2- produced by photocatalysis directly destroyed the integrity of bacteria cells, led to leakage of protein and DNA in the cells, and resulted in inactivation of the microorganisms, although Salmonella typhimurium and Listeria monocytogenes have different cell structures. These results would provide a good candidate photocatalyst to resist Salmonella typhimurium and Listeria monocytogenes and promote the development of photocatalysis applications.

16.
Food Microbiol ; 124: 104608, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39244360

ABSTRACT

Photodynamic inactivation is an emerging antimicrobial treatment that can be enhanced by employing exogenous photosensitizers to eradicate foodborne pathogens. This study investigated a novel combinatory strategy to eradicate Listeria monocytogenes using blackthorn fruit peel (BFP) and blue light (BL). Extracts of BFP were characterized in terms of polyphenolic content, individual constituents, and antioxidant and antimicrobial activity. The concentration of phenolic compounds and antioxidant activity were both found to be determinants of antimicrobial activity. It was further speculated that flavonols, predominantly quercetin and rutin, were responsible for the activity of BFP against L. monocytogenes. A combination of BFP and BL resulted in a rapid inactivation of the pathogen by up to 4 log CFU/mL at 58.5 J/cm2, corresponding to 15 min BL illumination. Flow cytometry analysis revealed that the bacterial cells lost activity and suffered extensive membrane damage, exceeding 90% of the population. After photosensitizing L. monocytogenes with the BFP constituents quercetin and rutin, a 1.3-log reduction was observed. When applied together, these compounds could inflict the same damaging effect on cells as they did individually when effects were added. Therefore, the results indicate that BFP represents a natural source of (pro-)photosensitizers, which act additively to create inactivation effects. This study may help identify more effective plant-based photosensitizers to control L. monocytogenes in food-related applications.


Subject(s)
Fruit , Light , Listeria monocytogenes , Photosensitizing Agents , Plant Extracts , Polyphenols , Listeria monocytogenes/drug effects , Listeria monocytogenes/radiation effects , Listeria monocytogenes/growth & development , Polyphenols/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Fruit/chemistry , Fruit/microbiology , Photosensitizing Agents/pharmacology , Crataegus/chemistry , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Quercetin/pharmacology , Microbial Viability/drug effects , Microbial Viability/radiation effects , Blue Light
17.
J Food Sci ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39327637

ABSTRACT

Listeria monocytogenes is ubiquitous in nature and persistent in food-processing facilities, farms, retail stores, and home and restaurant kitchens. Current research suggests ready-to-eat (RTE) products (including RTE hummus and fresh produce) to be of increasing interest and concern. These foods are typically stored at refrigeration temperatures suited to the survival of L. monocytogenes and are consumed without further processing. Since L. monocytogenes is ubiquitous in agricultural environments, the cultivation of fresh produce predisposes it to contamination. The contamination of RTE foods originates either from raw ingredients or, more commonly, from cross-contamination within food-processing facilities. Research on the food-processing environment has been recommended to reduce the incidence of L. monocytogenes in foods. The consumption of contaminated foods by immunocompromised individuals causes invasive listeriosis, with a 20% to 30% fatality rate despite treatment. The emergence of antibiotic-resistant strains has reduced the effectiveness of modern medicine and may increase morbidity and mortality. Without epidemiological surveillance and identifying trends in disease determinants, no action can be taken to improve food safety and mitigate the risk of such outbreaks.

18.
Foods ; 13(18)2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39335900

ABSTRACT

Given the persistent occurrence of foodborne illnesses linked to both raw and processed vegetables, understanding microbial behavior in these foods under distribution conditions is crucial. This study aimed to develop predictive growth models for Salmonella spp. and Listeria monocytogenes in raw (mung bean sprouts, onion, and cabbage) and processed vegetables (shredded cabbage salad, cabbage and onion juices) at various temperatures, ranging from 4 to 36 °C. Growth models were constructed and validated using isolated strains of Salmonella spp. (S. Bareilly, S. Enteritidis, S. Typhimurium) and L. monocytogenes (serotypes 1/2a and 1/2b) from diverse food sources. The minimum growth temperatures for Salmonella varied among different vegetable matrices: 8 °C for mung bean sprouts, 9 °C for both onion and cabbage, and 10 °C for ready-to-eat (RTE) shredded cabbage salad. Both pathogens grew in cabbage juice at temperatures above 17 °C, while neither demonstrated growth in onion juice, even at 36 °C. Notably, Salmonella spp. exhibited faster growth than L. monocytogenes in all tested samples. At 8 °C, the lag time (LT) and specific growth rate (SGR) for Salmonella spp. in mung bean sprouts were approximately tenfold longer and threefold slower, respectively, compared to those at 10 °C. A decrease in refrigerator storage temperature by 1 or 2 degrees significantly prevented the growth of Salmonella in raw vegetables. These findings offer valuable insights into assessing the risk of foodborne illness associated with the consumption of raw and processed vegetables and inform management strategies in mitigating these risks.

19.
J Food Prot ; 87(10): 100354, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39218076

ABSTRACT

The foodborne pathogen Listeria monocytogenes can persist in produce processing environments, which increases the risk for food contamination. Increased resistance to antimicrobials commonly used in cleaning and sanitizing procedures may contribute to L. monocytogenes' persistence in these environments. This study aimed to evaluate sanitizer resistance in L. monocytogenes isolates collected from three tree fruit packing facilities (F1, F2, and F3) during packing seasons 2020-2021 (Y1) and 2021-2022 (Y2), and to assess evidence of persistence based on the genomic similarity of isolates to historical isolates collected in previous years. L. monocytogenes isolates collected in 2020-2022 (n = 44) were tested for resistance to peroxyacetic acid (PAA) and a proprietary biofilm-removing agent using a broth microdilution assay. Further, L. monocytogenes isolates were whole genome sequenced and screened for the presence of antimicrobial resistance and virulence genes, as well as to assess the genomic similarity of isolates using the CFSAN SNP bioinformatic pipeline. Over half (57%) of the tested isolates had a PAA minimum inhibitory concentration (MIC) of 250 ppm, which was similar to the applied concentration of the PAA sanitizer in the three facilities (230 ppm). In contrast, 80% of tested isolates had a biofilm remover MIC of 0.13 ppm, which was substantially below the concentration applied in the facilities (137 ppm). Genomes of all tested isolates carried antimicrobial resistance (fosX, lin, mdrL, mprF, and norB) and virulence (inlA, inlB, plcA, plcB, prfA, hly, mpl, and iap) genes. L. monocytogenes isolates collected between 2020 and 2022 belonged to three distinct lineages, with 22 multilocus sequence types (MLSTs) belonging to 22 different clonal complexes. Genomic similarity analysis with historical isolates collected from the same facilities in 2016-2017 demonstrated a 5-year persistence of the genotypes ST 1003 and ST 554 in F2, which were no longer detected in 2022. Overall, our results highlight the need to re-evaluate sanitizer concentrations to effectively control persistent L. monocytogenes strains in tree fruit packing facilities.


Subject(s)
Disinfectants , Food Microbiology , Fruit , Listeria monocytogenes , Listeria monocytogenes/drug effects , Fruit/microbiology , Disinfectants/pharmacology , Food Contamination/analysis , Microbial Sensitivity Tests , Drug Resistance, Bacterial , Biofilms/drug effects , Trees , Anti-Bacterial Agents/pharmacology , Food Packaging , Humans
20.
Microorganisms ; 12(9)2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39338450

ABSTRACT

The aim of this work was to assess the microbiological safety and quality of horsemeat. A total of 19 fresh horsemeat samples were analysed. Mesophile counts were 4.89 ± 1.08 log CFU/g, and Enterobacteriaceae, Staphylococcus spp., and enterococci were only isolated from 36.84%, 21.05%, and 15.79% of the samples, respectively. Neither Staphylococcus aureus nor Escherichia coli were found in any sample. Listeria spp. and Listeria monocytogenes were detected in 31.58% and 21.05% of the samples, respectively. Campylobacter jejuni was not detected in any sample. The dominant bacteria were lactic acid bacteria. Seven different Staphylococcus spp. were identified, the most common being S. delphini, S. saprophyticus, and S. warneri. S. delphini showed resistance against mupirocin and cefoxitin. All the L. monocytogenes strains showed resistance against ampicillin, cefotaxime, and oxacillin. Multi-resistant Yersinia enterocolitica, Stenotrophomonas maltophilia, and Vagococcus. fluvialis strains were found, with resistance to 11, 7, and 8 antibiotics, respectively, causing significant concern. Therefore, specific actions should be taken to decrease the contamination of horsemeat.

SELECTION OF CITATIONS
SEARCH DETAIL