Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
J Food Prot ; 87(8): 100322, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944055

ABSTRACT

The study determined the antimicrobial resistance (AMR) profiles of Listeria spp. (L. monocytogenes, L. innocua, and L. welshimeri) recovered from beef and beef products sold at retail outlets in Gauteng Province, South Africa. A total of 112 isolates of Listeria spp., including L. monocytogenes (37), L. innocua (65), and L. welshimeri (10), were recovered from beef and beef products collected from 48 retail outlets. Listeria spp. was recovered by direct selective plating following selective enrichment, and PCR was used to confirm and characterize recovered isolates. The disc diffusion method determined the resistance to 16 antimicrobial agents. All 112 isolates of Listeria spp. exhibited resistance to one or more antibiotics (P < 0.05). The prevalence of AMR in Listeria isolates was high for nalidixic acid (99.1%) and cefotaxime (80.4%) but low for gentamycin (2.7%), sulfamethoxazole-trimethoprim (3.6%), azithromycin (5.4%), and doxycycline (6.3%). Overall, for the three species of Listeria, the prevalence of resistance varied significantly only for streptomycin (P = 0.016) and tetracycline (P = 0.034). Multidrug-resistant isolates were detected in 75.7% (28/37), 61.5% (40/65), and 80% (8/10) isolates of L. monocytogenes, L. innocua, and L. welshimeri, respectively. The prevalence of AMR was significantly affected by the location and size of retail outlets, type of beef and beef products, and serogroups of L. monocytogenes. The high prevalence of AMR, particularly among the L. monocytogenes isolates, poses potential therapeutic implications for human consumers of contaminated beef products. There is, therefore, a need to regulate and enforce the use of antimicrobial agents in humans and animals in South Africa.

2.
Heliyon ; 10(7): e28662, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38596116

ABSTRACT

Listeriosis is a disease caused by L. monocytogenes, a relevant microorganism as a causative agent of foodborne diseases - FBD. This study aimed to evaluate the distribution of Listeria spp., and L. monocytogenes in different production areas in two small plants (A and B) and two micro-food processing plants (C and D) producing meat derivatives, located in different cities of Colombia. The methodology implemented was i. The analysis of sampling points is based on a harmonised tool. ii. Four samplings in each production plant between 2019 and 2020. iii. Isolation and identification of microorganisms through conventional microbiology, a semi-automated system, molecular serotyping and clonal characterisation by ERIC-PCR. L. monocytogenes frequency in the production plants belonging to the study ranged between 5.9 and 28.6 %; for Listeria spp., plants A and D had isolated, plant A had the highest proportion, while for L. monocytogenes geno-serotypes found were: 1/2a, 1/2c, 4a-4c, 4b, 4d - 4e, with geno-serotype 4b as the most frequent. Furthermore, possible persistent isolates were detected in plant C as the feasible sources of contamination, based on failures in flow management, raw material contaminated with L. monocytogenes, lack of standardised cooking processes and transfer of the microorganism through equipment and surfaces. Finally, in three of the four production plants assayed, L. monocytogenes or Listeria spp. were present in the packaging area in some of the samples taken during the study, which calls for increased and frequent monitoring, as well as constant technical support for the control of L. monocytogenes in micro and small-scale production plants.

3.
Vet Microbiol ; 293: 110086, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615477

ABSTRACT

Listeriosis is a zoonotic disease caused by Listeria monocytogenes and Listeria ivanovii. The genus Listeria currently includes 27 recognized species and is found throughout the environment. The number of systematic studies on antimicrobial resistance in L. monocytogenes isolates from domestic farms using antimicrobial substances is limited. Importantly, dairy ruminant farms are reservoir of hypervirulent lineage I L. monocytogenes isolates, previously associated with human clinical cases. Considering that the classes of antibiotics used in food-producing domestic animals are frequently the same or closely related to those used in human medicine, studies about the impact of antibiotic use on the acquisition of antibiotic resistance in Listeria spp. in domestic animal farms are, therefore, of high importance. Here, susceptibility to 25 antibiotics was determined. Eighty-one animal-related, 35 food and 21 human pathogenic Listeria spp. isolates and 114 animal-related non-pathogenic Listeria spp. isolates were tested. Whole genome sequencing data was used for molecular characterization. Regarding L. monocytogenes, 2 strains from the clinical-associated linage I showed resistance to erythromycin, both related to dairy ruminants. Acquired resistance to one antibiotic was exhibited in 1.5% of L. monocytogenes isolates compared with 14% of non-pathogenic Listeria spp. isolates. Resistance to tetracycline (7.9%), doxycycline (7.9%), penicillin (4.4%), and ampicillin (4.4%) were the most frequently observed in non-pathogenic Listeria spp. While resistance to two or more antibiotics (5.6%) was most common in Listeria spp., isolates, resistance to one antibiotic was also observed (1.6%). The present results show that non-pathogenic Listeria spp. harbour antimicrobial resistance genes.


Subject(s)
Anti-Bacterial Agents , Listeria , Listeriosis , Microbial Sensitivity Tests , Animals , Listeria/drug effects , Listeria/genetics , Listeria/classification , Listeria/isolation & purification , Anti-Bacterial Agents/pharmacology , Spain/epidemiology , Listeriosis/microbiology , Listeriosis/veterinary , Listeriosis/epidemiology , Genotype , Drug Resistance, Bacterial/genetics , Whole Genome Sequencing , Listeria monocytogenes/drug effects , Listeria monocytogenes/genetics , Listeria monocytogenes/isolation & purification , Humans , Phenotype
4.
Microorganisms ; 12(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38674761

ABSTRACT

Listeria monocytogenes is a ubiquitous pathogen found both in the environment and food. It can cause listeriosis in a wide range of animals as well as in humans. Investigations on presence, spread and virulence are still limited to terrestrial and human environments. Embracing the One Health Approach, investigating the presence and spread of L. monocytogenes in marine ecosystems and among wildlife, would provide us with useful information for human health. This study investigated the presence of L. monocytogenes and Listeria spp. in two species of sea turtles common in the Mediterranean Sea (Caretta caretta and Chelonia mydas). A total of one hundred and sixty-four carcasses of sea turtles (C. caretta n = 161 and C. mydas n = 3) stranded along the Abruzzo, Molise, Campania, and Calabria coasts, were collected. Brain and fecal samples were taken, enriched, and cultured for the detection of Listeria spp. From the specimens collected, strains of L. monocytogenes (brain n = 1, brain and feces n = 1, multiorgan n = 1 and feces n = 1), L. innocua (feces n = 1 and brain n = 1), and L. ivanovii (brain n = 1) were isolated. Typical colonies were isolated for Whole Genome Sequencing (WGS). Virulence genes, disinfectants/metal resistance, and antimicrobial resistance were also investigated. L. monocytogenes, L. innocua, and L. ivanovii were detected in C. caretta, whilst only L. monocytogenes and L. innocua in C. mydas. Notable among the results is the lack of significant differences in gene distribution between human and sea turtle strains. Furthermore, potentially pathogenic strains of L. monocytogenes were found in sea turtles.

5.
J Food Prot ; 87(4): 100254, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38417482

ABSTRACT

Small- and medium-sized dairy processing facilities (SMDFs) may face unique challenges with respect to controlling Listeria in their processing environments, e.g., due to limited resources. The aim of this study was to implement and evaluate environmental monitoring programs (EMPs) for Listeria control in eight SMDFs in a ∼1-year longitudinal study; this included a comparison of pre-operation (i.e., after cleaning and sanitation and prior to production) and mid-operation (i.e., at least 4 h into production) sampling strategies. Among 2,072 environmental sponge samples collected across all facilities, 272 (13%) were positive for Listeria. Listeria prevalence among pre- and mid-operation samples (15% and 17%, respectively), was not significantly different. Whole genome sequencing (WGS) performed on select isolates to characterize Listeria persistence patterns revealed repeated isolation of closely related Listeria isolates (i.e., ≤20 high-quality single nucleotide polymorphism [hqSNP] differences) in 5/8 facilities over >6 months, suggesting Listeria persistence and/or reintroduction was relatively common among the SMDFs evaluated here. WGS furthermore showed that for 41 sites where samples collected pre- and mid-operation were positive for Listeria, Listeria isolates obtained were highly related (i.e., ≤10 hqSNP differences), suggesting that pre-operation sampling alone may be sufficient and more effective for detecting sites of Listeria persistence. Importantly, our data also showed that only 1/8 of facilities showed a significant decrease in Listeria prevalence over 1 year, indicating continued challenges with Listeria control in at least some SMDFs. We conclude that options for simplified Listeria EMPs (e.g., with a focus on pre-operation sampling, which allows for more rapid identification of likely persistence sites) may be valuable for improved Listeria control in SMDFs.


Subject(s)
Listeria monocytogenes , Listeria , Food Microbiology , Listeria monocytogenes/genetics , Longitudinal Studies , Environmental Monitoring
6.
Int J Food Microbiol ; 413: 110591, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38306774

ABSTRACT

Microorganisms in processing environments significantly impact the quality and safety of food products and can serve as potential reservoirs for antibiotic-resistant genes, contributing to public health concerns about antimicrobial resistance (AMR). Fish processing plants represent an understudied environment for microbiome mapping. This study investigated the microbial composition, prevalence of Listeria spp., and resistome structures in three catfish processing facilities in the southeastern United States. The 16S rRNA gene sequencing revealed that the observed richness and Shannon diversity index increased significantly from fish to fillet. Beta diversity analysis showed distinct clustering of microbial communities between fish, environment, and fillet samples. Fast expectation-maximization microbial source tracking (FEAST) algorithm demonstrated that the microbiota presents in the processing environment contributed 48.2 %, 62.4 %, and 53.7 % to the microbiota present on fillet in Facility 1 (F1), F2, and F3, respectively. Food contact surfaces made larger contributions compared to the non-food contact surfaces. The linear discriminant analysis of effect size (LEfSe) identified specific microbial genera (e.g., Plesiomohas, Brochothrix, Chryseobacterium and Cetobacterium) that significantly varied between Listeria spp. positive and negative samples in all three processing plants. The metagenomic sequencing results identified 212 antimicrobial resistance genes (ARGs) belonging to 72 groups from the raw fish and fish fillet samples collected from three processing plants. Although there was a significant decrease in the overall diversity of ARGs from fish to fillet samples, the total abundance of ARGs did not change significantly (P > 0.05). ARGs associated with resistance to macrolide-lincosamide-streptogramin (MLS), cationic antimicrobial peptides, aminoglycosides, and beta-lactams were found to be enriched in the fillet samples when compared to fish samples. Results of this study highlight the profound impact of processing environment on shaping the microbial populations present on the final fish product and the need for additional strategies to mitigate AMR in fish products.


Subject(s)
Anti-Bacterial Agents , Microbiota , Animals , RNA, Ribosomal, 16S/genetics , Anti-Bacterial Agents/pharmacology , Fish Products , Microbiota/genetics , Genes, Bacterial , Fishes
7.
Microorganisms ; 11(12)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38137988

ABSTRACT

This study aimed to explore the probiogenomic characteristics of artisanal bacteriocin-producing Enterococcus faecium BGZLM1-5 and its potential application in reducing Listeria monocytogenes in a milk model. The BGZLM1-5 strain was isolated from raw cow's milk from households in the Zlatar Mountain region. The whole genome sequencing approach and bioinformatics analyses reveal that the strain BGZLM1-5 is non-pathogenic to humans. Bacteriocin-containing supernatant was thermally stable and antimicrobial activity retained 75% of the initial activity compared with that of the control after treatment at 90 °C for 30 min. Antimicrobial activity maintained relative stability at pH 3-11 and retained 62.5% of the initial activity compared with that of the control after treatment at pH 1, 2, and 12. The highest activity of the partially purified bacteriocin was obtained after precipitation at 40% saturation with ammonium sulfate and further purification by mixing with chloroform. Applying 3% and 5% (v/v) of the bacteriocin-containing supernatant and 0.5% (v/v) of the partially purified bacteriocin decreased the viable number of L. monocytogenes ATCC19111 after three days of milk storage by 23.5%, 63.5%, and 58.9%, respectively.

8.
Lett Appl Microbiol ; 76(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37312408

ABSTRACT

Polymerase chain reaction (PCR) is commonly used to detect Listeria monocytogenes, foodborne pathogen. This study conducted in silico genomic analysis to investigate the specificity and binding efficacy of four published pairs of PCR primers targeting Listeria prfA-virulence gene cluster (pVGC) based on Listeria sequences available. We first performed comprehensive genomic analyses of the pVGC, the main pathogenicity island in Listeria spp. In total, 2961 prfA, 642 plcB, 629 mpl, and 1181 hlyA gene sequences were retrieved from the NCBI database. Multiple sequence alignments and phylogenetic trees were generated using unique (non-identical or not-shared) sequences of each represented genes, targeting four pairs of PCR primers published previously, namely 202 prfA, 82 plcB, 150 mpl, and 176 hlyA unique gene sequences. Only the hlyA gene showed strong (over 94%) primer mapping results, while prfA, plcB, and mpl genes showed weak (<50%) matching results. In addition, nucleotide variations were observed at the 3' end of the primers, indicating non-binding to the targets could potentially cause false-negative results. Thus, we propose designing degenerate primers or multiple PCR primers based on as many isolates as possible to minimize the false-negative risk and reach the aim of low tolerable limits of detection.


Subject(s)
Listeria monocytogenes , Listeria , Listeria/genetics , Virulence/genetics , Phylogeny , Listeria monocytogenes/genetics , Multigene Family , Genomics , Polymerase Chain Reaction/methods , Bacterial Proteins/genetics
9.
Mol Gen Microbiol Virol ; 38(1): 21-28, 2023.
Article in English | MEDLINE | ID: mdl-37325805

ABSTRACT

The safety of food production as concerns Listeria is the key to the sanitary wellbeing of manufactured products. Molecular-genetic methods for the analysis of Listeria, including whole-genome sequencing, are effective in monitoring persistent contaminants and in the epidemic investigation of cases of foodborne infections. They have been adopted in the European Union, United States, and Canada. In Russia, multilocus and whole-genome sequencing has proven itself in the analysis of clinical food isolates and Listeria from the environment. The objective of the study was molecular-genetic characterization of Listeria detected in the industrial environment of meat processing. To characterize the Listeria isolates, microbiological methods were used according to GOST (State Standard) 32031-2012, as well as multilocus sequencing, including the analysis of seven housekeeping genes and four virulence genes, as well as whole-genome sequencing. In swabs that were positive for the presence of Listeria spp. taken at two meat-processing plants in Moscow, Listeria monocytogenes constituted 81% and L. welshimeri 19%. The predominant genotype (Sequence Type, ST) of L. monocytogenes was ST8. The variety was supplemented with ST321, ST121, and ST2330 (CC9 (Clonal Complex 9)). L. welshimeri, which prevailed in the second production, was represented by ST1050 and ST2331. The genomic characteristics of L. welshimeri isolates confirmed that they have high adaptive capabilities both as concerns production conditions (including resistance to disinfectants) and the metabolic peculiarities of the gastrointestinal tract of animals. L. monocytogenes CC9 and CC121 are also correlated with food production in other countries. However, L. monocytogenes CC8 and CC321 can cause invasive listeriosis. The concordance in the internalin profile of the ST8 isolates from the industrial environment with the clinical isolates ST8 and ST2096 (CC8) is a cause for concern. The study showed the effectiveness of molecular-genetic methods in determining the diversity of Listeria detected in the production environment of meat processing, and laid the foundation for monitoring of persistent contaminants.

10.
Pathogens ; 12(2)2023 Feb 19.
Article in English | MEDLINE | ID: mdl-36839621

ABSTRACT

Beneficial bacteria with antibacterial properties are attractive alternatives to chemical-based antibacterial or bactericidal agents. Our study sourced such bacteria from horticultural produce and environments to explore the mechanisms of their antimicrobial properties. Five strains of Pseudomonas fluorescens were studied that possessed antibacterial activity against the pathogen Listeria monocytogenes. The vegetative culture of these strains (Pseudomonas fluorescens-PFR46I06, Pseudomonas fluorescens-PFR46H06, Pseudomonas fluorescens-PFR46H07, Pseudomonas fluorescens-PFR46H08 and Pseudomonas fluorescens-PFR46H09) were tested against Listeria monocytogenes (n = 31), Listeria seeligeri (n = 1) and Listeria innocua (n = 1) isolated from seafood and horticultural sources and from clinical cases (n = 2) using solid media coculture and liquid media coculture. All Listeria strains were inhibited by all strains of P. fluorescens; however, P. fluorescens-PFR46H07, P. fluorescens-PFR46H08 and P. fluorescens-PFR46H09 on solid media showed good inhibition, with average zones of inhibition of 14.8 mm, 15.1 mm and 18.2 mm, respectively, and the other two strains and P. fluorescens-PFR46H09 had a significantly greater zone of inhibition than the others (p < 0.05). There was no inhibition observed in liquid media coculture or in P. fluorescens culture supernatants against Listeria spp. by any of the P. fluorescens strains. Therefore, we hypothesized that the structural apparatus that causes cell-to-cell contact may play a role in the ejection of ant-listeria molecules on solid media to inhibit Listeria isolates, and we investigated the structural protein differences using whole-cell lysate proteomics. We paid special attention to the type VI secretion system (TSS-T6SS) for the transfer of effector proteins or bacteriocins. We found significant differences in the peptide profiles and protein summaries between these isolates' lysates, and PFR46H06 and PFR46H07 possessed the fewest secretion system structural proteins (12 and 11, respectively), while PFR46H08 and PFR46H09 had 18 each. P. fluorescens-PFR46H09, which showed the highest antimicrobial effect, had nine tss-T6SS structural proteins compared to only four in the other three strains.

11.
Food Chem ; 404(Pt B): 134723, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36444084

ABSTRACT

Essential oils (EOs) have recently gained popularity as natural food preservatives due to their potent antibacterial activity against food pathogens. In this review, the antibacterial activity of EOs from various plant parts and sources against the most important food pathogens Salmonella and Listeria have been discussed. The antibacterial activity of EOs is attributed to their major and minor low-molecular weight terpenes, terpenoids, phenylpropenes and aliphatic components. The major compounds along with minor components of EO extracted from different parts of various plant species were found to be responsible for antibacterial activity. The combination of EO from different sources presented synergistic anti-listerial and anti-salmonella effects. EO combined with biopolymer and in nanoemulsion form presented significant antibacterial activity. The mode of antibacterial action by EO was complex and involves a series of event that has also been discussed in detail.


Subject(s)
Listeria , Oils, Volatile , Oils, Volatile/pharmacology , Salmonella , Anti-Bacterial Agents/pharmacology , Terpenes
12.
Microbiol Spectr ; 11(1): e0143122, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36519851

ABSTRACT

Listeria monocytogenes, a foodborne pathogen, and other Listeria spp. are present in natural environments. Isolating and characterizing strains from natural reservoirs can provide insight into the prevalence and diversity of Listeria spp. in these environments, elucidate their contribution to contamination of agricultural and food processing environments and food products, and lead to the discovery of novel species. In this study, we evaluated the diversity of Listeria spp. isolated from soil in a small region of the Great Smoky Mountains National Park, the most biodiverse national park in the U.S. National Park system. Of the 17 Listeria isolates recovered, whole-genome sequencing revealed that 14 were distinct strains. The strains represented a diversity of Listeria species (L. monocytogenes [n = 9], L. cossartiae subsp. cossartiae [n = 1], L. marthii [n = 1], L. booriae [n = 1], and a potentially novel Listeria sp. [n = 2]), as well as a diversity of sequence types based on multilocus sequence typing (MLST) and core genome MLST, including many novel designations. The isolates were not closely related (≥99.99% average nucleotide identity) to any isolates in public databases (NCBI, PATRIC), which also indicated novelty. The Listeria samples isolated in this study were collected from high-elevation sites near a creek that ultimately leads to the Mississippi River; thus, Listeria present in this natural environment could potentially travel downstream to a large region that includes portions of nine southeastern and midwestern U.S. states. This study provides insight into the diversity of Listeria spp. in the Great Smoky Mountains and indicates that this environment is a reservoir of novel Listeria spp. IMPORTANCE Listeria monocytogenes is a foodborne pathogen that can cause serious systemic illness that, although rare, usually results in hospitalization and has a relatively high mortality rate compared to other foodborne pathogens. Identification of novel and diverse Listeria spp. can provide insights into the genomic evolution, ecology, and evolution and variance of pathogenicity of this genus, especially in natural environments. Comparing L. monocytogenes and Listeria spp. isolates from natural environments, such as those recovered in this study, to contamination and/or outbreak strains may provide more information about the original natural sources of these strains and the pathways and mechanisms that lead to contamination of food products and agricultural or food processing environments.


Subject(s)
Listeria monocytogenes , Listeria , Listeriosis , Humans , Listeria/genetics , Soil , Multilocus Sequence Typing , Food Microbiology
13.
Microbes Infect ; 25(4): 105079, 2023 05.
Article in English | MEDLINE | ID: mdl-36464197

ABSTRACT

Two species of Listeria are pathogenic, Listeria monocytogenes and Listeria ivanovii. Although studies have shown that dairy ruminants shed Listeria spp. in feces, there is little information about ruminants that do not shed Listeria spp. in their feces but asymptomatically carry them in organs. We evidence that ruminants can asymptomatically carry L. ivanovii in udders and L. monocytogenes and L. ivanovii in tonsils without fecal shedding. Whole-genome sequence of L. monocytogenes and L. ivanovii contained known core genes involved in virulence and antibiotic resistance. This work highlights tonsils and udders as a Listeria intra-host site of colonization.


Subject(s)
Listeria monocytogenes , Listeria , Listeriosis , Animals , Listeriosis/veterinary , Mammary Glands, Animal , Spain , Palatine Tonsil , Listeria/genetics , Ruminants , Genomics , Feces
14.
Foods ; 11(18)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36140905

ABSTRACT

The catfish industry is important to the United States economy. The present study determined the levels of microbial indicators and the prevalence of Listeria spp. and Listeria monocytogenes at catfish farms and catfish processing plants. Live fish, water, and sediment samples were analyzed in farms. Fish skin, fillets, chiller water, and environmental surfaces were assessed at the processing plants both during operation and after sanitation. Live fish had 2% prevalence of Listeria monocytogenes, while sediment and water were negative for Listeria. Live fish skin counts averaged 4.2, 1.9, and 1.3 log CFU/cm2 aerobic (APC), total coliform (TCC) and generic Escherichia coli counts, respectively. Water and sediment samples averaged 4.8 and 5.8 log CFU/g APC, 1.9 and 2.3 log CFU/g TCC, and 1.0 and 1.6 log CFU/g generic E. coli counts, respectively. During operation, Listeria prevalence was higher in fillets before (57%) and after (97%) chilling than on fish skin (10%). Process chiller water had higher (p ≤ 0.05) APC, TCC, and Listeria prevalence than clean chiller water. After sanitation, most sampling points in which Listeria spp. were present had high levels of APC (>2.4 log CFU/100 cm2). APC combined with Listeria spp. could be a good approach to understand microbial contamination in catfish plants.

15.
Emerg Infect Dis ; 28(8): 1715-1717, 2022 08.
Article in English | MEDLINE | ID: mdl-35876537

ABSTRACT

In tropical countries, land snails are an important food source; however, foodborne disease risks are poorly quantified. We detected Campylobacter spp., Yersinia spp., Listeria spp., Salmonella spp., or Shiga-toxigenic Escherichia coli in 57%-86% of snails in Cameroon. Snail meat is a likely vector for enteric diseases in sub-Saharan Africa countries.


Subject(s)
Foodborne Diseases , Shiga-Toxigenic Escherichia coli , Cameroon/epidemiology , Food Microbiology , Foodborne Diseases/epidemiology , Humans , Public Health , Salmonella
16.
Klin Lab Diagn ; 67(6): 362-368, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35749602

ABSTRACT

Results from research on isolation, identification, and study of biological properties of L. monocytogenes clinical isolates and Listeria spp test strains are presented. Peculiarities of modern research methods for indicating and identifying pathogenic listeria to improve the quality of laboratory studies of clinical material are studied. The culture method provides reliable results of microbiological analyses upon detecting Listeria spp. The presented list and algorithm of the laboratory diagnostic methods can be used as a basis for elaborating regulatory documents for carrying out microbiological research on any biological material for the presence of bacteria of the genus Listeria spp. and L. monocytogenes species in it.


Subject(s)
Listeria monocytogenes , Listeria , Humans , Listeria/genetics
17.
Antibiotics (Basel) ; 11(5)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35625235

ABSTRACT

L. monocytogenes is a public health threat linked to fast foods such as broiler chickens. This study aimed to verify the occurrence of Listeria species in chickens from abattoirs and evaluate their antimicrobial resistance. In total, 150 broiler carcass swabs distributed as cloacal (n = 60), exterior surface (n = 60), and environmental (n = 30) were collected. Listeria species were characterized using biochemical tests and PCR. We conducted antibiotic resistance tests using the disc diffusion and Etest (Biomerieux, Durham, NC, USA) methods. Overall isolation of Listeria species was 15% (23/150) 95% CI (10.16-22.33), 2% (3/150) 95% CI (0.52-6.19) and 13% (20/150) 95% CI (8.53-20.08) came from environmental swabs and carcass swabs, respectively. Proportions of positive Listeria isolates were L. monocytogenes 74% (17/23), L. welshimeri 22% (5/23), and L. innocua 4% (1/23). Listeria species from the exterior carcass swabs was 61% (14/23), cloacal swabs 26% (6/23), and environmental swabs 3% (3/23). L. monocytogenes had the greatest resistance percentage to the following antibiotics: clindamycin (61%, 10/23), tetracycline 30% (7/23), and erythromycin 13%, (3/23). Isolation of L. monocytogenes in relatively high numbers, including the antimicrobial profiles, suggests a potential risk of the pathogen remaining viable in the food continuum and a public health risk to would-be consumers.

18.
Appl Environ Microbiol ; 88(11): e0048622, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35587542

ABSTRACT

Selection for Listeria monocytogenes strains that are tolerant to quaternary ammonium compounds (such as benzalkonium chloride [BC]) is a concern across the food industry, including in fresh produce processing environments. This study evaluated the ability of 67 strains of produce-associated L. monocytogenes and other Listeria spp. ("parent strains") to show enhanced BC tolerance after serial passaging in increasing BC concentrations and to maintain this tolerance after substreaking in the absence of BC. After serial passaging in BC, 62/67 "BC passaged cultures" showed higher MICs (4 to 20 mg/L) than parent strains (2 to 6 mg/L). After the substreaking of two isolates from BC passaged cultures for each parent strain, 105/134 "adapted isolates" maintained MICs (4 to 6 mg/L) higher than parent strain MICs. These results suggested that adapted isolates acquired heritable adaptations that confer BC tolerance. Whole-genome sequencing and Sanger sequencing of fepR, a local repressor of the MATE family efflux pump FepA, identified nonsynonymous fepR mutations in 48/67 adapted isolates. The mean inactivation of adapted isolates after exposure to use-level concentrations of BC (300 mg/L) was 4.48 log, which was not significantly different from inactivation observed in parent strains. Serial passaging of cocultures of L. monocytogenes strains containing bcrABC or qacH did not yield adapted isolates that showed enhanced BC tolerance in comparison to that of monocultures. These results suggest that horizontal gene transfer either did not occur or did not yield isolates with enhanced BC tolerance. Overall, this study provides new insights into selection of BC tolerance among L. monocytogenes and other Listeria spp. IMPORTANCE Listeria monocytogenes tolerance to quaternary ammonium compounds has been raised as a concern with regard to L. monocytogenes persistence in food processing environments, including in fresh produce packing and processing environments. Persistence of L. monocytogenes can increase the risk of product contamination, food recalls, and foodborne illness outbreaks. Our study shows that strains of L. monocytogenes and other Listeria spp. can acquire heritable adaptations that confer enhanced tolerance to low concentrations of benzalkonium chloride, but these adaptations do not increase survival of L. monocytogenes and other Listeria spp. when exposed to concentrations of benzalkonium chloride used for food contact surface sanitation (300 mg/L). Overall, these findings suggest that the emergence of benzalkonium chloride-tolerant Listeria strains in food processing environments is of limited concern, as even strains adapted to gain higher MICs in vitro maintain full sensitivity to the concentrations of benzalkonium chloride used for food contact surface sanitation.


Subject(s)
Listeria monocytogenes , Listeria , Benzalkonium Compounds/pharmacology , Drug Resistance, Bacterial/genetics , Food Handling , Food Microbiology , Listeria/genetics , Listeria monocytogenes/genetics , Mutation , Quaternary Ammonium Compounds
19.
J Adv Vet Anim Res ; 9(1): 155-165, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35445111

ABSTRACT

Objective: The work aimed to assess the safety and quality of broiler meat in experimental listeriosis changes in storage. Materials and Methods: Ross Cobb 500 chickens (40) were divided into 4 groups of 10 animals each. Chickens from three experimental groups were infected by Listeria innocua, Listeria ivanovii, and Listeria monocytogenes. Meat samples were stored for 5 days at 0°C-4°C. Meat samples were kept in the refrigerator for 3, 4, and 5 days. Microbiological and laboratory indicators of meat freshness were found on these days as well. Results: After the slaughter of chickens with experimental listeriosis, pathological changes in muscles and organs were noted against the background of fattening carcasses with a high slaughter yield. By bacterial contamination, 1 day after slaughter, the meat of chickens of the experimental groups (L. innocua, L. ivanovii, and L. monocytogenes) outperformed the control group by almost 1.9, 13.9, and 24.7 times, respectively (p < 0.05). The same trend is observed for the third, fourth, and fifth days of meat storage. To keep chicken meat fresh for 5 days, only samples from the control group stayed fresh. Conclusion: According to the total bacterial contamination, the meat of chickens of the groups L. innocua and L. ivanovii was dangerous to human health after 5 and 4 days of storage, respectively. From the first day after the chickens were killed, the meat of chickens that had been infected with L. monocytogenes did not meet the requirements (up to 100 CFU/gm) and was not safe to store or eat.

20.
Biosensors (Basel) ; 11(12)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34940268

ABSTRACT

Bacterial contamination in food-processing facilities is a critical issue that leads to outbreaks compromising the integrity of the food supply and public health. We developed a label-free and rapid electrochemical biosensor for Listeria monocytogenes detection using a new one-step simultaneous sonoelectrodeposition of platinum and chitosan (CHI/Pt) to create a biomimetic nanostructure that actuates under pH changes. The XPS analysis shows the effective co-deposition of chitosan and platinum on the electrode surface. This deposition was optimized to enhance the electroactive surface area by 11 times compared with a bare platinum-iridium electrode (p < 0.05). Electrochemical behavior during chitosan actuation (pH-stimulated osmotic swelling) was characterized with three different redox probes (positive, neutral, and negative charge) above and below the isoelectric point of chitosan. These results showed that using a negatively charged redox probe led to the highest electroactive surface area, corroborating previous studies of stimulus-response polymers on metal electrodes. Following this material characterization, CHI/Pt brushes were functionalized with aptamers selective for L. monocytogenes capture. These aptasensors were functional at concentrations up to 106 CFU/mL with no preconcentration nor extraneous reagent addition. Selectivity was assessed in the presence of other Gram-positive bacteria (Staphylococcus aureus) and with a food product (chicken broth). Actuation led to improved L. monocytogenes detection with a low limit of detection (33 CFU/10 mL in chicken broth). The aptasensor developed herein offers a simple fabrication procedure with only one-step deposition followed by functionalization and rapid L. monocytogenes detection, with 15 min bacteria capture and 2 min sensing.


Subject(s)
Biosensing Techniques , Chitosan , Listeria monocytogenes , Food Microbiology , Platinum
SELECTION OF CITATIONS
SEARCH DETAIL
...