Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 764
Filter
1.
Environ Pollut ; 356: 124301, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38830526

ABSTRACT

Oil sands activities in the Athabasca Oil Sands Region in Alberta, Canada, are large sources of atmospheric NOx and SO2. This study investigated the impact of oil sands emissions on the atmospheric deposition of nitrogen and sulfur species at a downwind site, about 350 km from the oil sands facilities. Measurement data are from the Canadian Air and Precipitation Monitoring Network (CAPMoN) from 2015 to 2019, including ambient concentrations of HNO3, pNO3-, NO2, pNH4+, NH3, SO2, pSO42- and base cations, as well as concentrations of NO3-, SO42-, NH4+, and base cations in precipitation. Sector analysis of air mass back trajectories was conducted to distinguish measurements with different air mass origins. Median atmospheric concentrations and dry deposition fluxes of HNO3, pNO3-, NO2, pNH4+, pSO42-, and SO2 on days when the air masses came from the oil sands sector were significantly greater than those with the "Clean" sector by 34-67%, whereas the difference in NH3 concentration was not significant. Contributions of the oil sands emissions to dry deposition fluxes of these species ranged from 3.8 to 13.1%. The precipitation-weighted mean concentrations of NO3-, SO42-, and NH4+ in samples with the oil sands sector were 76 %, 65 % and 81 % greater than those with the "Clean" sector, respectively. Contributions of the oil sands emissions to wet deposition of NO3-, SO42-, and NH4+ were 12.5 ± 8.9 %, 8.7 ± 4.4 %, and 6.0 ± 3.3 %, respectively. The annual total deposition of nitrogen and sulfur were 1.9 kg-N ha-1 and 0.74 kg-S ha-1, respectively, of which 8.0 ± 3.5 % and 8.7 ± 3.6 % were from oil sands emissions. The total deposition of sulfur and nitrogen did not exceed the critical loads (CL) of acidity, but nitrogen deposition exceeded the CLs of nutrient nitrogen in the region.

2.
J Sports Sci ; 42(9): 847-850, 2024 May.
Article in English | MEDLINE | ID: mdl-38916194

ABSTRACT

We assessed the accuracy and inter-sessional reliability of traditional (manual) compared to automatic (AutoHR) heart rate (HR) clamping methods during submaximal intensity continuous cycling. On separate occasions, thirteen males cycled at an HR corresponding to 80% of the ventilatory threshold for 18 min. Cycling power output was adjusted using either manual or AutoHR methods, encompassing three trials per method. For the manual method, cycling power output was adjusted every 30 s by 0, 5 or 10 W at the experimenter's discretion. Conversely, AutoHR automatically adjusted power output based on the difference between target and actual HR. Participants' HR was measured at 1 Hz. Root-mean square error (RMSE) and intraclass correlation coefficients (ICC) were calculated from the difference between measured and target HR to represent accuracy and reliability of each method. The RMSE for the manual method (3.2 ± 2.6 bpm) was significantly higher compared to AutoHR (2.8 ± 2.3 bpm) (p < 0.01, r = 0.13); inter-day ICC were 0.92 and 0.89 for manual adjustment and AutoHR, respectively. Automatic methods to clamp HR are more accurate than manual approaches during submaximal intensity continuous cycling and can be easily implemented for uniform HR control in individual and group training sessions at minimal cost.


Subject(s)
Bicycling , Ergometry , Heart Rate , Humans , Male , Heart Rate/physiology , Bicycling/physiology , Reproducibility of Results , Young Adult , Adult , Ergometry/methods , Ergometry/instrumentation , Exercise Test/methods , Oxygen Consumption/physiology
3.
Microbiol Spectr ; 12(7): e0001824, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38757960

ABSTRACT

Monkeypox virus (MPXV) poses a global health threat. Droplet digital PCR (ddPCR) holds potential as an accurate diagnostic tool for clinical microbiology. However, there is limited literature on the applicability of ddPCR in clinical settings. In this study, the clinical features of patients with MPXV during the initial outbreak in China in June 2023 were reviewed, and an optimized ddPCR method with dilution and/or inhibitor removal was developed to enhance MPXV detection efficiency. Eighty-two MPXV samples were tested from nine different clinical specimen types, including feces, urine, pharyngeal swabs, anal swabs, saliva, herpes fluid, crust, and semen, and the viral load of each specimen was quantified. A comparative analysis was performed with qPCR to assess sensitivity and specificity and to investigate the characteristics of MPXV infection by analyzing viral loads in different clinical specimens. Consequently, common pharyngeal and gastrointestinal symptoms were observed in patients with MPXV. The optimized ddPCR method demonstrated relatively high sensitivity for MPXV quantification in the clinical materials, with a limit of detection of 0.1 copies/µL. This was particularly evident in low-concentration samples like whole blood, semen, and urine. The optimized ddPCR demonstrated greater detection accuracy compared with normal ddPCR and qPCR, with an area under the curve (AUC) of 0.939. Except for crust samples, viral loads in the specimens gradually decreased as the disease progressed. Virus levels in feces and anal swabs kept a high detection rate at each stage of post-symptom onset, and feces and anal swabs samples may be suitable for clinical diagnosis and continuous monitoring of MPXV. IMPORTANCE: The ddPCR technique proved to be a sensitive and valuable tool for accurately quantifying MPXV viral loads in various clinical specimen types. The findings provided valuable insights into the necessary pre-treatment protocols for MPXV diagnosis in ddPCR detection and the potentially suitable sample types for collection. Therefore, such results can aid in comprehending the potential characteristics of MPXV infection and the usage of ddPCR in clinical settings.


Subject(s)
Monkeypox virus , Sensitivity and Specificity , Viral Load , Humans , Viral Load/methods , Monkeypox virus/isolation & purification , Monkeypox virus/genetics , China , Mpox (monkeypox)/diagnosis , Mpox (monkeypox)/virology , Male , Feces/virology , Female , Polymerase Chain Reaction/methods , Disease Outbreaks , Adult , Real-Time Polymerase Chain Reaction/methods
4.
J Clin Virol ; 173: 105680, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38728796

ABSTRACT

BACKGROUND: Epstein-Barr Virus (EBV) viral loads in hematopoietic stem cell transplant (HSCT) recipients are typically monitored using quantitative molecular assays. The Cobas EBV test (Roche Molecular, Pleasanton, CA) has recently been FDA-cleared for the monitoring of EBV viral loads in plasma samples of transplant patients. In this study, we compared the viral loads obtained by a laboratory-developed test (EBV LDT) using Altona Analyte specific reagents (ASR) to those obtained on the Cobas EBV test. METHODS: The analytical performance of the assay was established using the EBV verification panel from Exact Diagnostics and the EBV ATCC strain B95-8. The clinical evaluation was performed using 343 plasma samples initially tested on the EBV LDT. RESULTS: The analytical sensitivity (<18.8 IU/mL), precision (SD < 0.17 log) and linear range (35.0 IU/mL to 1E + 08 IU/mL) of the Cobas EBV assay established by the manufacturers were confirmed. The strength of the qualitative agreement was substantial between the cobas EBV and the EBV LDT (85.6 %; κ = 0.71) and almost perfect when discordant results were resolved (96.4 %; κ = 0.93). The quantitative agreement was moderate (82.9 %; κ = 0.53) with the viral load obtained on the Cobas EBV test being lower across the linear range of the two tests (mean log difference of 1.0). While the absolute values of the viral loads were markedly different, the overall trends observed in patients with multiple consecutive results were similar between the two tests. CONCLUSIONS: The Cobas EBV test provides an accurate and valid, in vitro diagnostic (IVD) option for monitoring of EBV viral loads in transplant patients and should provide an opportunity for increased standardization and commutability of tests results across laboratories.


Subject(s)
Epstein-Barr Virus Infections , Herpesvirus 4, Human , Sensitivity and Specificity , Tertiary Care Centers , Viral Load , Humans , Viral Load/methods , Epstein-Barr Virus Infections/diagnosis , Epstein-Barr Virus Infections/virology , Herpesvirus 4, Human/isolation & purification , Herpesvirus 4, Human/genetics , Middle Aged , Female , Adult , Male , Aged , Young Adult , Adolescent , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Hematopoietic Stem Cell Transplantation , Child , Child, Preschool , DNA, Viral/blood , Reagent Kits, Diagnostic/standards
5.
J Hum Kinet ; 92: 133-146, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38736597

ABSTRACT

The purposes of this study were to quantify the physiological response to the initial two-week preseason period in elite male rugby league (RL) athletes, and to determine if a repeated bout effect (RBE) occurs. Eighteen RL players were monitored for the initial two-week preseason period. Blood samples were collected on days (D)1, D2, D4, D5, D8, D9, D11 and D12 to measure creatine kinase (CK). Neuromuscular power was assessed on D1, D5, D8 and D12. During field-based sessions, the external training load was quantified using global positioning system technology, whilst the internal load was quantified using the training impulse and the session rating of perceived exertion. Resistance-based gym session volume was quantified by total repetitions x weight lifted. Perceived measures of fatigue and muscle soreness were assessed on all training days. Two-way (day x week) repeated measures analysis of variance and Bonferroni's corrected post-hoc tests identified significant changes. There were no significant changes in CK activity (649.2 ± 255.0 vs. 673.8 ± 299.1 µL; p = 0.63) or internal training load measures from week 1 to week 2. External training load measures including total distance (4138.1 ± 198.4 vs. 4525.0 ± 169.2 m; p < 0.001) and repeated high-intensity efforts (12.6 ± 1.8 vs. 17.5 ± 1.8 au; p < 0.001) significantly increased in week 2 compared to week 1. Internal training loads and CK activity did not change in response to an increase in external training loads during the initial preseason. The current results provide support for a 'real world' perspective of the RBE phenomenon that may be more applicable for team sport practitioners.

6.
Phys Ther Res ; 27(1): 35-41, 2024.
Article in English | MEDLINE | ID: mdl-38690532

ABSTRACT

OBJECTIVE: Assessment of the vertical ground reaction force (VGRF) during landing tasks is crucial for physical therapy in sports. The purpose of this study was to determine whether the VGRF during a single-leg landing can be estimated from a two-dimensional (2D) video image and pose estimation artificial intelligence (AI). METHODS: Eighteen healthy male participants (age: 23.0 ± 1.6 years) performed a single-leg landing task from a 30-cm height. The VGRF was measured using a force plate and estimated using center of mass (COM) position data from a 2D video image with pose estimation AI (2D-AI) and three-dimensional optical motion capture (3D-Mocap). The measured and estimated peak VGRFs were compared using a paired t-test and Pearson's correlation coefficient. The absolute errors of the peak VGRF were also compared between the two estimations. RESULTS: No significant difference in the peak VGRF was found between the force plate measured VGRF and the 2D-AI or 3D-Mocap estimated VGRF (force plate: 3.37 ± 0.42 body weight [BW], 2D-AI: 3.32 ± 0.42 BW, 3D-Mocap: 3.50 ± 0.42 BW). There was no significant difference in the absolute error of the peak VGRF between the 2D-AI and 3D-Mocap estimations (2D-AI: 0.20 ± 0.16 BW, 3D-Mocap: 0.13 ± 0.09 BW, P = 0.163). The measured peak VGRF was significantly correlated with the estimated peak by 2D-AI (R = 0.835, P <0.001). CONCLUSION: The results of this study indicate that peak VGRF estimation using 2D video images and pose estimation AI is useful for the clinical assessment of single-leg landing.

7.
Toxicol Rep ; 12: 520-530, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38774477

ABSTRACT

Robust attention was brought to researchers due to deterioration of wastewater quality of lakes and reservoirs as major global concerns by industrial release. The uncontrolled releases of effluents impose serious impacts for both aquatic and terrestrial environments. In the current study, many parameters like nutrient loads, heavy metals and physicochemical properties of wastewater, wetland grass, and papaya samples were analysed. The investigated nutrients, alkalinity, and total hardness in fresh water samples were within the allowable limits except for phosphate in fresh wastewater and alkalinity in wastewater. The detected levels of heavy metals (mg/L) in wastewater samples were:- Cd (0.386-0.905), Cr (ND-0.074), Cu (0.064-0.096), Mn (0.184-1.528), Fe (0.167-4.636), Zn (0.175-0.333), and Pb (0.044-0.892) (mg/L). The studied metals in the wastewater sample, except Cd, Fe, and Pb were lower than the allowable limit. The level of heavy metals in the grass and papaya samples ranged from Cd (37.14-147.62), Cr (ND-8.82), Cu (3.14-8.33), Mn (2.89-85.46), Fe(5.0-65.15), Zn (3.44-36.84), and Pb (ND-60.36) (mg/kg). The detected metals were below the permissible limits, except Cd, Cr, and Pb. The findings of the physicochemical characteristics in wastewater samples were computed: pH (6.61-8.54), temperatures (21.63-26.57 °C), TDS (205.9-1896 mg/L), EC (359.9-3226.67 µs/cm), BOD (12.0-732.67 mg/L), COD (3.67-1691.33 mg/L). Except for temperature and pH, all levels in the wastewater were above the recommended limit for wastewater discharge by USEPA.

8.
Heliyon ; 10(10): e30832, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38803902

ABSTRACT

Fatigue assessment of components subjected to random loads is a challenging task both due to the variability in amplitude and frequency of the loads and for the computational times required to perform classical time domain fatigue analysis. The frequency domain approach to fatigue life assessment offers a solution by utilizing the power spectral density of the random load, requiring minimal computational effort. However, frequency domain methods are limited to stationary Gaussian signals, while real-world loads often exhibit non-Gaussian characteristics. Previous research proposed formulas to extend frequency domain methods to non-Gaussian cases, but they require knowledge of the parameters related to non-Gaussianity of the component's stress (skewness and kurtosis), which would require a time domain analysis of the stress history on the component and a strong reduction of the computational advantages. This paper aims to address this gap by conducting an extensive campaign of numerical simulations to evaluate the influence of various parameters on the degree of non-Gaussianity of the response of a system. A single-dof mass-spring-damper system was subjected to non-Gaussian random loads of different natures, and the response is analyzed to determine the values of skewness and kurtosis. The study investigated the influence on non-normality indexes of the system's output of several input parameters, which include both the characteristics of the input load and the properties of the dynamic system. The findings contribute to a better understanding of non-Gaussianity in dynamic systems and pave the way for conducting efficient fatigue analyses in the frequency domain. Future work will extend the study to non-stationary random loads, further advancing the understanding of non-Gaussianity and non-stationarity in dynamic systems.

9.
Materials (Basel) ; 17(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38591492

ABSTRACT

The earth pressure acting on soilbag-reinforced retaining structures subjected to surcharge loads under non-limited states is crucial for designing these structures. In this study, mode tests on soilbag-reinforced retaining walls were conducted to the earth pressure of the wall subjected to surcharge loads. The findings from these tests reveal a non-linear distribution of lateral earth pressure on the wall when subjected to surcharge loads in non-limited states, with an observed escalation in pressure corresponding to increased surcharge loads. Insights from the tests facilitated the development of a predictive method for estimating lateral pressure on soilbag-reinforced retaining walls under similar conditions, and its performance was fully validated by the model tests. Furthermore, the impact of the geometric dimensions and material properties of the soilbags on the earth pressure distribution was examined using the proposed method.

10.
Materials (Basel) ; 17(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38612004

ABSTRACT

Within the scope of this research, patterns of changes in the fatigue life and limit of metals under cyclic stress were identified and the most informative parameters were determined as the basis for developing a method for the universal transformation of experimental data on the fatigue of metals and alloys for their subsequent generalization. Experimental data on metal fatigue, obtained by a large number of authors for a wide range of grades of steels and alloys, under the influence of various combinations of factors, were systematized. A generalized dependence of the recalculated parameters of fatigue life and limit was obtained, its characteristics were assessed, and a sensitivity analysis was performed, confirming the universal nature of the obtained dependence. A system of parameters has been proposed making it possible to consider and forecast high-cycle fatigue processes for a wide range of metals and alloys, under the conditions of various combinations of operating factors, from unified positions and a more general point of view.

11.
Environ Res ; 252(Pt 2): 118949, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38631472

ABSTRACT

Anthropogenic activities are leaving lots of chemical footprints on the soil. It alters the physiochemical characteristics of the soil thereby modifying the natural soil microbiome. The prevalence of antimicrobial-resistance microbes in polluted soil has gained attention due to its obvious public health risks. This study focused on assessing the prevalence and distribution of antibiotic-resistance genes in polluted soil ecosystems impacted by industrial enterprises in southern Russia. Metagenomic analysis was conducted on soil samples collected from polluted sites using various approaches, and the prevalence of antibiotic-resistance genes was investigated. The results revealed that efflux-encoding pump sequences were the most widely represented group of genes, while genes whose products replaced antibiotic targets were less represented. The level of soil contamination increased, and there was an increase in the total number of antibiotic-resistance genes in proteobacteria, but a decrease in actinobacteria. The study proposed an optimal mechanism for processing metagenomic data in polluted soil ecosystems, which involves mapping raw reads by the KMA method, followed by a detailed study of specific genes. The study's conclusions provide valuable insights into the prevalence and distribution of antibiotic-resistance genes in polluted soils and have been illustrated in heat maps.


Subject(s)
Metals, Heavy , Polycyclic Aromatic Hydrocarbons , Soil Microbiology , Soil Pollutants , Soil Pollutants/analysis , Soil Pollutants/toxicity , Metals, Heavy/analysis , Metals, Heavy/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Drug Resistance, Microbial/genetics , Russia , Metagenomics , Genes, Bacterial , Drug Resistance, Bacterial/genetics , Environmental Monitoring
12.
Heliyon ; 10(8): e29436, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38681654

ABSTRACT

This work applies a higher order thickness-stretched model for the electro-elastic analysis of the composite graphene origami reinforced square plate sandwiched by the piezoelectric/piezomagnetic layers subjected to the thermal, electric, magnetic and mechanical loads. The plate is manufactured of a copper matrix reinforced with graphene origami where the effective material properties are calculated based on the micromechanical models as a function of volume fraction and folding degree of graphene origami, material properties of matrix, reinforcement, and local temperature. The governing equations are derived using the virtual work principle in terms of the bending, shear and stretching functions, in-plane displacements, electric, and magnetic potentials. The numerical results including various displacement components, maximum electric, and magnetic potentials are presented with changes of volume fraction, folding degree of reinforcement, electrical, magnetic, and thermal loading. A verification investigation is presented for approve of the methodology, and the solution procedure. The main novelty of this work is simultaneous effect of the thickness stretching and the multi-field loading on the electromagnetic bending results of the sandwich plate. Another novelty of this work is usage of graphene origami nano-reinforcement as a controllable material in a sandwich structure subjected to multi-field loadings. The results show an increase in bending, shear, and stretching deflections with an increase in electromagnetic loads, and folding degree as well as a decrease in volume fraction of reinforcement.

13.
J Fungi (Basel) ; 10(4)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38667908

ABSTRACT

Viticulture worldwide is challenged by grapevine trunk diseases (GTDs). Involvement of arthropods in the dissemination process of GTD pathogens, notably esca pathogens, is indicated after detection of associated pathogens on arthropod exoskeletons, and demonstration of transmission under artificial conditions. The present study is the first to quantify spore loads via qPCR of the esca-relevant pathogen Phaeomoniella chlamydospora on arthropods collected in German vineyards, i.e., European earwigs (Forficula auricularia), ants (Formicidae), and two species of jumping spiders (Marpissa muscosa and Synageles venator). Quantification of spore loads showed acquisition on exoskeletons, but most arthropods carried only low amounts. The mycobiome on earwig exoskeletons was described for the first time to reveal involvement of earwigs in the dispersal of GTDs in general. Metabarcoding data support the potential risk of earwigs as vectors for predominantly Pa. chlamydospora and possibly Eutypa lata (causative agent of Eutypa dieback), as respective operational taxonomical unit (OTU) assigned genera had relative abundances of 6.6% and 2.8% in total reads, even though with great variation between samples. Seven further GTD-related genera were present at a very low level. As various factors influence the successful transmission of GTD pathogens, we hypothesize that arthropods might irregularly act as direct vectors. Our results highlight the importance of minimizing and protecting pruning wounds in the field.

14.
Viruses ; 16(4)2024 03 30.
Article in English | MEDLINE | ID: mdl-38675884

ABSTRACT

Goose astrovirus genotype 1 (GAstV-1) has emerged in goose farms in some provinces of China in recent years and is considered to be one of the pathogens of gout in goslings in China. However, few studies have been conducted on the dynamic distribution, tissue tropism, and pathogenesis of GAstV-1 in goslings. In 2022, an epidemiological investigation of goose astrovirus (GAstV) in goslings was conducted in seven provinces of China. During the investigation, a GAstV-1 designated as GAstV-JSXZ was identified in the kidney of an 8-day-old gosling and was successfully isolated from a goose embryo. The full genome sequence of GAstV-JSXZ was determined using the next-generation sequencing technique. The complete genome of GAstV-JSXZ was 7299-nt-long. Interestingly, the phylogenetic analysis revealed that Chinese GAstV-1 has formed two distinct subgroups based on the ORF 2 genomes, designated GAstV-1 1a and GAstV-1 1b. The GAstV-JSXZ shared the highest identity with GAstV-1 1a strain FLX and TZ03 in nucleotides (ORF1a: 98.3-98.4%; ORF1b: 92.3-99.1%; ORF2: 95.8-98.8%) and amino acid sequences (ORF1a: 99.4-99.5%; ORF1b: 98.2-98.8%; ORF2: 97.0-99.4%). To evaluate the pathogenicity of GAstV-1, 1-day-old goslings were inoculated with the virus by oral and subcutaneous injection routes, respectively. The results revealed that the virus causes extensive pathological organ damage, especially in the kidney, liver, and thymus. Virus-specific genomic RNA could be detected in the cloacal swabs and tissues of infected goslings throughout the experiment. The viral copy numbers examined in the kidney and intestine were the highest, followed by the liver and spleen. These results are likely to provide a new understanding of the pathogenicity of GAstV-1 in geese.


Subject(s)
Astroviridae Infections , Geese , Genome, Viral , Genotype , Phylogeny , Poultry Diseases , Animals , Geese/virology , China , Astroviridae Infections/veterinary , Astroviridae Infections/virology , Poultry Diseases/virology , Astroviridae/genetics , Astroviridae/isolation & purification , Astroviridae/classification , Astroviridae/pathogenicity , Avastrovirus/genetics , Avastrovirus/isolation & purification , Avastrovirus/classification , Avastrovirus/pathogenicity , Virulence , High-Throughput Nucleotide Sequencing
15.
Sensors (Basel) ; 24(8)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38676134

ABSTRACT

The introduction of resistant and lightweight materials in the construction industry has led to civil structures being vulnerable to excessive vibrations, particularly in footbridges exposed to human-induced gait loads. This interaction, known as Human-Structure Interaction (HSI), involves a complex interplay between structural vibrations and gait loads. Despite extensive research on HSI, the simultaneous effects of lateral structural vibrations with fundamental frequencies close to human gait frequency (around 1.0 Hz) and wide amplitudes (over 30.0 mm) remain inadequately understood, posing a contemporary structural challenge highlighted by incidents in iconic bridges like the Millennium Bridge in London, Solferino Bridge in Paris, and Premier Bridge in Cali, Colombia. This paper focuses on the experimental exploration of Structure-to-Human Interaction (S2HI) effects using the Human-Structure Interaction Multi-Axial Test Framework (HSI-MTF). The framework enables the simultaneous measurement of vertical and lateral loads induced by human gait on surfaces with diverse frequency ranges and wide-amplitude lateral harmonic motions. The study involved seven test subjects, evaluating gait loads on rigid and harmonic lateral surfaces with displacements ranging from 5.0 to 50.0 mm and frequency content from 0.70 to 1.30 Hz. A low-cost vision-based motion capture system with smartphones analyzed the support (Tsu) and swing (Tsw) periods of human gait. Results indicated substantial differences in Tsu and Tsw on lateral harmonic protocols, reaching up to 96.53% and 58.15%, respectively, compared to rigid surfaces. Normalized lateral loads (LL) relative to the subject's weight (W0) exhibited a linear growth proportional to lateral excitation frequency, with increased proportionality constants linked to higher vibration amplitudes. Linear regressions yielded an average R2 of 0.815. Regarding normalized vertical load (LV) with respect to W0, a consistent behavior was observed for amplitudes up to 30.0 mm, beyond which a linear increase, directly proportional to frequency, resulted in a 28.3% increment compared to rigid surfaces. Correlation analyses using Pearson linear coefficients determined relationships between structural surface vibration and pedestrian lateral motion, providing valuable insights into Structure-to-Human Interaction dynamics.


Subject(s)
Gait , Pedestrians , Vibration , Humans , Gait/physiology , Male , Adult , Smartphone , Weight-Bearing/physiology , Walking/physiology , Biomechanical Phenomena
16.
Article in English | MEDLINE | ID: mdl-38439577

ABSTRACT

Public health concerns on surface and groundwater contamination worldwide have increased. Sachet water contamination has also raised serious concerns across many developing countries. While previous studies attempted to address this issue, this review takes a different approach by utilizing a comprehensive analysis of physicochemical parameters, heavy metals, and microbial loads tested in sachet water across Nigeria's six geopolitical zones, within the period of 2020-2023. In this review study, over 50 articles were carefully analyzed. Collected data unveiled regional variations in the quality of sachet water across Nigeria. Noteworthy concerns revolve around levels of pH, total hardness, magnesium, calcium, nickel, iron, lead, mercury, arsenic, and cadmium. Fecal contamination was also identified as a significant issue, with the prevalence of several pathogens like Escherichia coli, Salmonella typhi, Enterobacter cloacae, Staphylococcus aureus, and Enterococcus faecalis. The manufacturing, delivery, storage, and final sale of sachet water, as well as poor environmental hygiene, were identified as potential contamination sources. The intake of contaminated sachet water exposes the citizens to waterborne and carcinogenic diseases. While the sachet water industry keeps growing and making profits, it is apparent that improvement calls made by previous studies, regarding the quality of water produced, have not been paid serious attention.

17.
ISA Trans ; 148: 477-489, 2024 May.
Article in English | MEDLINE | ID: mdl-38548504

ABSTRACT

This paper aims to tackle the issue of carrying variable loads and disturbances in an impedance-based dual-arm robot. When robots are engaged in transportation tasks, deviations in trajectory due to changing loads and the risk of objects falling under external disturbances or unstable gripping can lead to mission failure. To address these issues, a novel Dual-Arm Adaptive Cooperative Control Framework (ACCF) is proposed. The ACCF is designed to ensure adherence to trajectory constraints in the presence of load variations and to actively respond to sliding or overturning caused by disturbances. The framework is user-friendly and robust, featuring a two-loop arrangement. The inner-loop incorporates an adaptive force control law to robustly control internal forces for dual-arm gripping. The outer-loop utilizes centralized impedance control, incorporating a fast gravity estimation scheme to compensate for trajectory deviations and an active anti-overturning scheme to resist sliding or overturning of objects during disturbances. Experimental evaluations and comparisons are conducted. The results successfully demonstrate the ACCF's adaptability under variable loads and external disturbances, providing a solution for practical dual-arm applications, such as transportation, in future scenarios.

18.
J Voice ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38443267

ABSTRACT

The trombone and the male voice cover similar frequency ranges and, at a physical level, the basic anatomies of the voice and the trombone show some qualitative similarity: both have two vibrating flaps of muscular tissue (the vocal folds and the trombonist's lips, respectively), and in each case, these are loaded acoustically by resonant ducts both upstream and downstream. There are also large differences. For example, the downstream ducts differ in length. The trombone usually operates with an oscillation frequency close to that of one of the downstream resonances; this is only occasionally true of the voice. Because the lips of a trombone player are much more readily accessible for experiments, they have yielded more detailed measurements of longitudinal and transverse motion, AC and DC pressures, and flow under varying acoustic loads. In normal operation, the downstream motion of the lips or vocal folds leads the lateral opening motion, resulting in a sweeping flow that leads the flow through the aperture. The relative timing of these flow components is related to the phases of the pressure across the tissues and the downstream acoustic load. Further, the work done on trombonists' lips due to their sweeping motion makes an important contribution to maintaining oscillation with both inertive and compliant acoustic loads. This probably explains why trombonists can "lip" the pitch smoothly from above to below a downstream resonance. Similar calculations on measurements of vocal fold motion show a similar work contribution and suggest that this sweeping motion is significant in powering this component of laryngeal motion. Comparing and contrasting the operation of the two "instruments" gives new perspectives on the basic science of the voice, with practical applications including the use of resonances. This could be helpful to voice scientists but also useful background knowledge for singers and singing teachers.

19.
Natl Sci Rev ; 11(4): nwae007, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38495813

ABSTRACT

China currently has the highest acid deposition globally, yet research on its status, impacts, causes and controls is lacking. Here, we compiled data and calculated critical loads regarding acid deposition. The results showed that the abatement measures in China have achieved a sharp decline in the emissions of acidifying pollutants and a continuous recovery of precipitation pH, despite the drastic growth in the economy and energy consumption. However, the risk of ecological acidification and eutrophication showed no significant decrease. With similar emission reductions, the decline in areas at risk of acidification in China (7.0%) lags behind those in Europe (20%) or the USA (15%). This was because, unlike Europe and the USA, China's abatement strategies primarily target air quality improvement rather than mitigating ecological impacts. Given that the area with the risk of eutrophication induced by nitrogen deposition remained at 13% of the country even under the scenario of achieving the dual targets of air quality and carbon dioxide mitigation in 2035, we explored an enhanced ammonia abatement pathway. With a further 27% reduction in ammonia by 2035, China could largely eliminate the impacts of acid deposition. This research serves as a valuable reference for China's future acid deposition control and for other nations facing similar challenges.

20.
Sensors (Basel) ; 24(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38544140

ABSTRACT

Long-span bridges are susceptible to damage, aging, and deformation in harsh environments for a long time. Therefore, structural health monitoring (SHM) systems need to be used for reasonable monitoring and maintenance. Among various indicators, bridge displacement is a crucial parameter reflecting the bridge's health condition. Due to the simultaneous bearing of multiple environmental loads on suspension bridges, determining the impact of different loads on displacement is beneficial for the better understanding of the health conditions of the bridges. Considering the fact that extreme gradient boosting (XGBoost) has higher prediction performance and robustness, the authors of this paper have developed a data-driven approach based on the XGBoost model to quantify the impact between different environmental loads and the displacement of a suspension bridge. Simultaneously, this study combined wavelet threshold (WT) denoising and the variational mode decomposition (VMD) method to conduct a modal decomposition of three-dimensional (3D) displacement, further investigating the interrelationships between different loads and bridge displacements. This model links wind speed, temperature, air pressure, and humidity with the 3D displacement response of the span using the bridge monitoring data provided by the GNSS and Earth Observation for Structural Health Monitoring (GeoSHM) system of the Forth Road Bridge (FRB) in the United Kingdom (UK), thus eliminating the temperature time-lag effect on displacement data. The effects of the different loads on the displacement are quantified individually with partial dependence plots (PDPs). Employing testing, it was found that the XGBoost model has a high predictive effect on the target variable of displacement. The analysis of quantification and correlation reveals that lateral displacement is primarily affected by same-direction wind, showing a clear positive correlation, and vertical displacement is mainly influenced by temperature and exhibits a negative correlation. Longitudinal displacement is jointly influenced by various environmental loads, showing a positive correlation with atmospheric pressure, temperature, and vertical wind and a negative correlation with longitudinal wind, lateral wind, and humidity. The results can guide bridge structural health monitoring in extreme weather to avoid accidents.

SELECTION OF CITATIONS
SEARCH DETAIL
...