Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.092
Filter
1.
bioRxiv ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38948871

ABSTRACT

Matching arousal level to the motor activity of an animal is important for efficiently allocating cognitive resources and metabolic supply in response to behavioral demands, but how the brain coordinates changes in arousal and wakefulness in response to motor activity remains an unclear phenomenon. We hypothesized that the locus coeruleus (LC), as the primary source of cortical norepinephrine (NE) and promoter of cortical and sympathetic arousal, is well-positioned to mediate movement-arousal coupling. Here, using a combination of physiological recordings, fiber photometry, optogenetics, and behavioral tracking, we show that the LCNE activation is tightly coupled to the return of organized movements during waking from an anesthetized state. Moreover, in an awake animal, movement initiations are coupled to LCNE activation, while movement arrests, to LCNE deactivation. We also report that LCNE activity covaries with the depth of anesthesia and that LCNE photoactivation leads to sympathetic activation, consistent with its role in mediating increased arousal. Together, these studies reveal a more nuanced, modulatory role that LCNE plays in coordinating movement and arousal.

2.
Exp Neurobiol ; 33(3): 129-139, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38993080

ABSTRACT

Cancer chemotherapy often triggers peripheral neuropathy in patients, leading to neuropathic pain in the extremities. While previous research has explored various nerve stimulation to alleviate chemotherapy-induced peripheral neuropathy (CIPN), evidence on the effectiveness of noninvasive auricular vagus nerve stimulation (aVNS) remains uncertain. This study aimed to investigate the efficacy of non-invasive aVNS in relieving CIPN pain. To induce CIPN in experimental animals, oxaliplatin was intraperitoneally administered to rats (6 mg/kg). Mechanical and cold allodynia, the representative symptoms of neuropathic pain, were evaluated using the von Frey test and acetone test, respectively. The CIPN animals were randomly assigned to groups and treated with aVNS (5 V, square wave) at different frequencies (2, 20, or 100 Hz) for 20 minutes. Results revealed that 20 Hz aVNS exhibited the most pronounced analgesic effect, while 2 or 100 Hz aVNS exhibited weak effects. Immunohistochemistry analysis demonstrated increased c-Fos expression in the locus coeruleus (LC) in the brain of CIPN rats treated with aVNS compared to sham treatment. To elucidate the analgesic mechanisms involving the adrenergic descending pathway, α1-, α2-, or ß-adrenergic receptor antagonists were administered to the spinal cord before 20 Hz aVNS. Only the ß-adrenergic receptor antagonist, propranolol, blocked the analgesic effect of aVNS. These findings suggest that 20 Hz aVNS may effectively alleviate CIPN pain through ß-adrenergic receptor activation.

3.
Front Cell Neurosci ; 18: 1425645, 2024.
Article in English | MEDLINE | ID: mdl-38994328

ABSTRACT

Brain degenerations in sporadic Alzheimer's disease (AD) are observed earliest in the locus coeruleus (LC), a population of noradrenergic neurons, in which hyperphosphorylated tau protein expression and ß-amyloid (Aß) accumulation begin. Along with this, similar changes occur in the basal forebrain cholinergic neurons, such as the nucleus basalis of Meynert. Neuronal degeneration of the two neuronal nuclei leads to a decrease in neurotrophic factors such as brain-derived neurotrophic factor (BDNF) in the hippocampus and cerebral cortex, which results in the accumulation of Aß and hyperphosphorylated tau protein and ultimately causes neuronal cell death in those cortices. On the other hand, a large number of epidemiological studies have shown that tooth loss or masticatory dysfunction is a risk factor for dementia including AD, and numerous studies using experimental animals have also shown that masticatory dysfunction causes brain degeneration in the basal forebrain, hippocampus, and cerebral cortex similar to those observed in human AD, and that learning and memory functions are impaired accordingly. However, it remains unclear how masticatory dysfunction can induce such brain degeneration similar to AD, and the neural mechanism linking the trigeminal nervous system responsible for mastication and the cognitive and memory brain system remains unknown. In this review paper, we provide clues to the search for such "missing link" by discussing the embryological, anatomical, and physiological relationship between LC and its laterally adjoining mesencephalic trigeminal nucleus which plays a central role in the masticatory functions.

4.
Biol Psychol ; : 108847, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39038634

ABSTRACT

The locus coeruleus (LC) produces the neuromodulators norepinephrine and dopamine, and projects widely to subcortical and cortical brain regions. The LC has been a focus of neuroimaging biomarker development for the early detection of Alzheimer's disease (AD) since it was identified as one of the earliest brain regions to develop tau pathology. Our recent research established the use of positron emission tomography (PET) to measure LC catecholamine synthesis capacity in cognitively unimpaired older adults. We extend this work by investigating the possible influence of pathology and LC neurochemical function on LC network activity using functional magnetic resonance imaging (fMRI). In separate sessions, participants underwent PET imaging to measure LC catecholamine synthesis capacity ([18F]Fluoro-m-tyrosine), tau pathology ([18F]Flortaucipir), and amyloid-ß pathology ([11C]Pittsburgh compound B), and fMRI imaging to measure LC functional network activity at rest. Consistent with a growing body of research in aging and preclinical AD, we find that higher functional network activity is associated with higher tau burden in individuals at risk of developing AD (amyloid-ß positive). Critically, relationships between higher LC network activity and higher pathology (amyloid-ß and tau) were moderated by LC catecholamine synthesis capacity. High levels of LC catecholamine synthesis capacity reduced relationships between higher network activity and pathology. Broadly, these findings support the view that individual differences in functional network activity are shaped by interactions between pathology and neuromodulator function, and point to catecholamine systems as potential therapeutic targets.

5.
J Parkinsons Dis ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39031386

ABSTRACT

Targeted delivery of α-synuclein using AAV vectors has over the two decades since its introduction developed into a versatile tool for modeling different aspects of synucleinopathy, mimicking those seen in Parkinson's disease and related Lewy body disorders. The viral vector approach to disease modeling is attractive in that the expression of α-synuclein, wild-type or mutated, can be confined to defined anatomical structures and targeted to selected cell populations using either cell-type specific promoter constructs or different natural or engineered AAV serotypes. AAV-α-synuclein was initially used to model progressive α-synuclein pathology in nigral dopamine neurons, and, like the standard 6-OHDA model, it has most commonly been applied unilaterally, using the non-injected side as a reference and control. In recent years, however, the AAV-α-synuclein model has become more widely used to induce Parkinson-like synuclein pathology in other relevant neuronal systems, such as the brainstem noradrenergic and serotonergic neurons, the vagal motor neurons, as well as in oligodendrocytes, the prime target relevant to the pathology seen in multiple system atrophy. The purpose of this review is to give an overview of the progress made in the use of the AAV-α-synuclein model over the last two decades and summarize the state-of-the art in the use of the AAV-α-synuclein model for disease modeling in rats and mice.


Misfolding of the neuronal protein α-synuclein is central to the cellular processes that underlie the development of Parkinson's disease and related disorders, such as dementia with Lewy bodies and multiple system atrophy. Targeted delivery of α-synuclein using adeno-associated virus, AAV, has become a standard tool to model the disease process in animals. This AAV-α-synuclein model of Parkinson's disease was introduced two decades ago and over the ensuing decades it has become a widely used standard tool for experimental studies in animals. The usefulness of the AAV-α-synuclein model is largely due to its flexibility and versatility as an experimental tool. In this review the authors summarize the state-of-the art in this field and review the range of applications that has been developed using AAV-α-synuclein alone, in single hit models, or in combinations with other interacting risk factors, in double hit models.

6.
Cureus ; 16(6): e62450, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39022454

ABSTRACT

The levator palpebrae superioris muscle (LPSM) and facial muscles comprise both fast-twitch fibers (FTFs) and slow-twitch fibers (STFs). Still, they lack the muscle spindles to induce reflex contractions of STFs. Because reflex contractions of STFs in the LPSM and frontalis muscle, which are the major eyelid opening muscles, are induced by stretching of mechanoreceptors in the superior tarsal muscle, those in the palpebral orbicularis oculi muscle (POOM), which is the major eyelid closing muscle, should not be induced by stretching of the same proprioceptors but instead induced by the proprioceptors in the vicinity of the POOM. Apraxia of eyelid opening (AEO) after eyelid closure might be caused by prolonged POOM contraction. Most patients with AEO tend to stretch the upper and lower eyelids by applying contact lenses and eyedrops to disinsert the aponeurosis and retractor from the tarsi. They taught us that pulling down or raising the lower eyelid decreased or increased involuntary contraction of the POOM, which relieved or worsened AEO, respectively. Then, they asked us to have the lower eyelid lowered and the upper eyelid raised surgically. Whenever the upper eyelid is opened by contractions of the LPSM with the global layer of superior rectus muscle (GLSRM), the lower eyelid is concomitantly opened by contractions of the global layer of inferior rectus muscle (GLIRM), which counteracts the contraction of the GLSRM to maintain the visual axis. We hypothesized that patients with retractor disinsertion raise the lower eyelid by eyelid closure to stretch putative mechanoreceptors in the inferior tarsal muscle (ITM), which induces prolonged tonic and clonic reflex contractions of STFs in the POOM, resulting in AEO. To retrospectively verify the hypothesis, we report five cases with AEO. In the first case, AEO was induced by tight eyelid closure but was prevented by pulling down the lower eyelid during eyelid closure. Surgery to reinsert retractors into the tarsi cured AEO. In the second case, the patient sustained both severe aponeurosis-disinserted blepharoptosis and AEO. In this patient, the first surgery to reinsert aponeuroses to the the tarsi cured AEO, but a tight eyelid closure induced prolonged POOM contraction. The second surgery conducted to reinsert the retractors to the tarsi cured AEO. In the third case, with the entire eyelid AEO, surgery done to reinsert the retractors to the tarsi almost cured the entire eyelid AEO. In the fourth case, an increased clonic contraction of the POOM on the right eyelid after a tight eyelid closure was relieved by 4% lidocaine instillation to anesthetize the ITM. In the fifth case, downgaze induced clonic reflex contraction of the right POOM because of the right retractor disinsertion. Thus, prolonged tonic and clonic reflex contractions of STFs in the POOM appeared to be regulated by enhanced stretching of putative mechanoreceptors in the ITM in patients with retractor disinsertion due to increased contractions and microsaccades of FTFs in the GLIRM. Because reflex contractions of STFs in the POOM by stretching of putative mechanoreceptors in the ITM might essentially attach the upper and lower eyelids to the globe, AEO might simply be the increased reflex contraction of the POOM.

7.
J Psychopharmacol ; : 2698811241261022, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041250

ABSTRACT

Pramipexole, a D2/D3 dopamine receptor agonist, is used to treat the motor symptoms of Parkinson's disease, caused by degeneration of the dopaminergic nigrostriatal pathway. There are three paradoxes associated with its mode of action. Firstly, stimulation of D2/D3 receptors leads to neuronal inhibition, although pramipexole does not inhibit but promotes some dopamine-modulated functions, such as locomotion and reinforcement. Secondly, another dopamine-modulated function, arousal, is not promoted but inhibited by pramipexole, leading to sedation. Thirdly, pramipexole-evoked sedation is associated with an increase in pupil diameter, although sedation is expected to cause pupil constriction. To resolve these paradoxes, the path from stimulation of D2/D3 receptors to the modification of dopamine-modulated functions has been tracked. The functions considered are modulated by midbrain dopaminergic nuclei: locomotion - substantia nigra pars compacta (SNc), reinforcement/motivation - ventral tegmental area (VTA), sympathetic activity (as reflected in pupil function) - VTA; arousal - ventral periaqueductal grey (vPAG), with contributions from VTA and SNc. The application of genetics-based molecular techniques (optogenetics and chemogenetics) has enabled tracing the chains of neurones from the dopaminergic nuclei to their final targets executing the functions. The functional neuronal circuits linked to the D2/D3 receptors in the dorsal and ventral striata, stimulated by inputs from SNc and VTA, respectively, may explain how neuronal inhibition induced by pramipexole is translated into the promotion of locomotion, reinforcement/motivation and sympathetic activity. As the vPAG may increase arousal mainly by stimulating cortical D1 dopamine receptors, pramipexole would stimulate only presynaptic D2/D3 receptors on vPAG neurones, curtailing their activity and leading to sedation.

8.
Front Neurol ; 15: 1432638, 2024.
Article in English | MEDLINE | ID: mdl-39045429

ABSTRACT

Objective: The present study investigated the impact of two different light intensities on the pain-modulated pupillary light response (PLR). Additionally, it aimed to demonstrate parasympathetic and sympathetic influences on PLR parameters in response to pain, as predicted by functional models. Method: A total of 24 participants were included in a randomized, repeated-measures design. The PLR was measured in response to both dark and bright light stimuli within two test cycles. Pain was induced using the cold pressor test (CPT), which involved immersing participants' feet in ice water. PLR measurements were taken during baseline and ice-water immersion within each test cycle. The assessed PLR parameters included initial diameter (INIT), latency (LAT), amplitude (AMP), and re-dilation time (ReDIL25). Along with these parameters, heart rate (HR) and pain ratings were also computed and analyzed. Main results: The CPT caused moderate pain in participants, and the resulting PLR parameters were found to be congruent with the expected parasympathetic and sympathetic nervous system activities. Although the luminance of the stimulus did influence PLR parameters, no interaction with pain exposure was found. Significance: The results showed that different aspects of pain experienced by an individual, as modulated through the sympathetic and parasympathetic nervous systems, are visible in their pupillary reactions to light. Notably, within the range used in the current study, light intensity did not significantly affect the pain-related PLR effects.

9.
Neurobiol Dis ; 200: 106606, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019292

ABSTRACT

The gut microbiota produces metabolites that enrich the host metabolome and play a part in host physiology, including brain functions. Yet the biological mediators of this gut-brain signal transduction remain largely unknown. In this study, the possible role of the gut microbiota metabolite indole, originating from tryptophan, was investigated. Oral administration of indole to simulate microbial overproduction of this compound in the gut consistently led to impaired locomotion and anxiety-like behaviour in both C3H/HeN and C57BL/6J mice. By employing c-Fos protein expression mapping in mice, we observed a noticeable increase in brain activation within the dorsal motor nucleus of the vagus nerve (DMX) and the locus coeruleus (LC) regions in a dose-dependent manner. Further immune co-labelling experiments elucidated that the primary cells activated within the LC were tyrosine hydroxylase positive. To delve deeper into the mechanistic aspects, we conducted chemogenetic activation experiments on LC norepinephrine neurons with two doses of clozapine N-oxide (CNO). Low dose of CNO at 0.5 mg/kg induced no change in locomotion but anxiety-like behaviour, while high dose of CNO at 2 mg/kg resulted in locomotion impairment and anxiety-like behaviour. These findings support the neuroactive roles of indole in mediating gut-brain communication. It also highlights the LC as a novel hub in the gut-brain axis, encouraging further investigations.

10.
Alzheimers Res Ther ; 16(1): 129, 2024 06 17.
Article in English | MEDLINE | ID: mdl-38886798

ABSTRACT

BACKGROUND: Autopsy work indicates that the widely-projecting noradrenergic pontine locus coeruleus (LC) is among the earliest regions to accumulate hyperphosphorylated tau, a neuropathological Alzheimer's disease (AD) hallmark. This early tau deposition is accompanied by a reduced density of LC projections and a reduction of norepinephrine's neuroprotective effects, potentially compromising the neuronal integrity of LC's cortical targets. Previous studies suggest that lower magnetic resonance imaging (MRI)-derived LC integrity may signal cortical tissue degeneration in cognitively healthy, older individuals. However, whether these observations are driven by underlying AD pathology remains unknown. To that end, we examined potential effect modifications by cortical beta-amyloid and tau pathology on the association between in vivo LC integrity, as quantified by LC MRI signal intensity, and cortical neurodegeneration, as indexed by cortical thickness. METHODS: A total of 165 older individuals (74.24 ± 9.72 years, ~ 60% female, 10% cognitively impaired) underwent whole-brain and dedicated LC 3T-MRI, Pittsburgh Compound-B (PiB, beta-amyloid) and Flortaucipir (FTP, tau) positron emission tomography. Linear regression analyses with bootstrapped standard errors (n = 2000) assessed associations between bilateral cortical thickness and i) LC MRI signal intensity and, ii) LC MRI signal intensity interacted with cortical FTP or PiB (i.e., EC FTP, IT FTP, neocortical PiB) in the entire sample and a low beta-amyloid subsample. RESULTS: Across the entire sample, we found a direct effect, where lower LC MRI signal intensity was associated with lower mediolateral temporal cortical thickness. Evaluation of potential effect modifications by FTP or PiB revealed that lower LC MRI signal intensity was related to lower cortical thickness, particularly in individuals with elevated (EC, IT) FTP or (neocortical) PiB. The latter result was present starting from subthreshold PiB values. In low PiB individuals, lower LC MRI signal intensity was related to lower EC cortical thickness in the context of elevated EC FTP. CONCLUSIONS: Our findings suggest that LC-related cortical neurodegeneration patterns in older individuals correspond to regions representing early Braak stages and may reflect a combination of LC projection density loss and emergence of cortical AD pathology. This provides a novel understanding that LC-related cortical neurodegeneration may signal downstream consequences of AD-related pathology, rather than being exclusively a result of aging.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Locus Coeruleus , Magnetic Resonance Imaging , Positron-Emission Tomography , tau Proteins , Humans , Locus Coeruleus/diagnostic imaging , Locus Coeruleus/pathology , Female , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Male , Aged , tau Proteins/metabolism , Aged, 80 and over , Cohort Studies , Amyloid beta-Peptides/metabolism , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Carbolines , Thiazoles , Aniline Compounds , Brain Cortical Thickness
11.
Acta Physiol (Oxf) ; 240(8): e14191, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38895950

ABSTRACT

AIM: Physical activity (PA) is a key component for brain health and Reserve, and it is among the main dementia protective factors. However, the neurobiological mechanisms underpinning Reserve are not fully understood. In this regard, a noradrenergic (NA) theory of cognitive reserve (Robertson, 2013) has proposed that the upregulation of NA system might be a key factor for building reserve and resilience to neurodegeneration because of the neuroprotective role of NA across the brain. PA elicits an enhanced catecholamine response, in particular for NA. By increasing physical commitment, a greater amount of NA is synthetised in response to higher oxygen demand. More physically trained individuals show greater capabilities to carry oxygen resulting in greater Vo 2 max - a measure of oxygen uptake and physical fitness (PF). METHODS: We hypothesized that greater Vo 2 max would be related to greater Locus Coeruleus (LC) MRI signal intensity. In a sample of 41 healthy subjects, we performed Voxel-Based Morphometry analyses, then repeated for the other neuromodulators as a control procedure (Serotonin, Dopamine and Acetylcholine). RESULTS: As hypothesized, greater Vo 2 max related to greater LC signal intensity, and weaker associations emerged for the other neuromodulators. CONCLUSION: This newly established link between Vo 2 max and LC-NA system offers further understanding of the neurobiology underpinning Reserve in relationship to PA. While this study supports Robertson's theory proposing the upregulation of the NA system as a possible key factor building Reserve, it also provides ground for increasing LC-NA system resilience to neurodegeneration via Vo 2 max enhancement.


Subject(s)
Locus Coeruleus , Norepinephrine , Physical Fitness , Humans , Locus Coeruleus/physiology , Locus Coeruleus/metabolism , Male , Female , Aged , Physical Fitness/physiology , Norepinephrine/metabolism , Middle Aged , Oxygen Consumption/physiology , Exercise/physiology , Magnetic Resonance Imaging
12.
Alzheimers Res Ther ; 16(1): 119, 2024 05 31.
Article in English | MEDLINE | ID: mdl-38822365

ABSTRACT

BACKGROUND: Autopsy work reported that neuronal density in the locus coeruleus (LC) provides neural reserve against cognitive decline in dementia. Recent neuroimaging and pharmacological studies reported that left frontoparietal network functional connectivity (LFPN-FC) confers resilience against beta-amyloid (Aß)-related cognitive decline in preclinical sporadic and autosomal dominant Alzheimer's disease (AD), as well as against LC-related cognitive changes. Given that the LFPN and the LC play important roles in attention, and attention deficits have been observed early in the disease process, we examined whether LFPN-FC and LC structural health attenuate attentional decline in the context of AD pathology. METHODS: 142 participants from the Harvard Aging Brain Study who underwent resting-state functional MRI, LC structural imaging, PiB(Aß)-PET, and up to 5 years of cognitive follow-ups were included (mean age = 74.5 ± 9.9 years, 89 women). Cross-sectional robust linear regression associated LC integrity (measured as the average of five continuous voxels with the highest intensities in the structural LC images) or LFPN-FC with Digit Symbol Substitution Test (DSST) performance at baseline. Longitudinal robust mixed effect analyses examined associations between DSST decline and (i) two-way interactions of baseline LC integrity (or LFPN-FC) and PiB or (ii) the three-way interaction of baseline LC integrity, LFPN-FC, and PiB. Baseline age, sex, and years of education were included as covariates. RESULTS: At baseline, lower LFPN-FC, but not LC integrity, was related to worse DSST performance. Longitudinally, lower baseline LC integrity was associated with a faster DSST decline, especially at PiB > 10.38 CL. Lower baseline LFPN-FC was associated with a steeper decline on the DSST but independent of PiB. At elevated PiB levels (> 46 CL), higher baseline LFPN-FC was associated with an attenuated decline on the DSST, despite the presence of lower LC integrity. CONCLUSIONS: Our findings demonstrate that the LC can provide resilience against Aß-related attention decline. However, when Aß accumulates and the LC's resources may be depleted, the functioning of cortical target regions of the LC, such as the LFPN-FC, can provide additional resilience to sustain attentional performance in preclinical AD. These results provide critical insights into the neural correlates contributing to individual variability at risk versus resilience against Aß-related cognitive decline.


Subject(s)
Alzheimer Disease , Locus Coeruleus , Magnetic Resonance Imaging , Parietal Lobe , Humans , Female , Male , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/psychology , Alzheimer Disease/physiopathology , Aged , Locus Coeruleus/diagnostic imaging , Locus Coeruleus/pathology , Magnetic Resonance Imaging/methods , Parietal Lobe/diagnostic imaging , Aged, 80 and over , Attention/physiology , Frontal Lobe/diagnostic imaging , Frontal Lobe/physiopathology , Positron-Emission Tomography , Cross-Sectional Studies , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/psychology , Neuropsychological Tests
13.
Cereb Cortex ; 34(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38904081

ABSTRACT

The locus coeruleus-norepinephrine system plays a key role in supporting brain health along the lifespan, notably through its modulatory effects on neuroinflammation. Using ultra-high field diffusion magnetic resonance imaging, we examined whether microstructural properties (neurite density index and orientation dispersion index) in the locus coeruleus were related to those in cortical and subcortical regions, and whether this was modulated by plasma glial fibrillary acidic protein levels, as a proxy of astrocyte reactivity. In our cohort of 60 healthy individuals (30 to 85 yr, 50% female), higher glial fibrillary acidic protein correlated with lower neurite density index in frontal cortical regions, the hippocampus, and the amygdala. Furthermore, under higher levels of glial fibrillary acidic protein (above ~ 150 pg/mL for cortical and ~ 145 pg/mL for subcortical regions), lower locus coeruleus orientation dispersion index was associated with lower orientation dispersion index in frontotemporal cortical regions and in subcortical regions. Interestingly, individuals with higher locus coeruleus orientation dispersion index exhibited higher orientation dispersion index in these (sub)cortical regions, despite having higher glial fibrillary acidic protein levels. Together, these results suggest that the interaction between locus coeruleus-norepinephrine cells and astrocytes can signal a detrimental or neuroprotective pathway for brain integrity and support the importance of maintaining locus coeruleus neuronal health in aging and in the prevention of age-related neurodegenerative diseases.


Subject(s)
Astrocytes , Glial Fibrillary Acidic Protein , Locus Coeruleus , Humans , Female , Male , Locus Coeruleus/diagnostic imaging , Astrocytes/physiology , Aged , Middle Aged , Adult , Aged, 80 and over , Glial Fibrillary Acidic Protein/metabolism , Magnetic Resonance Imaging/methods , Cerebral Cortex/diagnostic imaging , Brain/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Neurites/physiology
14.
Int J Neuropsychopharmacol ; 27(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38833581

ABSTRACT

BACKGROUND: The NMDA antagonist S-ketamine is gaining increasing use as a rapid-acting antidepressant, although its exact mechanisms of action are still unknown. In this study, we investigated ketamine in respect to its properties toward central noradrenergic mechanisms and how they influence alertness behavior. METHODS: We investigated the influence of S-ketamine on the locus coeruleus (LC) brain network in a placebo-controlled, cross-over, 7T functional, pharmacological MRI study in 35 healthy male participants (25.1 ± 4.2 years) in conjunction with the attention network task to measure LC-related alertness behavioral changes. RESULTS: We could show that acute disruption of the LC alertness network to the thalamus by ketamine is related to a behavioral alertness reduction. CONCLUSION: The results shed new light on the neural correlates of ketamine beyond the glutamatergic system and underpin a new concept of how it may unfold its antidepressant effects.


Subject(s)
Attention , Cross-Over Studies , Ketamine , Locus Coeruleus , Magnetic Resonance Imaging , Humans , Ketamine/pharmacology , Ketamine/administration & dosage , Locus Coeruleus/drug effects , Locus Coeruleus/diagnostic imaging , Locus Coeruleus/physiology , Male , Adult , Young Adult , Attention/drug effects , Attention/physiology , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Amino Acid Antagonists/administration & dosage , Double-Blind Method , Antidepressive Agents/pharmacology , Antidepressive Agents/administration & dosage
15.
bioRxiv ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38826205

ABSTRACT

Whole-brain intrinsic activity as detected by resting-state fMRI can be summarized by three primary spatiotemporal patterns. These patterns have been shown to change with different brain states, especially arousal. The noradrenergic locus coeruleus (LC) is a key node in arousal circuits and has extensive projections throughout the brain, giving it neuromodulatory influence over the coordinated activity of structurally separated regions. In this study, we used optogenetic-fMRI in rats to investigate the impact of LC stimulation on the global signal and three primary spatiotemporal patterns. We report small, spatially specific changes in global signal distribution as a result of tonic LC stimulation, as well as regional changes in spatiotemporal patterns of activity at 5 Hz tonic and 15 Hz phasic stimulation. We also found that LC stimulation had little to no effect on the spatiotemporal patterns detected by complex principal component analysis. These results show that the effects of LC activity on the BOLD signal in rats may be small and regionally concentrated, as opposed to widespread and globally acting.

16.
J Neurophysiol ; 132(1): 226-239, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38842506

ABSTRACT

Our understanding of human brain function can be greatly aided by studying analogous brain structures in other organisms. One brain structure with neurochemical and anatomical homology throughout vertebrate species is the locus coeruleus (LC), a small collection of norepinephrine (NE)-containing neurons in the brainstem that project throughout the central nervous system. The LC is involved in nearly every aspect of brain function, including arousal and learning, which has been extensively examined in rats and nonhuman primates using single-unit recordings. Recent work has expanded into putative LC single-unit electrophysiological recordings in a nonmodel species, the zebra finch. Given the importance of correctly identifying analogous structures as research efforts expand to other vertebrates, we suggest adoption of consensus anatomical and electrophysiological guidelines for identifying LC neurons across species when evaluating brainstem single-unit spiking or calcium imaging. Such consensus criteria will allow for confident cross-species understanding of the roles of the LC in brain function and behavior.


Subject(s)
Finches , Locus Coeruleus , Animals , Locus Coeruleus/physiology , Locus Coeruleus/anatomy & histology , Finches/physiology , Mice , Neurons/physiology , Humans
17.
Neurodegener Dis ; 24(1): 6-15, 2024.
Article in English | MEDLINE | ID: mdl-38861955

ABSTRACT

INTRODUCTION: Sleep disturbances have been associated with essential tremor (ET). However, their pathophysiological underpinnings remain unknown. In this exploratory study, we examined the association between subjective sleep disturbances and the presence of Lewy pathology (LP) on postmortem brain examination in ET cases. METHODS: Fifty-two ET cases enrolled in a prospective, longitudinal study were assessed over an average period of 42 months. Cases completed the Pittsburgh Sleep Quality Index (PSQI), which yields seven component scores (e.g., sleep quality, sleep latency). For each component score, we calculated the difference between the last score and the baseline score. Brains were harvested at death. Each had a complete neuropathological assessment, including extensive α-synuclein immunostaining. We examined the associations between baseline PSQI scores and the change in PSQI scores (last - first), and LP on postmortem brain examination. RESULTS: ET cases had a mean baseline age of 87.1 ± 4.8 years. LP was observed in 12 (23.1%) of 52 cases; in 7 of these 12, LP was observed in the locus coeruleus (LC). Change in time needed to fall asleep (last - first sleep latency component score) was associated with presence of LP on postmortem brain examination - greater increase in sleep latency was associated with higher odds of LP (odds ratio = 2.98, p = 0.02). The greatest increase in sleep latency was observed in cases with LP in the LC (p = 0.04). CONCLUSION: In ET cases, increases in sleep latency over time could be a marker of underlying LP, especially in the LC.


Subject(s)
Brain , Essential Tremor , Sleep Wake Disorders , Humans , Essential Tremor/pathology , Female , Male , Sleep Wake Disorders/pathology , Sleep Wake Disorders/epidemiology , Aged, 80 and over , Longitudinal Studies , Aged , Brain/pathology , Prospective Studies , Lewy Bodies/pathology , Cohort Studies , alpha-Synuclein/metabolism
18.
J Neurol ; 271(7): 3711-3720, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38720139

ABSTRACT

BACKGROUND: Parkinson's disease (PD) patients are frequently exposed to antidepressant medications (ADMs). Norepinephrine (NE) and serotonin (5HT) systems have a role in levodopa-induced dyskinesias (LID) pathophysiology. METHODS: We performed a longitudinal analysis on the PPMI cohort including drug-naïve PD patients, who are progressively exposed to dopamine replacement therapies (DRTs) to test the effect of ADM exposure on LID development by the 4th year of follow-up. RESULTS: LID prevalence (according to MDS UPDRS score 4.1 ≥ 1) was 16% (42/251); these patients were more likely women (p = 0.01), had higher motor (p < 0.001) and depression scores (p = 0.01) and lower putaminal DAT binding ratio (p = 0.01). LID were associated with the exposure time to L-DOPA (2.2 ± 1.07 vs 2.6 ± 0.9, p = 0.02) and to the exposure to ADMs, in particular to SNRI (4.8% vs 21.4%, p < 0.001). The latter persisted after correcting for significant covariates (e.g., disease duration, cognitive status, motor impairment, depression, dopaminergic denervation). A similar difference in LID prevalence in PD patients exposed vs non-exposed to SNRI was observed on matched data by the real-world TriNetX repository (22% vs 13%, p < 0.001). DISCUSSION: This study supports the presence of an effect of SNRI on LID priming in patients with early PD. Independent prospective cohort studies are warranted to further verify such association.


Subject(s)
Antiparkinson Agents , Dyskinesia, Drug-Induced , Levodopa , Parkinson Disease , Humans , Parkinson Disease/drug therapy , Female , Male , Aged , Middle Aged , Dyskinesia, Drug-Induced/etiology , Levodopa/adverse effects , Levodopa/pharmacology , Levodopa/administration & dosage , Antiparkinson Agents/adverse effects , Antiparkinson Agents/administration & dosage , Longitudinal Studies , Serotonin and Noradrenaline Reuptake Inhibitors/pharmacology , Serotonin and Noradrenaline Reuptake Inhibitors/administration & dosage , Serotonin and Noradrenaline Reuptake Inhibitors/adverse effects
19.
Neuron ; 112(13): 2231-2240.e5, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38701788

ABSTRACT

Selectively focusing on a behaviorally relevant stimulus while ignoring irrelevant stimuli improves perception. Enhanced neuronal response gain is thought to support attention-related improvements in detection and discrimination. However, understanding of the neuronal pathways regulating perceptual sensitivity remains limited. Here, we report that responses of norepinephrine (NE) neurons in the locus coeruleus (LC) of non-human primates to behaviorally relevant sensory stimuli promote visual discrimination in a spatially selective way. LC-NE neurons spike in response to a visual stimulus appearing in the contralateral hemifield only when that stimulus is attended. This spiking is associated with enhanced behavioral sensitivity, is independent of motor control, and is absent on error trials. Furthermore, optogenetically activating LC-NE neurons selectively improves monkeys' contralateral stimulus detection without affecting motor criteria, supporting NE's causal role in granular cognitive control of selective attention at a cellular level, beyond its known diffuse and non-selective functions.


Subject(s)
Attention , Locus Coeruleus , Macaca mulatta , Norepinephrine , Visual Perception , Locus Coeruleus/physiology , Animals , Attention/physiology , Norepinephrine/metabolism , Visual Perception/physiology , Male , Photic Stimulation/methods , Optogenetics , Neurons/physiology , Neurons/metabolism , Space Perception/physiology
20.
Alzheimers Res Ther ; 16(1): 97, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702802

ABSTRACT

BACKGROUND: The locus coeruleus (LC) and the nucleus basalis of Meynert (NBM) are altered in early stages of Alzheimer's disease (AD). Little is known about LC and NBM alteration in limbic-predominant age-related TDP-43 encephalopathy (LATE) and frontotemporal dementia (FTD). The aim of the present study is to investigate in vivo LC and NBM integrity in patients with suspected-LATE, early-amnestic AD and FTD in comparison with controls. METHODS: Seventy-two participants (23 early amnestic-AD patients, 17 suspected-LATE, 17 FTD patients, defined by a clinical-biological diagnosis reinforced by amyloid and tau PET imaging, and 15 controls) underwent neuropsychological assessment and 3T brain MRI. We analyzed the locus coeruleus signal intensity (LC-I) and the NBM volume as well as their relation with cognition and with medial temporal/cortical atrophy. RESULTS: We found significantly lower LC-I and NBM volume in amnestic-AD and suspected-LATE in comparison with controls. In FTD, we also observed lower NBM volume but a slightly less marked alteration of the LC-I, independently of the temporal or frontal phenotype. NBM volume was correlated with the global cognitive efficiency in AD patients. Strong correlations were found between NBM volume and that of medial temporal structures, particularly the amygdala in both AD and FTD patients. CONCLUSIONS: The alteration of LC and NBM in amnestic-AD, presumed-LATE and FTD suggests a common vulnerability of these structures to different proteinopathies. Targeting the noradrenergic and cholinergic systems could be effective therapeutic strategies in LATE and FTD.


Subject(s)
Alzheimer Disease , Basal Nucleus of Meynert , Frontotemporal Dementia , Locus Coeruleus , Magnetic Resonance Imaging , Humans , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/pathology , Male , Locus Coeruleus/diagnostic imaging , Locus Coeruleus/pathology , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Female , Aged , Magnetic Resonance Imaging/methods , Basal Nucleus of Meynert/diagnostic imaging , Basal Nucleus of Meynert/pathology , Middle Aged , Neuropsychological Tests , Amnesia/diagnostic imaging , Positron-Emission Tomography/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...